

APPLICANT: MIDWAY SERVICES, INC.

FCC ID: NTXINT900

TABLE OF CONTENTS

TEST REPORT CONTAINING:

PAGE	1-4	LIST OF TEST EQUIPMENT
PAGE	5	TEST PROCEDURES
PAGE	6	PRODUCT DESCRIPTION
PAGE	7	GENERAL INFORMATION & DATA
PAGE	8	POWER OUTPUT
PAGE	9	FIELD STRENGTH OF SPURIOUS EMISSIONS
PAGE	10	METHOD OF MEASURING RADIATED SPURIOUS EMISSIONS
PAGE	11-13	POWER LINE CONDUCTED EMISSIONS TEST DATA
PAGE	14	CHANNEL SPACING
PAGE	15	20 db BANDWIDTH OF A HOPPING CHANNEL
PAGE	16	DWELL TIME PLOT
PAGE	17	BANDEDGE PLOT - 20 dB
PAGE	18-21	NO. OF CHANNELS PLOTS

EXHIBIT ATTACHMENTS:

EXHIBIT 1	REQUEST FOR CONFIDENTIALITY LETTER
EXHIBIT 2	FCC ID LABEL SAMPLE
EXHIBIT 3	SKETCH OF FCC ID LABEL LOCATION
EXHIBIT 4	BLOCK DIAGRAM
EXHIBIT 5	SCHEMATIC
EXHIBIT 6	EXTERNAL PHOTOGRAPHS
EXHIBIT 7	INTERNAL PHOTOGRAPHS
EXHIBIT 8	USERS MANUAL
EXHIBIT 9	CIRCUIT DESCRIPTION
EXHIBIT 10	HOPPING DATA
EXHIBIT 11	TEST SETUP PHOTOGRAPHS
EXHIBIT 12	MPE CALCULATION

APPLICANT: MIDWAY SERVICES, INC.

FCC ID: NTXINT900

REPORT #: M/MIDWAY\462ut2\462ut2TestReport.doc

TABLE OF CONTENTS LIST

EMC Equipment List

Last Update: 6/25/03

DEVICE	MFGR	MODEL	SERNO	CAL/CHAR DATE	DUE DATE or STATUS
3-Meter OATS	TEI	N/A	N/A	Listed 1/13/03	1/13/06
3/10-Meter OATS	TEI	N/A	N/A	Listed 3/26/01	3/26/04
Receiver, Beige Tower Spectrum Analyzer	HP	8566B Opt 462	3138A07786 3144A20661	CAL 8/31/01	8/31/03
RF Preselector	HP	85685A	3221A01400	CAL 8/31/01	8/31/03
Quasi-Peak Adapter	HP	85650A	3303A01690	CAL 8/31/01	8/31/03
Receiver, Blue Tower Spectrum Analyzer	HP	8568B	2928A04729 2848A18049	CAL 4/15/03	4/15/05
RF Preselector	HP	85685A	2926A00983	CAL 4/15/03	4/15/05
Quasi-Peak Adapter	HP	85650A	2811A01279	CAL 4/15/03	4/15/05
Receiver, Silver/Grey Tower Spectrum Analyzer	HP	8566B Opt 462	3552A22064 3638A08608	CAL 10/14/02	10/14/04
RF Preselector	HP	85685A	2620A00294	CAL 10/14/02	10/14/04
Quasi-Peak Adapter	HP	85650A	3303A01844	CAL 10/14/02	10/14/04
Preamplifier	HP	8449B	3008A01075	CHAR 1/28/02	1/28/04
Biconnical Antenna	Electro-Metrics	BIA-25	1171	CAL 4/26/01	4/26/03
Biconnical Antenna	Eaton	94455-1	1096	CAL 10/1/01	10/1/03
Biconnical Antenna	Eaton	94455-1	1057	CAL 3/18/03	3/18/05
BiconiLog Antenna	EMCO	3143	9409-1043		
Log-Periodic Antenna	Electro-Metrics	LPA-25	1122	CAL 10/2/01	10/2/03
Log-Periodic Antenna	Electro-Metrics	EM-6950	632	CHAR 10/15/01	10/15/03
Log-Periodic Antenna	Electro-Metrics	LPA-30	409	CAL 3/4/03	3/4/05
Log-Periodic Antenna	Eaton	96005	1243	CAL 5/8/03	5/8/05

APPLICANT: MIDWAY SERVICES, INC.

FCC ID: NTXINT900

REPORT #: M/MIDWAY\462ut2\462ut2TestReport.doc

Page 1 of 21

DEVICE	MFGR	MODEL	SERNO	CAL/CHAR DATE	DUE DATE or STATUS
Dipole Antenna Kit	Electro-Metrics	TDA-30/1-4	152	CAL 3/21/01	3/21/04
Dipole Antenna Kit	Electro-Metrics	TDA-30/1-4	153	CAL 9/26/02	9/26/05
Double-Ridged Horn Antenna	Electro-Metrics	RGA-180	2319	CAL 2/17/03	2/17/05
Horn Antenna *(at 3 meters)	Electro-Metrics	EM-6961	6246	CAL 3/31/03	3/31/05
Horn Antenna *(at 10 meters)	Electro-Metrics	EM-6961	6246	CAL 6/4/03	6/4/05
Horn Antenna	ATM	19-443-6R	None	No Cal Required	
Passive Loop Antenna	EMC Test Systems	EMCO 6512	9706-1211	CHAR 7/10/01	7/10/03
Line Impedance Stabilization . . .	Electro-Metrics	ANS-25/2	2604	CAL 10/9/01	10/9/03
Line Impedance Stabilization . . .	Electro-Metrics	EM-7820	2682	CAL 3/12/03	3/12/05
Termaline Wattmeter	Bird Electronic Corporation	611	16405	CAL 5/25/99	5/25/01
Termaline Wattmeter	Bird Electronic Corporation	6104	1926	CHAR 12/12/01	12/12/03
Oscilloscope	Tektronix	2230	300572	CHAR 2/1/01	2/1/03
System One	Audio Precision	System One	SYS1-45868	CHAR 4/25/02	4/25/04
Temperature Chamber	Tenney Engineering	TTRC	11717-7	CHAR 1/22/02	1/22/04
AC Voltmeter	HP	400FL	2213A14499	CAL 10/9/01	10/9/03
AC Voltmeter	HP	400FL	2213A14261	CHAR 10/15/01	10/15/03
AC Voltmeter	HP	400FL	2213A14728	CHAR 10/15/01	10/15/03
Digital Multimeter	Fluke	77	35053830	CHAR 1/8/02	1/8/04
Digital Multimeter	Fluke	77	43850817	CHAR 1/8/02	1/8/04
Digital Multimeter	HP	E2377A	2927J05849	CHAR 1/8/02	1/8/04
Multimeter	Fluke	FLUKE-77-3	79510405	CHAR 9/26/01	9/26/03
Peak Power Meter	HP	8900C	2131A00545	CHAR 1/26/01	1/26/03
Power Meter	HP	432A	1141A07655	CAL 4/15/03	4/15/05

APPLICANT: MIDWAY SERVICES, INC.

FCC ID: NTXINT900

REPORT #: M/MIDWAY\462ut2\462ut2TestReport.doc

Page 2 of 21

DEVICE	MFGR	MODEL	SERNO	CAL/CHAR DATE	DUE DATE or STATUS
Power Meter And Sensor	Bird	4421-107 4022	0166 0218	CAL 4/16/03	4/16/05
Power Sensor	HP	478A	72129	CAL 4/15/03	4/15/05
Digital Thermometer	Fluke	2166A	42032	CAL 1/16/02	1/16/04
Thermometer	Traulsen	SK-128		CHAR 1/22/02	1/22/04
Thermometer	Extech	4028	14871-2	CAL 3/7/03	3/7/05
Hygro-Thermometer	Extech	445703	0602	CAL 10/4/02	10/4/04
Frequency Counter	HP	5352B	2632A00165	CAL 11/28/01	11/28/03
Frequency Counter	HP	5385A	2730A03025	CAL 3/7/03	3/7/05
Power Sensor	Agilent Technologies	84811A	2551A02705	CHAR 1/26/01	1/26/03
Service Monitor	IFR	FM/AM 500A	5182	CAL 11/22/00	11/22/02
Comm. Serv. Monitor	IFR	FM/AM 1200S	6593	CAL 5/12/02	5/12/04
Signal Generator	HP	8640B	2308A21464	CAL 2/15/02	2/15/04
Sweep Generator	Wiltron	6648	101009	CAL 4/15/03	4/15/05
Sweep Generator	Wiltron	6669M	007005	CAL 3/3/03	3/3/05
Modulation Analyzer	HP	8901A	3435A06868	CAL 9/5/01	9/5/03
Modulation Meter	Boonton	8220	10901AB	CAL 4/15/03	4/15/05
Near Field Probe	HP	HP11940A	2650A02748	CHAR 2/1/01	2/1/03
BandReject Filter	Lorch Microwave	5BR4-2400/ 60-N	Z1	CHAR 3/2/01	3/2/03
BandReject Filter	Lorch Microwave	6BR6-2442/ 300-N	Z1	CHAR 3/2/01	3/2/03
BandReject Filter	Lorch Microwave	5BR4-10525/ 900-S	Z1	CHAR 3/2/01	3/2/03
High Pass Filter	Microlab	HA-10N		CHAR 10/4/01	10/4/03
High Pass Filter	Microlab	HA-20N		CHAR 2/7/03	2/7/05
Audio Oscillator	HP	653A	832-00260	CHAR 3/1/01	3/1/03

APPLICANT: MIDWAY SERVICES, INC.

FCC ID: NTXINT900

REPORT #: M/MIDWAY\462ut2\462ut2TestReport.doc

Page 3 of 21

DEVICE	MFGR	MODEL	SERNO	CAL/CHAR DATE	DUE DATE or STATUS
Frequency Counter	HP	5382A	1620A03535	CHAR 3/2/01	3/2/03
Frequency Counter	HP	5385A	3242A07460	CAL 3/7/03	3/7/05
Preamplifier	HP	8449B-H02	3008A00372	CHAR 3/4/01	3/4/03
Amplifier	HP	11975A	2738A01969	CHAR 3/1/01	3/1/03
Egg Timer	Unk			CHAR 8/31/01	8/31/03
Measuring Tape, 20M	Kraftixx	0631-20		CHAR 2/1/02	2/1/04
Measuring Tape, 7.5M	Kraftixx	7.5M PROFI		2/1/02	2/1/04
Coaxial Cable #51	Insulated Wire Inc.	NPS 2251-2880	Timco #51	CHAR 1/23/02	1/23/04
Coaxial Cable #64	Semflex Inc.	60637	Timco #64	CHAR 1/24/02	1/24/04
Coaxial Cable #65	General Cable Co.	E9917 RG233/U	Timco #65	CHAR 1/23/02	1/23/04
Coaxial Cable #106	Unknown	Unknown	Timco #106	CHAR 1/23/02	1/23/04

APPLICANT: MIDWAY SERVICES, INC.

FCC ID: NTXINT900

REPORT #: M/MIDWAY\462ut2\462ut2TestReport.doc

Page 4 of 21

TEST PROCEDURE

GENERAL: This report shall NOT be reproduced except in full without the written approval of TIMCO ENGINEERING, INC. Shielded interface cables were used in all cases except for cables connecting to the telephone line and the power cords. A test program was run which simulated a normal data transmission on a network.

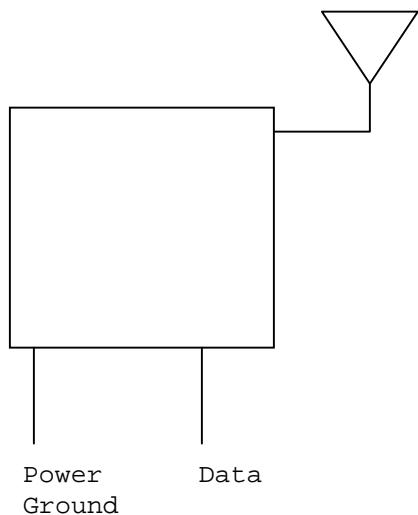
BANDWIDTH 6.0dB: The measurements were made with the spectrum analyzer's resolution bandwidth(RBW)=1.0MHz and the video bandwidth(VBW) =3.0MHz and the span set as shown on plot.

POWER OUTPUT: The RF power output was measured at the antenna feed point using a peak power meter.

ANTENNA CONDUCTED EMISSIONS: The RBW=100 kHz, VBW=300 kHz and the span set to 10.0MHz and the spectrum was scanned from 30MHz to the 10th Harmonic of the fundamental. Above 1.0GHz the resolution bandwidth was 1.0MHz and the VBW = 3.0MHz and the span to 50MHz.

RADIATION INTERFERENCE: The test procedure used was ANSI STANDARD C63.4-1992 using a HEWLETT PACKARD spectrum analyzer with a preselector. The bandwidth(RBW) of the spectrum analyzer was 100kHz up to 1GHz and 1.0MHz above 1GHz with an appropriate sweep speed. The VBW above 1.0GHz was = 3.0MHz. The analyzer was calibrated in dB above a microvolt at the output of the antenna. The ambient temperature of the UUT was 86°F with a humidity of 63%.

APPLICANT: MIDWAY SERVICES, INC.


FCC ID: NTXINT900

REPORT #: M/MIDWAY\462ut2\462ut2TestReport.doc

Page 5 of 21

PRODUCT DESCRIPTION:

The is a frequency hopper that operates in the 902-928 MHz frequency.

INTRODUCTION: GENERAL INFORMATION AND DATA

15.247 (a): Definition: This EUT uses a pseudo random algorithm to hop over the frequency range of 902.00 to 928.00 MHz in 63 hops.

15.247 (a)(1): The number of hops is 63 hops at a separation of 115 kHz, the requirement in the 902-928 MHz band is a minimum of 50 hops.

15.247 (a)(1)(i): Dwell Time of Hop: The dwell time of any hopping frequency cannot be greater than 0.4 seconds in any 20 second period. The Dwell time in 20 seconds is 14.4 msecounds.

15.247 (b)(3): The antenna's gain is a negative number and consists of the case of the battery. This is described in the circuit description.

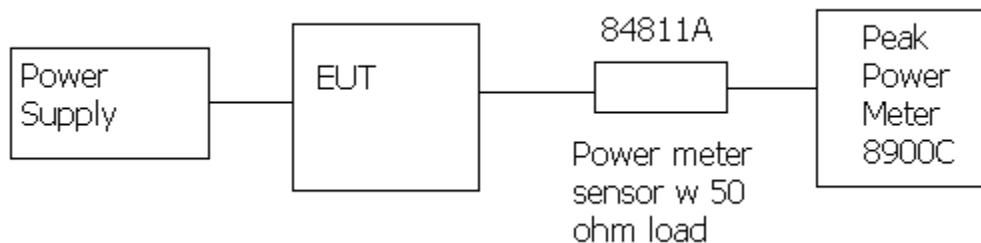
15.247 (a)(1)(i): The maximum allowed 20 dB bandwidth of a hopping channel is 500 kHz. The 20 dB bandwidth measured was 344 kHz.

15.247 (4)(c): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

APPLICANT: MIDWAY SERVICES, INC.

FCC ID: NTXINT900

REPORT #: M/MIDWAY\462ut2\462ut2TestReport.doc


Page 7 of 21

15.247(b)(2): POWER OUTPUT

The maximum peak output power shall not exceed 1 watt (30 dBm). If directional transmitting antennas with a gain of more than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum power output was less than +30 dBm. Power was measured by disconnecting the antennas and measuring across a 50 ohm load as recommended by the manufacturer using a HP peak power meter Model 8900C. The antenna is non directional and did not exceed 6 dBi gain. The power output was measured at three places in the band. Highest is reported below.

MEASUREMENT:

POWER OUPUT: 252mW meets the FCC requirements.

APPLICANT: MIDWAY SERVICES, INC.

FCC ID: NTXINT900

REPORT #: M/MIDWAY\462ut2\462ut2TestReport.doc

Page 8 of 21

15.247(c), 15.205 & 15.209(b) Field strength of spurious emissions:

REQUIREMENTS:

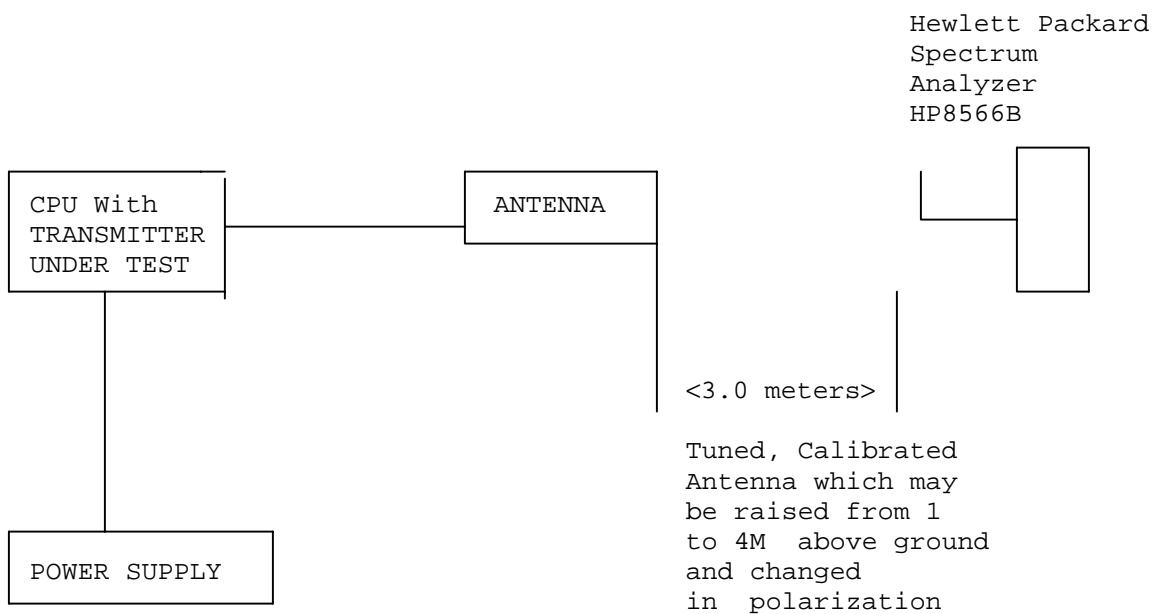
FIELD STRENGTH of Fundamental: 902-928MHz 2.4-2.4835GHz 127.38dBuV/m @3m	FIELD STRENGTH of Harmonics	S15.209 30 - 88 MHz 88 - 216 MHz 216 - 960 MHz 54 dBuV/m @3m	40 dBuV/m @3M 43.5 46 54dBuV/m
--	--------------------------------	--	---

EMISSIONS RADIATED OUTSIDE OF THE SPECIFIED FREQUENCY BANDS, EXCEPT FOR HARMONICS, SHALL BE ATTENUATED BY AT LEAST 50 dB BELOW THE LEVEL OF THE FUNDAMENTAL OR TO THE GENERAL RADIATED EMISSION LIMITS IN 15.209, WHICHEVER IS THE LESSER ATTENUATION.

REQUIREMENTS: Emissions that fall in the restricted bands (15.205) must be less than 54dBuV/m otherwise the spurious and harmonics must be attenuated by at least 20dB.

TEST DATA:

Tuned Frequency MHz	Emission Frequency MHz	Meter Reading dBuV	Ant. Polarity	Coax Loss dB	Correction Factor dB	Field Strength dBuV/m	Margin dB
905.9	900.00	20.3	V	4.20	23.48	47.98	6.02
905.9	902.40	13.5	V	4.15	23.46	41.11	12.89
905.9	905.90	71.9	V	4.07	23.43	99.40	27.98
905.9	909.50	11.8	V	3.99	23.40	39.19	14.81
905.9	911.90	18.9	V	3.93	23.40	46.23	7.77
905.9	1,811.80	15.2	V	2.80	28.42	46.42	7.58
905.9	2,717.70	15.9	V	3.57	29.76	49.23	4.77
905.9	3,623.70	8.2	V	4.42	31.56	44.18	9.82
905.9	4,529.60	11.2	V	5.54	33.55	50.29	3.71
905.9	5,435.50	9.3	V	6.35	34.28	49.93	4.07
905.9	6,341.50	6.6	H	6.62	35.31	48.53	5.47
913.5	910.00	9.9	V	3.97	23.40	37.28	16.72
913.5	913.50	68.7	V	3.90	23.40	96.00	31.38
913.5	1,827.00	17.4	V	2.82	28.43	48.65	5.35
913.5	2,740.50	13.6	V	3.59	29.85	47.04	6.96
913.5	3,654.00	6.9	V	4.45	31.70	43.05	10.95
913.5	4,567.50	5.0	V	5.59	33.58	44.17	9.83
913.5	5,481.00	7.6	V	6.37	34.32	48.29	5.71
913.5	6,394.50	10.2	V	6.63	35.41	52.24	1.76
921.2	912.40	11.2	V	3.92	23.40	38.52	15.48
921.2	921.20	68.9	V	3.72	23.41	96.03	31.35
921.2	1,842.40	18.3	V	2.83	28.44	49.57	4.43
921.2	2,763.70	14.7	V	3.61	29.93	48.24	5.76
921.2	3,684.90	8.3	V	4.48	31.83	44.61	9.39
921.2	4,606.20	5.7	V	5.65	33.62	44.97	9.03
921.2	6,448.60	6.7	V	6.64	35.51	48.85	5.15


APPLICANT: MIDWAY SERVICES, INC.

FCC ID: NTXINT900

REPORT #: M/MIDWAY\462ut2\462ut2TestReport.doc

METHOD OF MEASUREMENT: The procedure used was ANSI STANDARD C63.4-1992 & the FCC/OET Guidance on Measurements for Direct Sequence Spread Spectrum Systems - Public Notice 54797 Dated July 12, 1995. Measurements were made at the open field test site of TIMCO ENGINEERING INC. located at 849 N.W. State Road 45, Newberry, FL 32669.

Method of Measuring Radiated Spurious Emissions

Equipment placed 80cm above ground
on a rotatable platform.

APPLICANT: MIDWAY SERVICES, INC.

FCCID: NTXINT900

NAME OF TEST: POWER LINE CONDUCTED INTERFERENCE

RULES PART NO.: 15.107

REQUIREMENTS:	QUASI-PEAK	AVERAGE
.15 - 0.5 MHz	66-56 dBuV	56-46 dBuV
0.5 - 5.0	56	46
5.0 - 30.	60	50

TEST PROCEDURE: ANSI STANDARD C63.4-1992. The spectrum was scanned from .15 to 30 MHz.

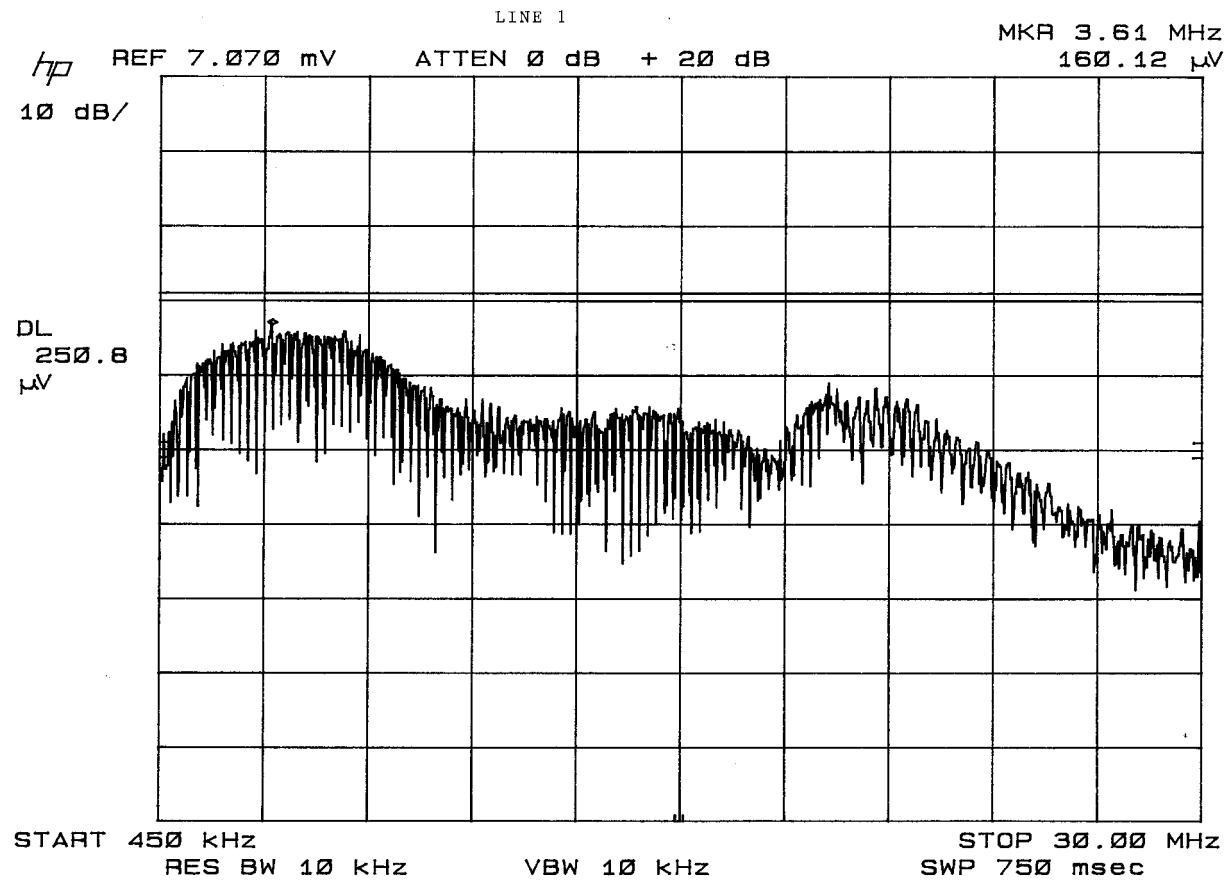
TEST DATA:

SEE THE FOLLOWING PLOTS.

TEST RESULTS: Both lines were observed. The measurements indicate that the unit DOES appear to meet the FCC requirements for this class of equipment.

PERFORMED BY: MARIO de ARANZETA

DATE: AUGUST 12, 2002

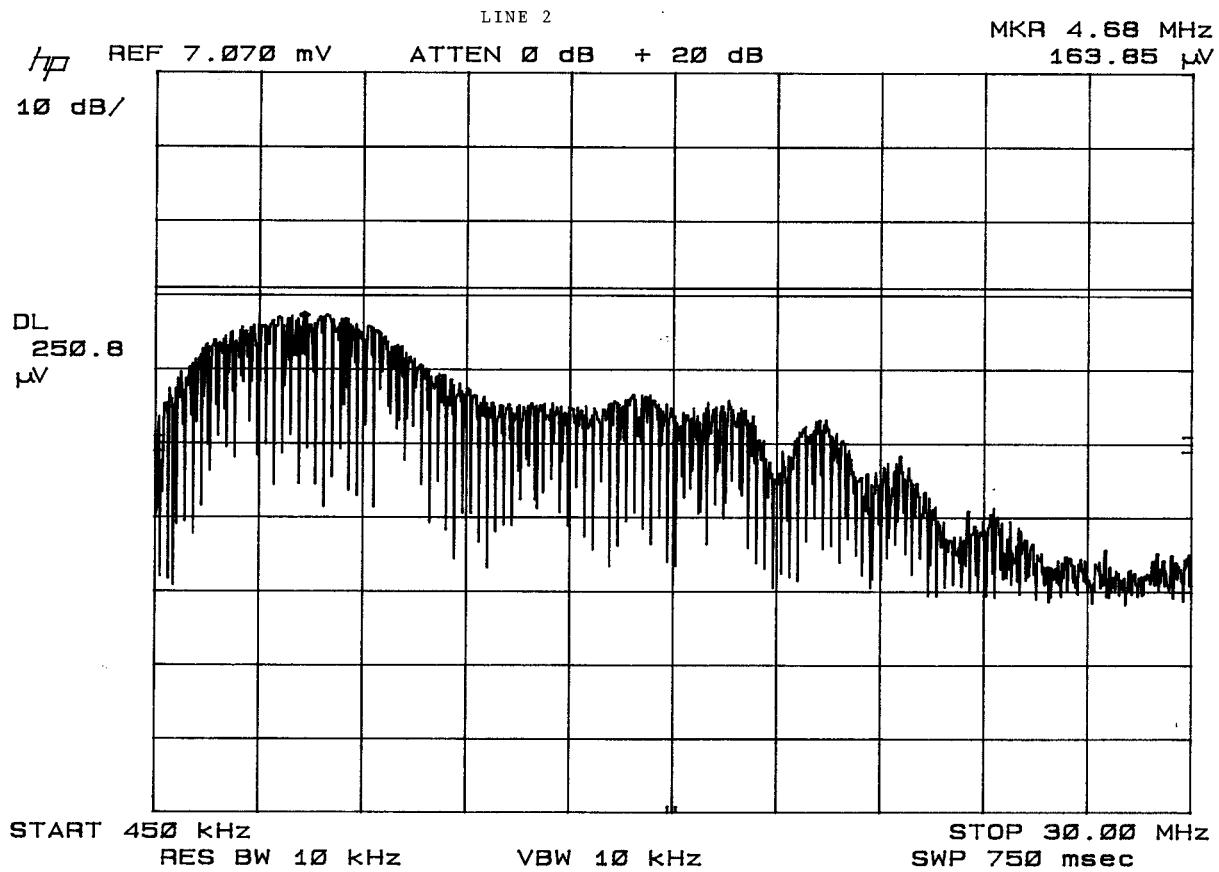

APPLICANT: MIDWAY SERVICES, INC.

FCC ID: NTXINT900

REPORT #: M/MIDWAY\462ut2\462ut2TestReport.doc

Page 11 of 21

POWER LINE CONDUCTED PLOT - LINE 1

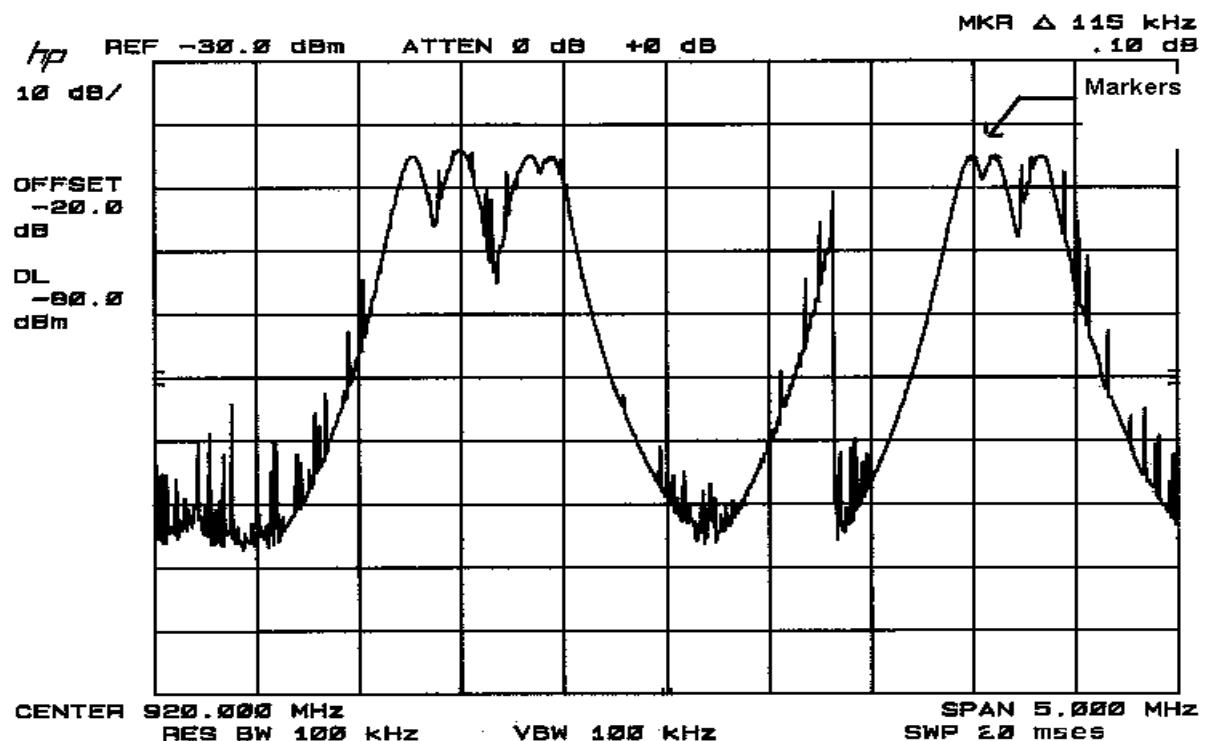

APPLICANT: MIDWAY SERVICES, INC.

FCC ID: NTXINT900

REPORT #: M/MIDWAY\462ut2\462ut2TestReport.doc

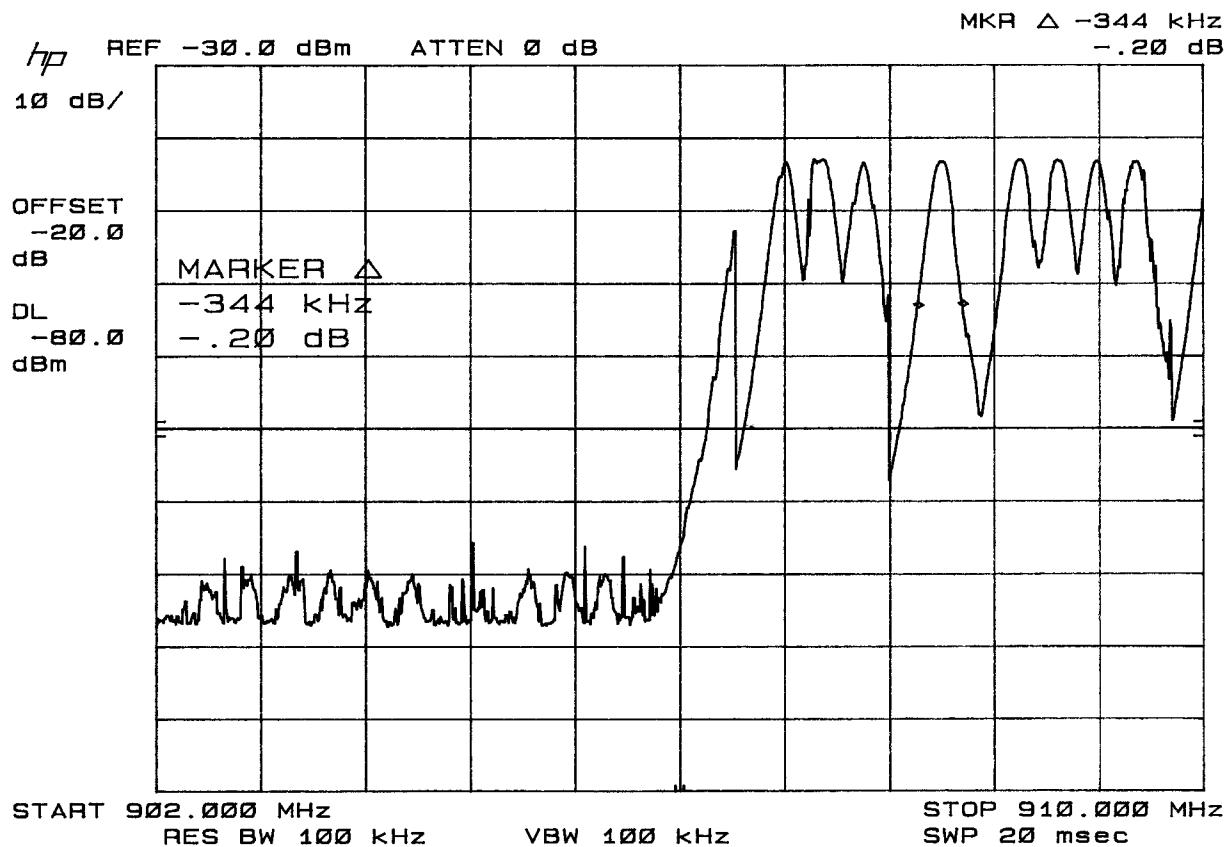
Page 12 of 21

POWER LINE CONDUCTED PLOT - LINE 2


APPLICANT: MIDWAY SERVICES, INC.

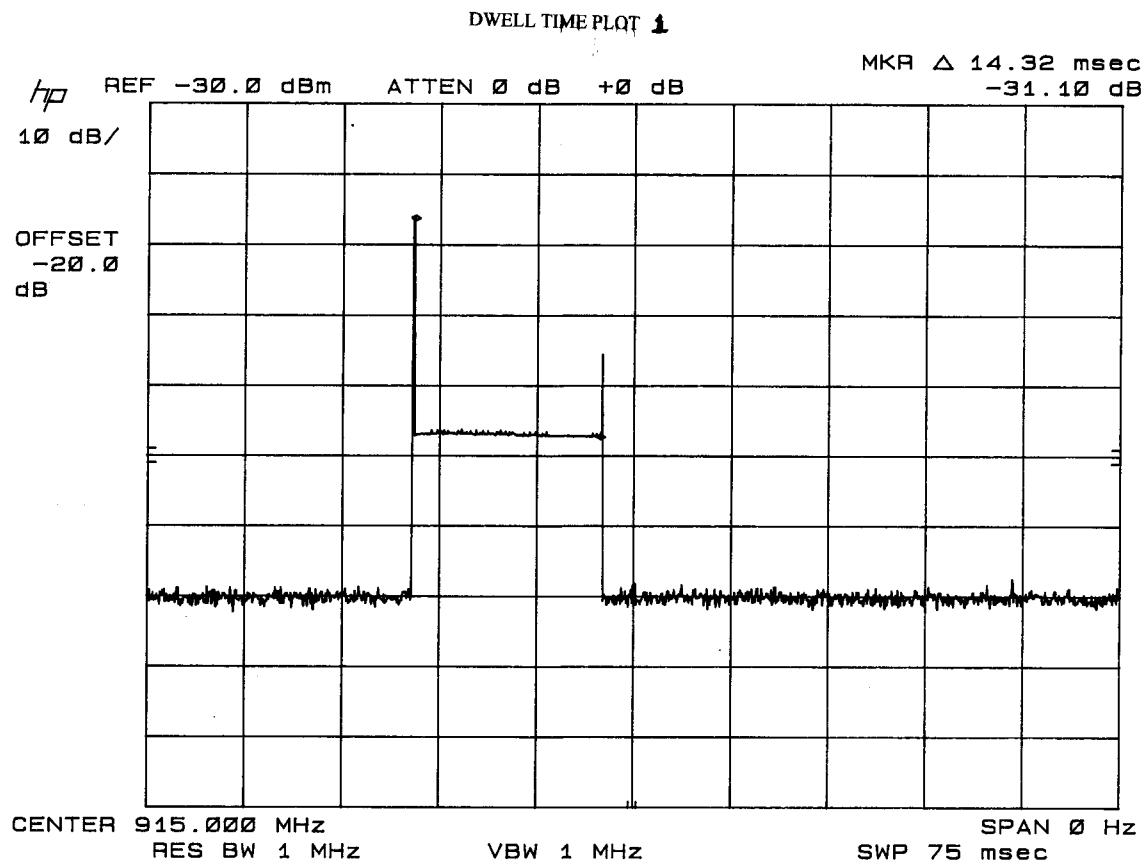
FCC ID: NTXINT900

REPORT #: M/MIDWAY\462ut2\462ut2TestReport.doc

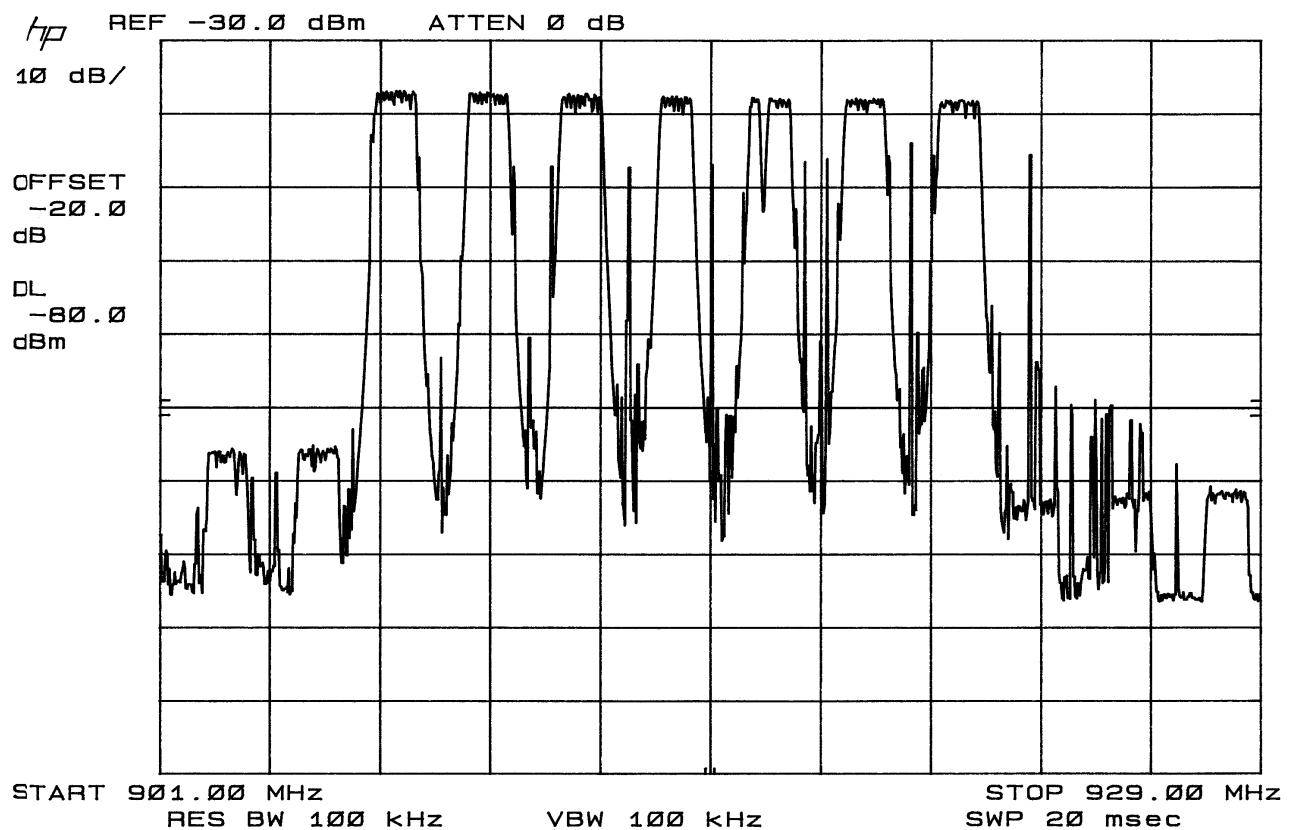

Page 13 of 21

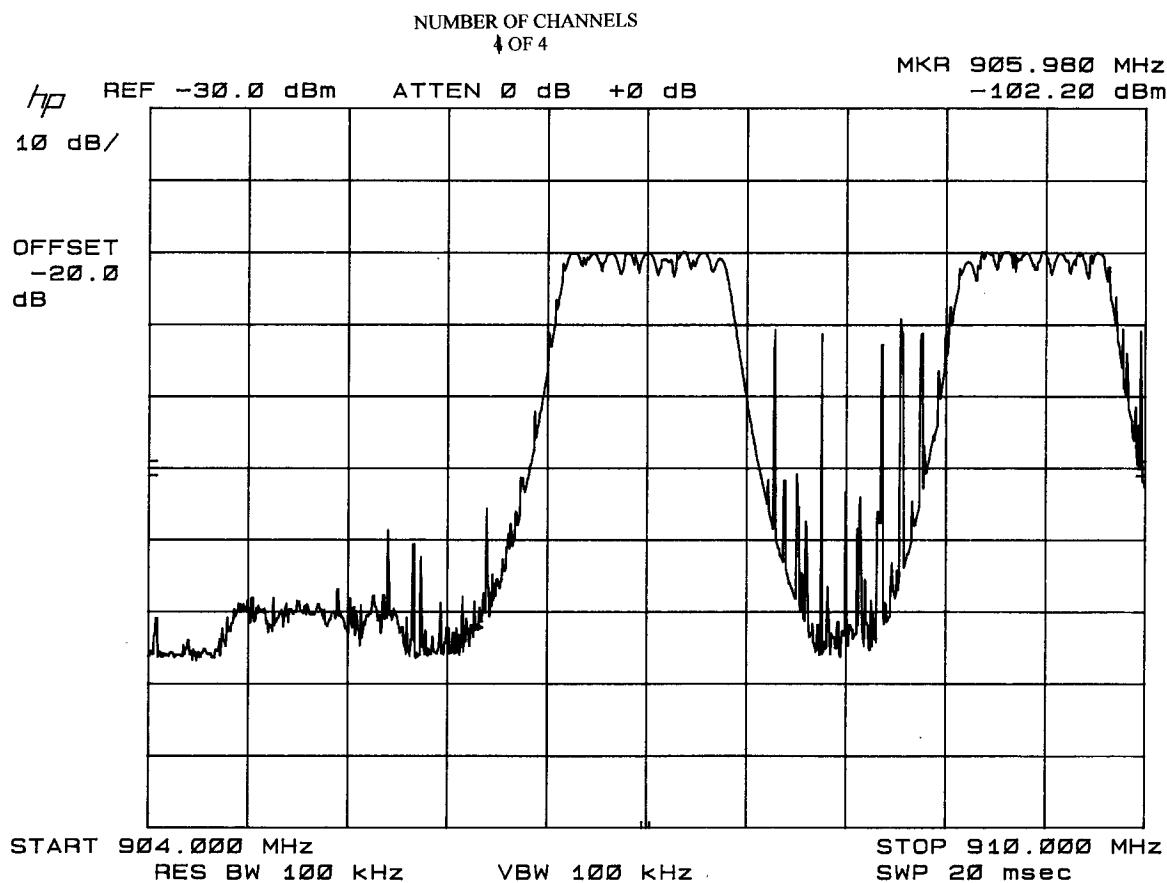
CHANNEL SPACING

APPLICANT: MIDWAY SERVICES, INC.
FCC ID: NTXINT900
REPORT #: M/MIDWAY\462ut2\462ut2TestReport.doc
Page 14 of 21

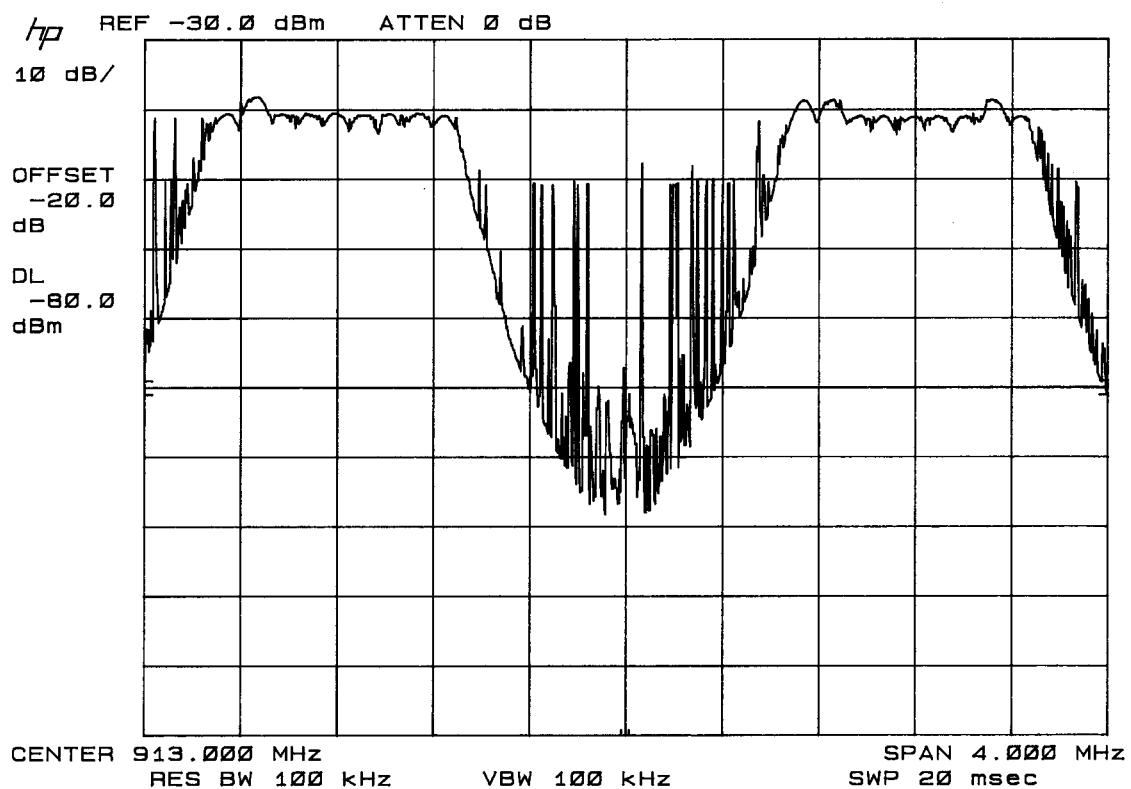

20 dB BANDWIDTH OF A HOPPING CHANNEL

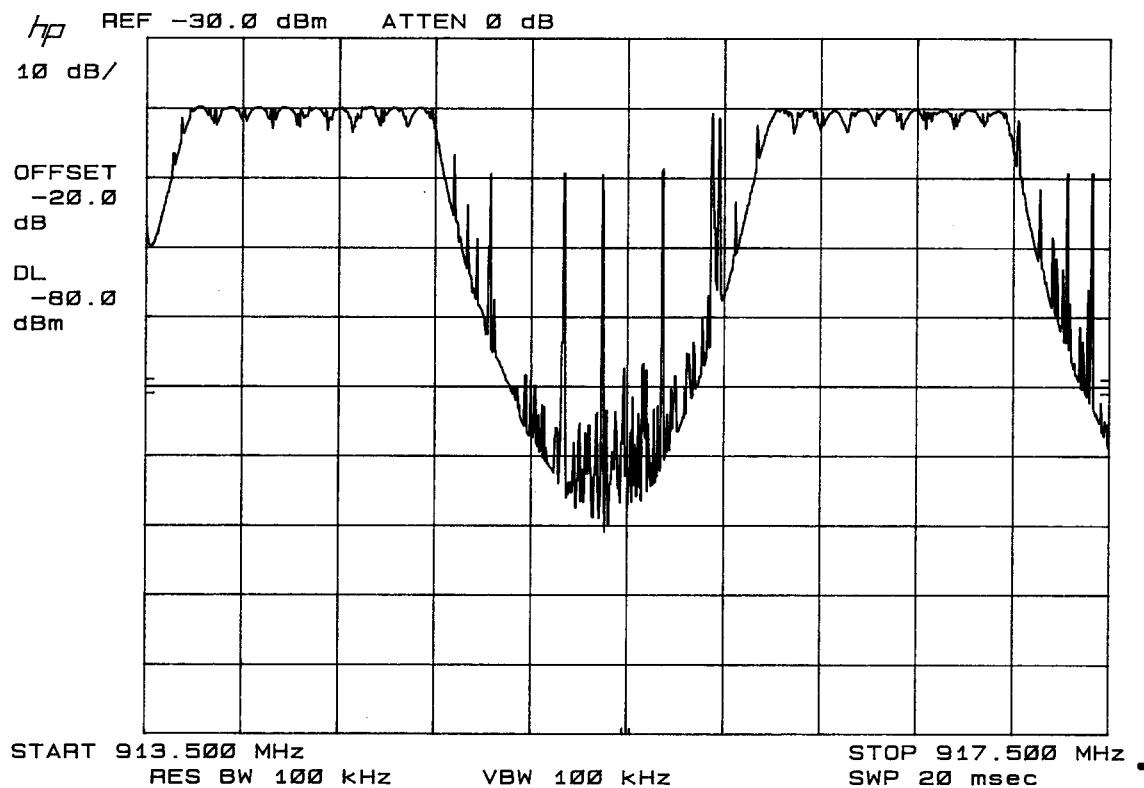
APPLICANT: MIDWAY SERVICES, INC.


FCC ID: NTXINT900

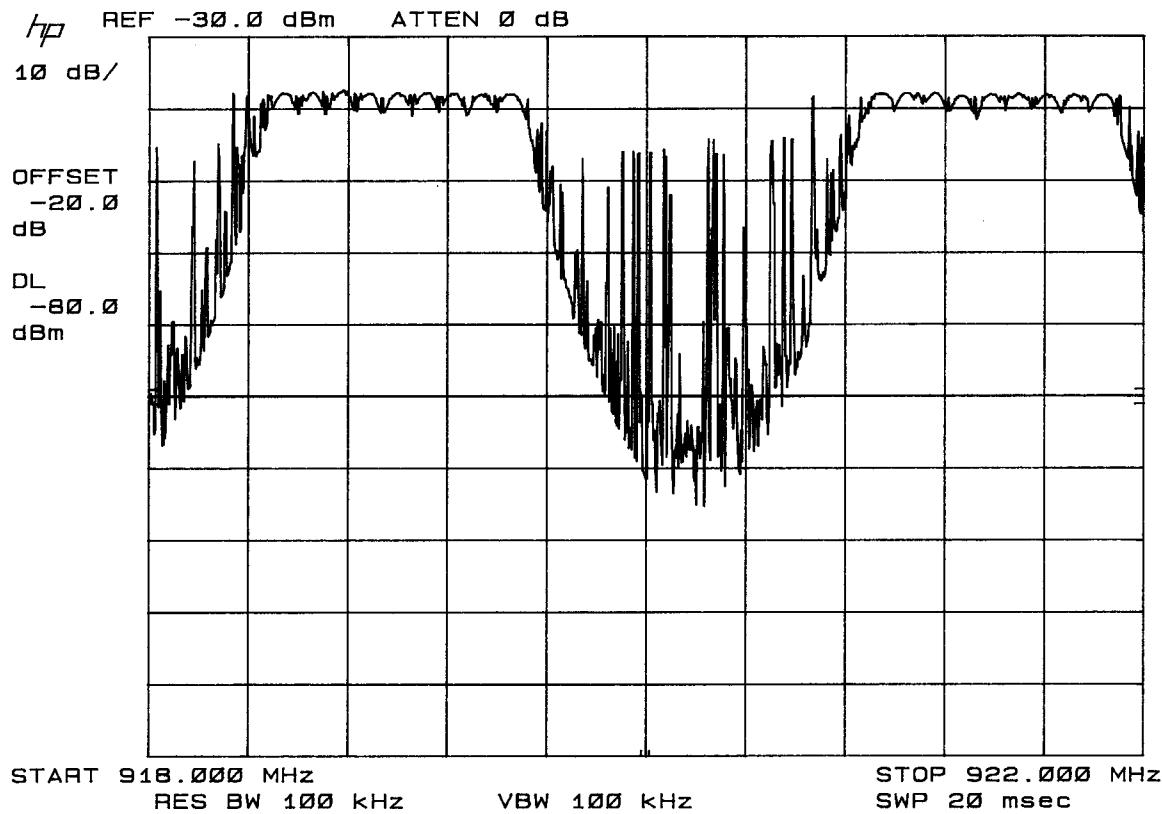

REPORT #: M/MIDWAY\462ut2\462ut2TestReport.doc
Page 15 of 21

APPLICANT: MIDWAY SERVICES, INC.
FCC ID: NTXINT900
REPORT #: M/MIDWAY\462ut2\462ut2TestReport.doc
Page 16 of 21


BANDEDGE PLOT – 20 dB


APPLICANT: MIDWAY SERVICES, INC.
FCC ID: NTXINT900
REPORT #: M/MIDWAY\462ut2\462ut2TestReport.doc
Page 18 of 21

NUMBER OF CHANNELS
2 OF 4


APPLICANT: MIDWAY SERVICES, INC.
FCC ID: NTXINT900
REPORT #: M/MIDWAY\462ut2\462ut2TestReport.doc
Page 19 of 21

NUMBER OF CHANNELS
3 OF 4

APPLICANT: MIDWAY SERVICES, INC.
FCC ID: NTXINT900
REPORT #: M/MIDWAY\462ut2\462ut2TestReport.doc
Page 20 of 21

NUMBER OF CHANNELS
1 OF 4

