NATIONAL CERTIFICATION LABORATORY 8370 Court Avenue, Suite B-1 Ellicott City MD 21043 (410) 461-5548

FCC REPORT OF RADIO INTERFERENCE

for

Coastal u.s.c., Inc. 7042 Grand Blvd., Bldg. B New Port Richey, FL 34652

FCC ID: NTY-TLB100T

May 25, 1998

TABLE OF CONTENTS

Application Form 731 Label Format

- 1.0 Introduction
- 1.1 Summary
- **2.0** Description of Equipment Under Test (EUT)
- 3.0 Test Configuration
- 4.0 Conducted Emissions Scheme
- 5.0 Radiated Emissions Scheme

TABLES

Table 1. Support Equipment

Table 2. Measurement Equipment

EXHIBITS

Exhibit 1. EUT Photographs

Exhibit 2. Schematics

Exhibit 3. User Manual

NCL PROJ.# COASTAL-453TX

1.0 Introduction

This report has been prepared on behalf of Coastal u.s.c., Inc., to support the attached Application for Certification of a Part 15 Intentional Radiator. The Equipment Under Test was the Coastal u.s.c., Inc. Wireless Tow Bar Transmitter.

Radio-Noise Emissions tests were performed according to ANSI C63.4-1992 "Methods of Measurement of RFI from Low-Voltage Electronic Equipment in the Range of 9 KHz - 40 GHz". The measuring equipment conforms to ANSI C63.2 Specifications for Electromagnetic Noise and Field Strength Instrumentation.

Testing was performed at National Certification Laboratory in Ellicott City, MD. Site description and site attenuation data have been placed on file with the FCC's Sampling and Measurements Branch. FCC acceptance was granted on May 26, 1993.

1.1 Summary

The *Wireless Tow Bar Transmitter* complies with the Part 15.231 Radio Limits for periodic operation above 70 MHz of an Intentional Radiator.

2.0 Description of Equipment Under Test (EUT)

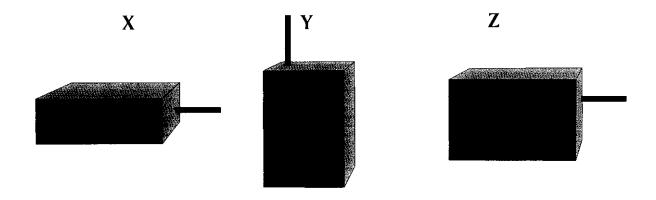
The EUT Features:

FEATURES FREQUENCY

Inductive Antenna 315.115 MHz (On PCB)

Crystal Stable

Pulsed FM Modulated


Manual Keying - Immediate off

Battery Operation Only

3.0 Test Configuration

The EUT was setup on the test table in a manner which follows the general guidelines of ANSI C63.4, Section 6 "General Operating Conditions and Configurations". One of the keying buttons was bound to the "on" position during testing.

The EUT was configured in 3 orthogonal positions to determine the maximum RF level at each emission frequency. The data tables give the EUT postion designation that produces worst-case field strength, in an X, Y, Z system. This is described below:

4.0 Conducted Emissions Scheme

The EUT is powered by battery only.

5.0 Radiated Emissions Scheme

The EUT was initially scanned in the frequency range 30 to 3150 MHz indoors, at a distance of 1 meter to determine its emissions profile. The EUT was then placed on an 80 cm high 1 X 1.5 meter non-conductive motorized turntable for radiated testing on the 3-meter open area test site. The emissions from the EUT are measured continuously at every azimuth by rotating the turntable. Waveguide horn and log periodic broadband antennas are mounted on an antenna mast to determine the height of maximum emissions. The height of the antenna is varied between 1 and 4 meters. Both the horizontal and vertical field components are measured.

The output from the antenna is connected to the input of the spectrum analyzer. The detector function is set to <u>Peak</u>. The resolution bandwidth of the spectrum analyzer system is set at 120 kHz, for measurements in the range 30 MHz -1 GHz, and 1 MHz for measurements in the range of 1 - 4 GHz, with all post-detector filtering no less than 10 times the resolution bandwidth. All emissions within 20 dB of the limit are recorded in the data tables.

To convert the spectrum analyzer reading into a quantified E-field level to allow comparison with the FCC limits, it is necessary to account for various calibration factors. These factors include cable loss (CL) and antenna factors (AF). The AF/CL in dB/m is algebraically added to the Spectrum Analyzer Voltage in db μ V to obtain the Radiated Electric Field in dB μ V/m. This level is then compared with the FCC limit.

Example:

Spectrum Analyzer Volt: VdBuV

Composite Factor: AF/CLdB/m

Electric Field: $EdB\mu V/m = VdB\mu V + AF/CLdB/m$

Linear Conversion: $EuV/m = Antilog (EdB\mu V/m/20)$

FCC ID #: NTY-TLB100T

FCC RADIATED EMISSIONS DATA

FCC ID: NTY-TLB100T

CLIENT:

COASTAL

EUT:

WTLB TX

FREQ.:

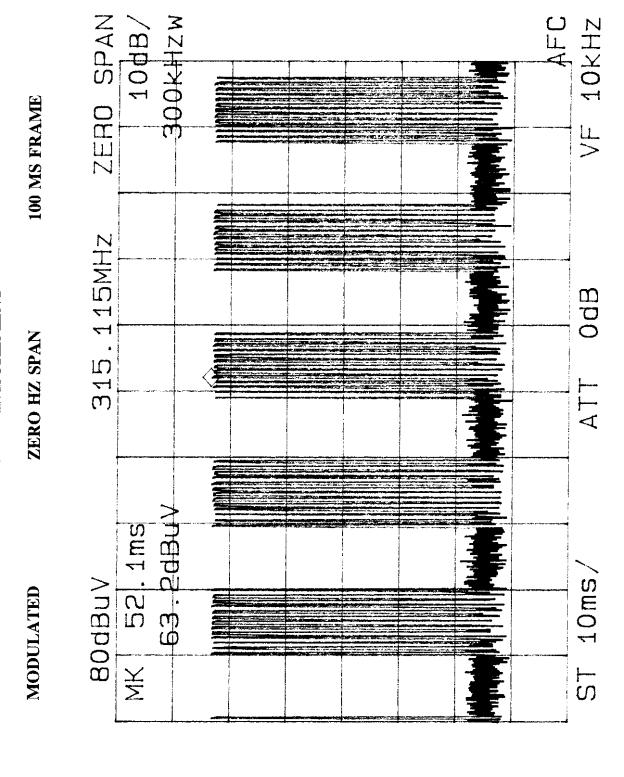
315.115 MHZ

3-METER TEST		PEAK	AVERAGE						
FREQ	Po	OL	SPEC A	AF/C	AMP	AVG.	E-FIELD	LIMIT	MRG
MHz	ANT	EUT	dBuV	dB/m	GAIN	FACTOR	dBuV/m	dBuV/m	dB
			<u> </u>						
315.12	Н	X	93.0	14.0	-30	-6.0	71.0	76.0	-5.0
630.23	Н	Z	66.0	20.0	-30	-6.0	50.0	56.0	-6.0
945.35	Н	X	56.0	25.0	-30	-6.0	45.0	56.0	-11.0
1260.46	\mathbf{V}	Y	54.0	26.0	-30	-6.0	44.0	56.0	-12.0
1575.58	Н	X	50.0	28.0	-30	-6.0	42.0	54.0	-12.0
1890.69	Н	X	47.0	31.0	-30	-6.0	42.0	56.0	-14.0
2205.81	Н	X	45.0	32.0	-30	-6.0	41.0	54.0	-13.0
2520.92	\mathbf{V}	Y	44.0	33.0	-30	-6.0	41.0	56.0	-15.0
2836.04	Н	Z	40.0	34.0	-30	-6.0	38.0	54.0	-16.0
3151.15	V	Y	40.0	35.0	-30	-6.0	39.0	56.0	-17.0

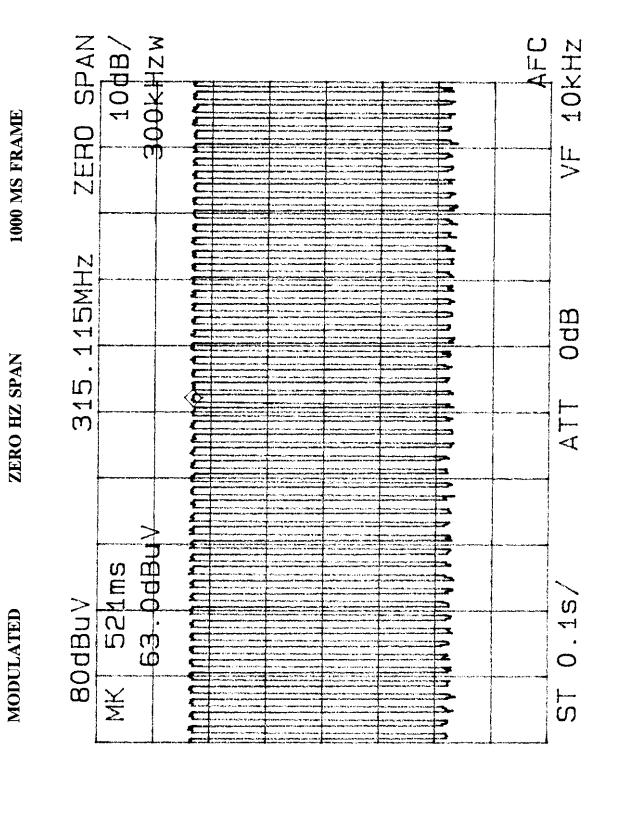
TEST ENGINEER

_DATE___SALE

STEVE DAYHOFF


Average Field Strength Calculation:

The following spectrum analyzer plots reveal the maximum pulsed on/off duty cycle of the modulated carrier. A plot showing a 100 ms frame, and a second plot showing a 1000 ms frame are given. These plots demonstrates clearly that the duty cycle is near 50 %. The average electric field level can thus be calculated as follows:


Linear: Avg. FS(uV/m) = Peak FS(uV/m) * 0.50

Logarithmic: Avg. FS(dBuV/m) = Peak FS(dBuV/m) - 6 dB

DUTY CYCLE MEASUREMENT

DUTY CYCLE MEASUREMENT

Bandwidth Measurement:

The following plots include a graph of the modulated carrier which demonstrates the Bandwidth at a 20 dB point down from peak. Section 15.231(c) limits the Bandwidth to 0.25% of the center frequency:

BW Limit = .0025 * 315 MHz = 787 KHz

20 dB BANDWIDTH MEASUREMENT

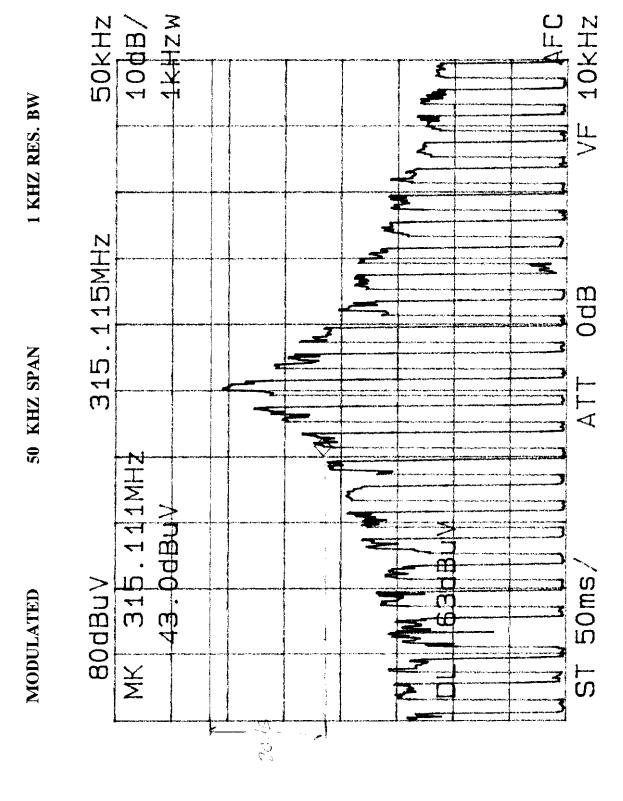


Table 1

Support Equipment

MANUFACTURER	FCC ID #	SERIAL #
Tandy 12VDC Power Supply	N/A	None

Table 2

Measurement Equipment Used

The following equipment is used to perform measurements:

EQUIPMENT	SERIAL NUMBER
Wavetek 2410A 1100 MHz Signal Generator	1362016
HP Model 8449B Preamplifier	12A533-A
EMCO Model 3146 Log Periodic Antenna	1222
Solar 8012-50-R-24-BNC LISN	924867
Advantest Model R4131D Spectrum Analyzer	54378A
EMCO Model 3115 Ridge Horn Antenna	1238
4 Meter Antenna Mast	None
Motorized Turntable	None
RG-233U 50 ohm coax Cable	None

EXHIBIT 1

EUT PHOTOGRAPHS

FCC ID #: NTY-TLB100T