MEASUREMENT/TECHNICAL REPORT

COMPANY NAME: Millimeter Wave Technology, Inc.

DIGI-TALKER Pro

MODEL:

FCC ID:	NUM-DT	P-1
DATE:	March 3	0, 1998
Equipment type Deferred grant If yes, defer un	requested per 47 (til:date	CFR 0.457(d)(1)(ii)?
Report prepare	ed by: United States Ted 3505 Francis Circ Alpharetta, GA 30 Phone Number: Fax Number:	ele 0004 (770) 740-0717

TABLE OF CONTENTS

SECTION 1

GENERAL INFORMATION

Product Description

SECTION 2

TESTS AND MEASUREMENTS

Configuration of Tested
Test Facility
Test Equipment
Modifications
Occupied Bandwidth Limitation
Field Strength of Fundamental Emission
Field Strength of Spurious Emissions
Radiated Emissions
Power Line Conducted Emissions

SECTION 3

LABELING INFORMATION

SECTION 4

BLOCK DIAGRAM(S)

SECTION 5

PHOTOGRAPHS

SECTION 6

USER'S MANUAL

LIST OF FIGURES AND TABLES

FIGURES

Test Configuration
Photograph(s) for Spurious and Fundamental Emissions
Occupied Bandwidth Limitation
Band Edge Containment
Peak Field Strength of Fundamental Emission
Peak Spurious Emission

TABLES

EUT And Peripherals Test Instruments Field Strength of Fundamental Emission Field Strength of Spurious Emissions Radiated Emmissions Power Line Conducted Emissions

SECTION 1 GENERAL INFORMATION

GENERAL INFORMATION

Product Description

The Equipment Under Test (EUT) is a Millimeter Wave Technology, Inc. low power FM transmitter, Model DIGI-TALKER Pro. The EUT has a 120 second continous play digital sound recorder.

Related Submittal(s)/Grant(s)

Not Applicable

SECTION 2 TESTS AND MEASUREMENTS

TESTS AND MEASUREMENTS

Configuration of Tested System

The sample was tested per ANSI C63.4, Methods of Measurement from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz (1992). Conducted and radiated emissions data were taken with the test receiver or spectrum analyzer's resolution bandwidth adjusted to 9 kHz and 120 kHz, respectively. All measurements are peak unless stated otherwise. The video filter associated with the spectrum analyzer was off throughout the evaluation process. Interconnecting cables were manipulated as necessary to maximize emissions. A block diagram of the tested system is shown in Figure 1. Test configuration photographs for spurious and fundamental emissions are shown in Figure 2.

The EUT was placed into a continuous mode of transmit and rotated about all 3 axis to obtain worse case results.

Test Facility

Testing was performed at US Tech's measurement facility at 3505 Francis Circle, Alpharetta, GA. This site has been fully described and submitted to the FCC, and accepted in their letter marked 31040/SIT. Additionally this site has also been fully described and submitted to Industry Canada (IC), and has been approved under file number IC2982.

Test Equipment

Table 2 describes test equipment used to evaluate this product.

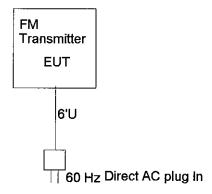
Modifications

The following modifications were made by US Tech, to bring the EUT into compliance with FCC Part 15, Class B Requirements.

- 1) L2 (260 mH) was removed to meet Occupied Bandwidth requirements.
- 2) R41 was originally a $5k\Omega$ variable resistance which was adjusted to meet the Fundamental Emissions requirements. Final adjustment yielded a value of $1.65k\Omega$ and will be replaced by a fixed value in final production units.
- 3) The internal processor software program was changed (function PWM) from a value limit of 111 to 110.

The above modifications will be implemented in all production models of this equipment.

Applicant: Millimeter Wave Technology, Inc.


Signature: The Hentler

Name: Paul H. Butler

Date: April 9, 1998

Position: Vice President

FIGURE 1
TEST CONFIGURATION

Test Date:

February 24, 1998

Test Date: Februar
UST Project: 98-067
Customer: Millime
Model: DIGI-TA

Millimeter Wave Technology, Inc.

DIGI-TALKER Pro

FIGURE 2

Photograph(s) for Spurious and Fundamental Emissions

Photographs are unavailable

Test Date:

February 24, 1998

UST Project:

98-067

Customer:

Millimeter Wave Technology, Inc.

Model:

DIGI-TALKER Pro

TABLE 1 EUT and Peripherals

PERIPHERAL MANUFACTURER	MODEL NUMBER	SERIAL NUMBER	FCC ID:	CABLES P/D
FM Transmitter Millimeter Wave Technology, Inc. (EUT)	DIGI-TALKER Pro	0001	NUM-DTP-1 (Pending)	None
AC Adaptor	None	None	None	6'U Direct Plug In

TABLE 2
TEST INSTRUMENTS

	[ES] [NS] RUMENTS		
ТҮРЕ	MANUFACTURER	MODEL	SN.
SPECTRUM ANALYZER	HEWLETT-PACKARD	8593E	3205A00124
SPECTRUM ANALYZER	HEWLETT-PACKARD	8558B	2332A09900
S A DISPLAY	HEWLETT-PACKARD	853A	2404A02387
COMB GENERATOR	HEWLETT-PACKARD	8406A	1632A01519
RF PREAMP	HEWLETT-PACKARD	8447D	1937A03355
RF PREAMP	HEWLETT-PACKARD	8449B	3008A00480
HORN ANTENNA	EMCO	3115	3723
ROBERTS ANTENNAS	COMPLIANCE DESIGN	A100	167
BICONICAL ANTENNA	EMCO	3110	9307-1431
LOG PERIODIC ANTENNA	EMCO	3146	9110-3600
BILOG	CHASE	CBL6112A	2238
LISN	SOLAR ELE.	8012-50	N/A
THERMOMETER	FLUKE	52	5215250
MULTIMETER	FLUKE	85	53710469
FUNCTION GENERATOR	TEKTRONIX	CFG250	CFG250TW1505 9
PLOTTER	HEWLETT-PACKARD	7475A	2325A65394

Bandwidth Limitation 47 CFR 15.239(a)

Emissions from the intentional radiator shall be confined within a band 200 kHz wide centered on the operating frequency. The 200 kHz band shall lie wholly within the frequency range of 88-108 MHz. The 200 kHz bandwidth limitation is determined by measuring the bandwidth 26 dB below the peak. Figures 3 and 4 show the bandwidth at the lowest and highest frequency. Figures 5 and 6 show that the entire band is within the required frequency range. The EUT's speaker was modulated by a 1000 Hz tone at 100 dB SPL applied to the microphone as stated in ANSI C63.4 13.1.1.1.

Figure 3
Occupied Bandwidth Limitation 15.239(a)
Low Channel

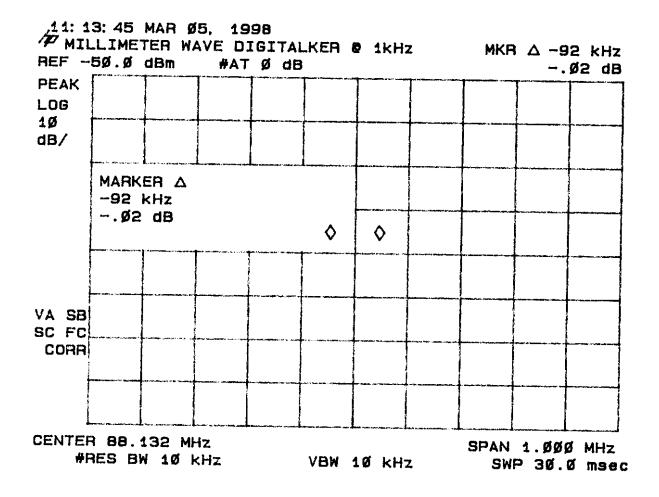


Figure 4
Occupied Bandwidth Limitation 15.239(a)
High Channel

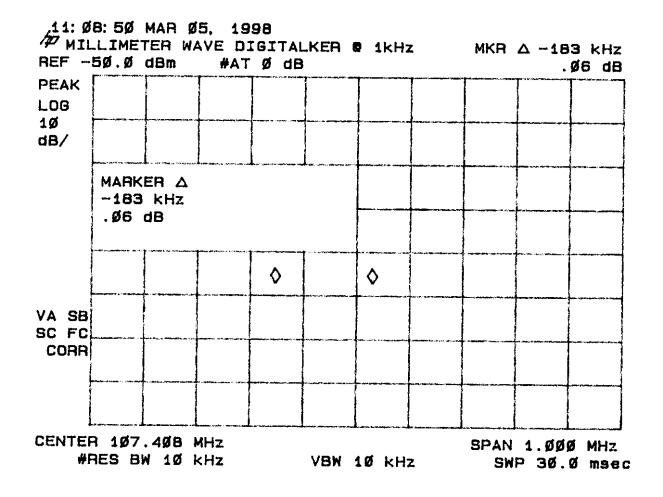


Figure 5
Band Edge Containment 15.239(a)
Low Channel

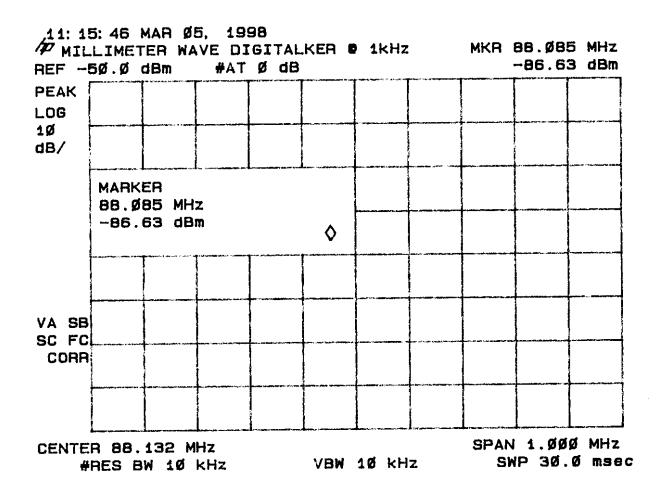
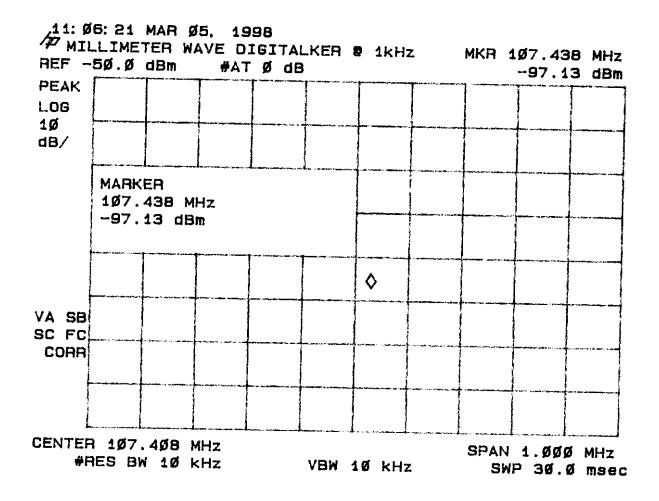



Figure 6
Band Edge Containment 15.239(a)
High Channel

Field Strength of Fundamental Emission (47 CFR 15.239(b))

Measurements were made using a peak detector. Field strength of the peak fundamental emission is shown in Tables 3 - 8 and Figures 7 -12.

TABLE 3 FIELD STRENGTH OF FUNDAMENTAL EMISSION

TEST DATE: February 24, 1998

UST PROJECT:

98-067

CUSTOMER: Millimeter Wave Technology, Inc.

MODEL:

DIGI-TALKER Pro

Low Channel

FREQ. (MHz.)	TEST DATA (dBm) @ 3m	ANTENNA FACTOR + CABLE ATTENUATION	RESULTS (uV/m) @ 3m	PEAK FCC LIMITS (uV/m) @ 3m
89.5	-71.5	10.7	204.6	2,500

SAMPLE CALCULATIONS:

RESULTS uV/m @ 3m = Antilog ((-71.5 + 10.7 + 107)/20) = 204.6CONVERSION FROM dBm TO dBuV = 107 dB

Tested By: _	6/2	46	Name: Erik Collins
		/ 	

FIELD STRENGTH OF FUNDAMENTAL EMISSION

TEST DATE:

February 24, 1998

UST PROJECT:

98-067

CUSTOMER: Millimeter Wave T MODEL: DIGI-TALKER Pro Millimeter Wave Technology, Inc.

Mid Channel

FREQ. (MHz.)	TEST DATA (dBm) @ 3m	ANTENNA FACTOR + CABLE ATTENUATION	RESULTS (uV/m) @ 3m	PEAK FCC LIMITS (uV/m) @ 3m
97.7	-69.9	12.4	298.5	2,500

SAMPLE CALCULATIONS:

RESULTS uV/m @ 3m = Antilog ((-69.9 + 12.4 + 107)/20) = 209.3CONVERSION FROM dBm TO dBuV = 107 dB

Tested By: Name: Erik Collins

FIELD STRENGTH OF FUNDAMENTAL EMISSION

TEST DATE:

February 24, 1998

UST PROJECT:

98-067

CUSTOMER: Millimeter Wave Technology, Inc. MODEL: DIGI-TALKER Pro

High Channel

FREQ. (MHz.)	TEST DATA (dBm) @ 3m	ANTENNA FACTOR + CABLE ATTENUATION	RESULTS (uV/m) @ 3m	PEAK FCC LIMITS (uV/m) @ 3m
108.0	-70.4	13.3	312.6	2,500

SAMPLE CALCULATIONS:

RESULTS uV/m @ 3m = Antilog ((-70.4 + 13.3 + 107)/20) = 312.6CONVERSION FROM dBm TO dBuV = 107 dB

Tested By: Name: Erik Collins

FIELD STRENGTH OF FUNDAMENTAL EMISSION

TEST DATE:

February 24, 1998

UST PROJECT:

98-067

CUSTOMER:

Millimeter Wave Technology, Inc.

MODEL:

DIGI-TALKER Pro

Low Channel

FREQ. (MHz.)	TEST DATA (dBm) @ 3m	ANTENNA FACTOR + CABLE ATTENUATION	RESULTS (uV/m) @ 3m	AVERAGE FCC LIMITS (uV/m) @ 3m
89.5	-75.5	10.7	129.1	250

SAMPLE CALCULATIONS:

RESULTS uV/m @ 3m = Antilog ((-75.5 + 10.7 + 107)/20) = 129.1 CONVERSION FROM dBm TO dBuV = 107 dB

Tested By: _____ Name: Erik Collins_____

TABLE 7

FIELD STRENGTH OF FUNDAMENTAL EMISSION

TEST DATE: February 24, 1998
UST PROJECT: 98-067
CUSTOMER: Millimeter Wave Technology, Inc.
MODEL: DIGI-TALKER Pro

Mid Channel

FREQ. (MHz.)	TEST DATA (dBm) @ 3m	ANTENNA FACTOR + CABLE ATTENUATION	RESULTS (uV/m) @ 3m	AVERAGE FCC LIMITS (uV/m) @ 3m
97.7	-73.9	12.4	188.7	250

SAMPLE CALCULATIONS:

RESULTS uV/m @ 3m = Antilog ((-73.9 + 12.4 + 107)/20) = 188.7CONVERSION FROM dBm TO dBuV = 107 dB

Tested By: _____ Name: Erik Collins_____

FIELD STRENGTH OF FUNDAMENTAL EMISSION

February 24, 1998 TEST DATE:

UST PROJECT: 98-067

CUSTOMER: Millimeter Wave Technology, Inc. MODEL: DIGI-TALKER Pro

High Channel

FREQ. (MHz.)	TEST DATA (dBm) @ 3m	ANTENNA FACTOR + CABLE ATTENUATION	RESULTS (uV/m) @ 3m	AVERAGE FCC LIMITS (uV/m) @ 3m
108.0	-73.8	13.3	211.3	250

SAMPLE CALCULATIONS:

RESULTS uV/m @ 3m = Antilog ((-73.8 + 13.3 + 107)/20) = 211.3CONVERSION FROM dBm TO dBuV = 107 dB

Name: Erik Collins

Figure 7

Peak Field Strength of Fundamental Emission 15.239(b)

Low Channel

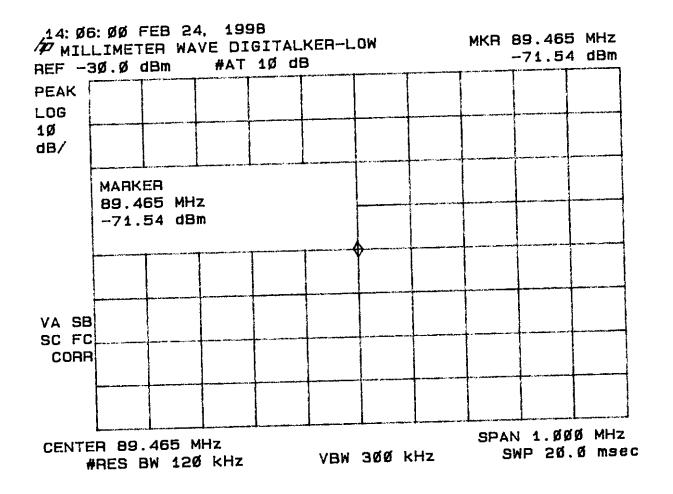


Figure 9

Peak Field Strength of Fundamental Emission 15.239(b)

High Channel



Figure 10

Average Field Strength of Fundamental Emission 15.239(b)

Low Channel

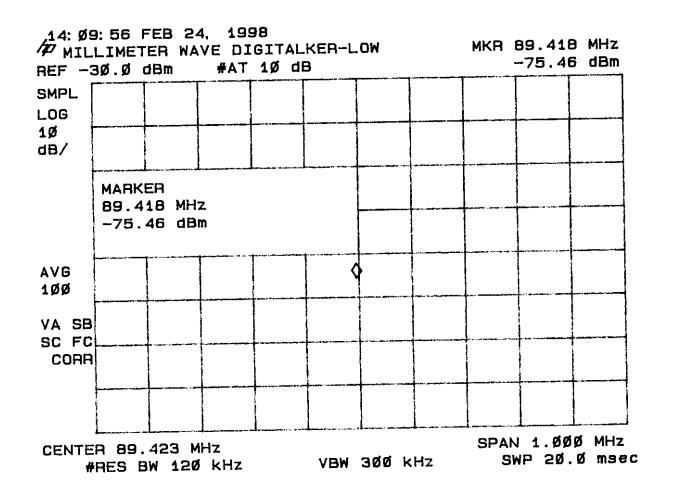


Figure 11

Average Field Strength of Fundamental Emission 15.239(b)

Mid Channel

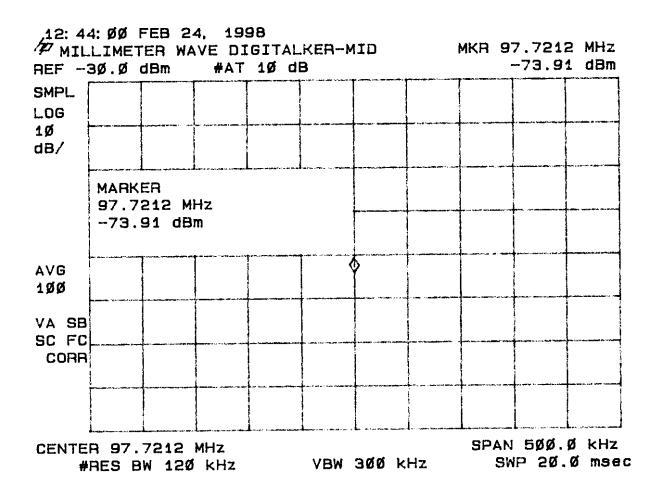
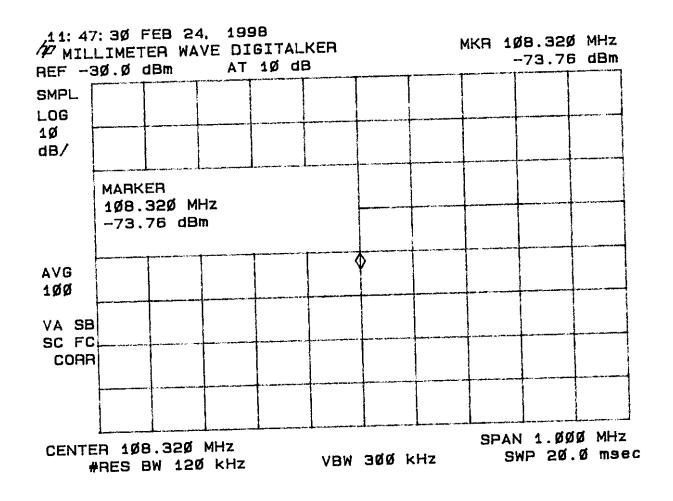



Figure 12

Average Field Strength of Fundamental Emission 15.239(b)

High Channel

Field Strength of Spurious Fundamental Emission (47 CFR 15.239(c))

Measurements were made using a peak detector. Field strength of Spurious Emissions are shown in Tables 9 - 11 and Figures 13 -15. Any emission less than 1000 MHz and falling within the restricted bands of 15.205 were not adjusted for averaging and the limits of 15.209 were applied.

TABLE 9 FIELD STRENGTH OF SPURIOUS EMISSIONS

TEST DATE: February 24, 1998

UST PROJECT: 98-067

CUSTOMER: Millimeter Wave To MODEL: DIGI-TALKER Pro Millimeter Wave Technology, Inc.

Low Channel

FREQ (MHz.)	TEST DATA (dBm) @ 3m	ANTENNA FACTOR + CABLE ATTENUATION + AMP GAIN	RESULTS (uV/m) @ 3m	PEAK FCC LIMITS (uV/m) @ 3m
178.7	-78.5	13.5	126.5	150
268.6	-86.8	16.8	71.0	200
357.4	-87.6	19.7	89.8	200

SAMPLE CALCULATIONS:

RESULTS uV/m @ 3m = Antilog ((-78.5 + 13.5 + 107)/20) = 126.5CONVERSION FROM dBm TO dBuV = 107 dB

Tested By: 4 Mame: Erik Collins

FIELD STRENGTH OF SPURIOUS EMISSIONS

TEST DATE: February 24, 1998

UST PROJECT: 98-067

CUSTOMER: Millimeter Wave Technology, Inc.

MODEL: DIGI-TALKER Pro

Mid Channel

FREQ. (MHz.)	TEST DATA (dBm) @ 3m	ANTENNA FACTOR + CABLE ATTENUATION + AMP GAIN	RESULTS (uV/m) @ 3m	PEAK FCC LIMITS (uV/m) @ 3m
195.4	-81.2	13.8	95.6	150
293.2	-85.2	17.7	94.2	200

SAMPLE CALCULATIONS:

RESULTS uV/m @ 3m = Antilog ((-81.2 + 13.8 + 107)/20) = 95.6 CONVERSION FROM dBm TO dBuV = 107 dB

Tested By: Like Ale	Name: Erik Collins
rested by: / / / / / / / / / / / / / / / / / / /	Marinot <u> </u>

TABLE 11 FIELD STRENGTH OF SPURIOUS EMISSIONS

TEST DATE:

February 24, 1998

UST PROJECT:

98-067

CUSTOMER:

Millimeter Wave Technology, Inc.

MODEL:

DIGI-TALKER Pro

High Channel

FREQ. (MHz.)	TEST DATA (dBm) @ 3m	ANTENNA FACTOR + CABLE ATTENUATION + AMP GAIN	RESULTS (uV/m) @ 3m	PEAK FCC LIMITS (uV/m) @ 3m
216.6	-83.2	14.7	84.1	200
324.9	-84.3	18.7	117.4	200

SAMPLE CALCULATIONS:

RESULTS uV/m @ 3m = Antilog ((-83.2 + 14.7 + 107)/20) = 84.1 CONVERSION FROM dBm TO dBuV = 107 dB

Tested By: Mame: Erik Collins

Figure 13B

Peak Spurious Emission 15.239(b) Low Channel

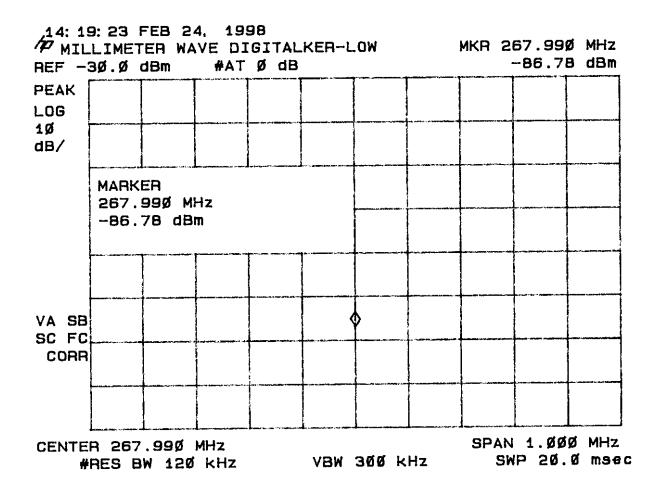


Figure 13A

Peak Spurious Emission 15.239(b) Low Channel

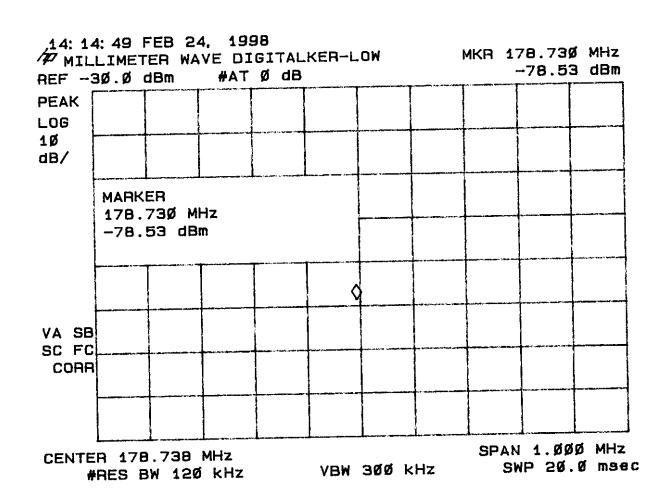


Figure 13C

Peak Spurious Emission 15.239(b) Low Channel

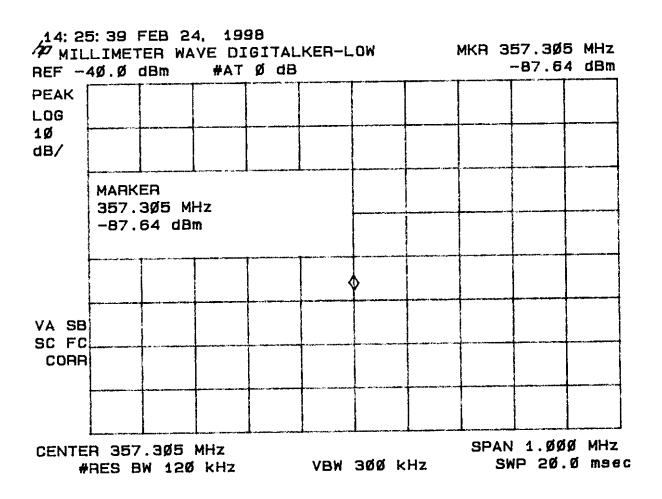


Figure 14A

Peak Spurious Emissions 15.239(c)

Mid Channel

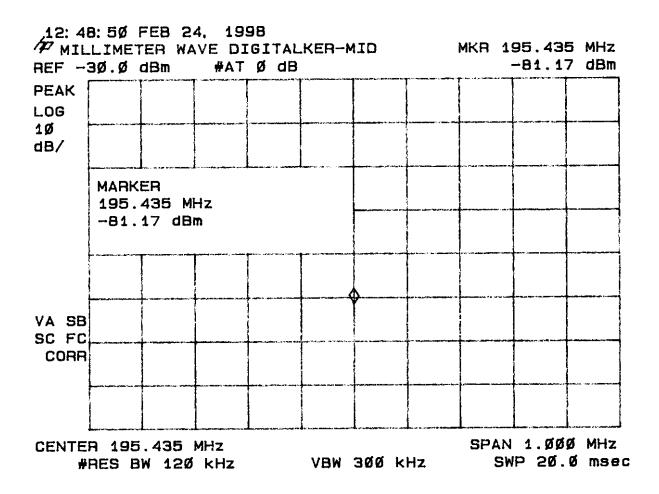


Figure 14B

Peak Spurious Emissions 15.239(c)

Mid Channel

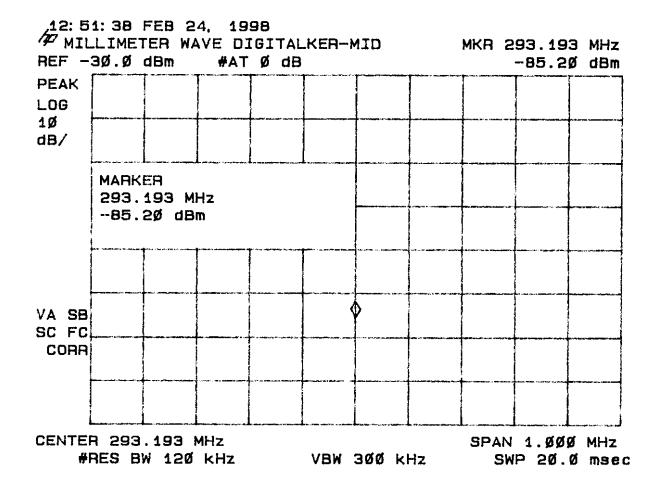


Figure 15A

Peak Spurious Emissions 15.239(c)

High Channel

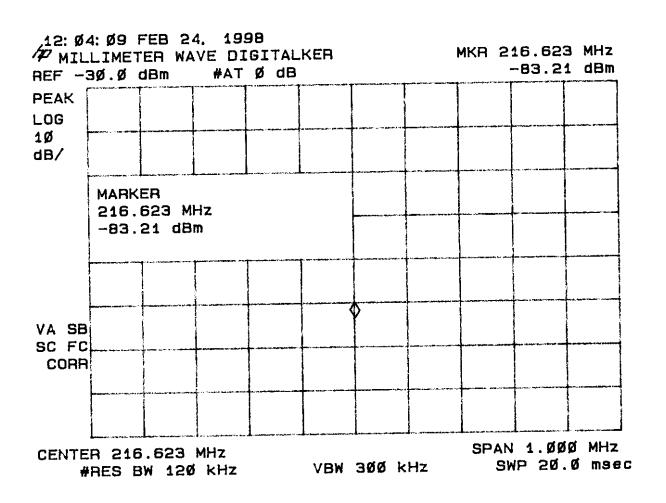
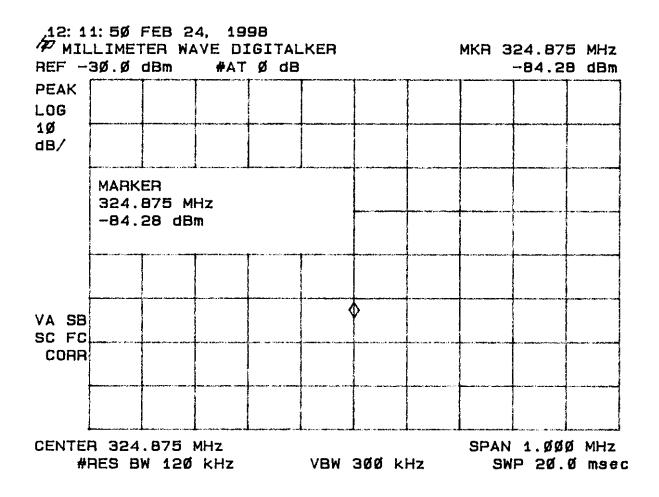



Figure 15B

Peak Spurious Emissions 15.239(c)

High Channel

Radiated Emissions (47 CFR 15.109a)

Radiated emissions (Digital Device) were evaluated from 30 to 1000 MHz with the transmitter turned off. Measurements were made with the analyzer's bandwidth set to 120 kHz. Emissions are shown in Table 12.

CLASS B RADIATED EMISSIONS

TEST DATE: February 24, 1998

UST PROJECT: 98-067

CUSTOMER: Millimeter Wave Technology, Inc. MODEL: DIGI-TALKER Pro

FREQ. (MHz)	TEST DATA (dBm) @ 3m	ANTENNA FACTOR + CABLE ATTENUATION	RESULTS (uV/m) @ 3m	FCC LIMITS (uV/m) @ 3m
38.9	-93.0	15.9	31.3	100
51.9	-92.0	9.9	17.7	100

SAMPLE CALCULATIONS:

RESULTS uV/m @ 3m = Antilog ((-93.0 + 15.9 + 107)/20) = 31.3CONVERSION FROM dBm TO dBuV = 107 dB

Tested By: Name: Erik Collins

Power Line Conducted Emissions (47 CFR 15.107a)

The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked. Emissions are shown in Table 13.

CLASS B CONDUCTED EMISSIONS

TEST DATE: February 24, 1998

UST PROJECT: 98-067

CUSTOMER: Millimeter Wave Technology, Inc. MODEL: DIGI-TALKER Pro

FREQUENCY (MHz)	TEST DATA (dBm)		RESULTS (uV)		FCC LIMITS
	PHASE	NEUTRAL	PHASE	NEUTRAL	(uV)
0.45	-85.0	-91.0	12.6	6.3	250
1.0	-86.0	-90.0	11.2	7.1	250
1.5	-77.0	-91.0	31.6	6.3	250
3.0	-86.0	-91.0	11.2	6.3	250
4.4	-81.0	-91.0	20.0	6.3	250
25.6	-87.0	-89.0	10.0	7.9	250

SAMPLE CALCULATIONS:

RESULTS uV = Antilog ((-85.0 + 107)/20) = 12.6CONVERSION FROM dBm TO dBuV = 107 dB

Tested By: / Solution Name: Erik Collins