Genium Inc.

9720 131st Street N. Seminole, FL 33776 TEL: (727) 596-3052

FAX: (727) 596-9661

February 20, 2001

To: Mario de Aranzeta (Timco Engineering)

From: JF Stosic (Genium Inc.)
Subject: GW-900T FCC Data

Modulation Parameters

Modulation Type: Binary FSK

Modulation Rate: 10,932 bits per second

Modulation Frequency Deviation: $2f_d = 16 \text{ kHz}$ (peak-to-peak deviation)

Pseudorandom Frequency Hopping Sequence

Random Number Generator

The frequency hop algorithm is generated from a **maximal-length pseudo-random linear feedback shift register (LFSR).** The LFSR is also known as the **random number generator** (**RNG**). In this design, the RNG shift register is 6 bits in length and generates a pseudo-random number from 1 to 63. The RNG used in the GW-900T is shown in **Figure 1**. The RNG taps were selected based on a well-known LFSR design with good statistical properties that is free of long sequential runs.

Each new value of the RNG is generated by the following steps:

- 1. Logically add b₅ to b₄ and save the result in a delay register, D.
- 2. Shift the bits in the shift register to the left such that $b_4 > b_5$, $b_3 > b_4$, ...
- 3. Shift the delay register, D, into b_0 .

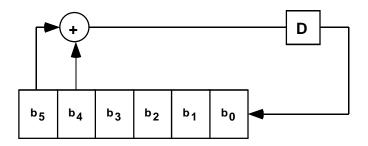


Figure 1. Random Number Generator.

An example of the random number generator output is shown in **Table 1**. Here the initial value of R, that is R_1 , was set to 31. The second value of R, that is R_2 , is computed to be 63. The third computed value of R, R_3 , is 62. The 64th time the RNG is updated, the value of R is computed to be 31 and the sequence starts over.

Number of	Value of R				
Times R is					
Computed					
R_1	31				
R_2	63				
R_3	62				
•••	•••				
R_{62}	23				
R_{63}	47				
$R_{64} = R_1$	31				
$R_{65} = R_2$	63				

Table 1. Random Number Generator Output.

Hop Frequencies

Each hop period, a new value R, from 1 to 63, is computed from the RNG. The hop frequency for the current hop is computed by the following equation:

$$f_h = 905.700 + 0.100 * (N-1) + 0.300R$$
 [MHz]

Here, N is a net number from 1 to 3 which is set at the time of manufacture and gives additional frequency diversity to radios nets that are deployed. **Table 2** shows examples of the hop frequency calculation.

Genium Inc. 2

Table 2. Hop Frequency, f_h , in MHz.

	Net Number, N						
Value of R	1	2	3				
R = 1	906.000	906.100	906.200				
R = 2	906.300	906.400	906.500				
•••	•••	•••	•••				
R = 63	924.600	924.700	924.800				

Equal Hopping Frequency Use

Each message sent from a transmitter is divided into 10 separate parts. Each of the 10 parts is sent on a separate frequency (hop). The duration of a single hop is greater than 4.5 msec and less than 20 msec. There is a 10 second delay between each hop. At the beginning of each hop, a new value, R, from random number generator is computed in accordance with Figure 1. When a new message is to be sent, the process is continued where the next value of R is computed in accordance with Figure 1. The initial value of R is set only once and occurs only when the radio is installed or when the battery requires replacement. **Table 3** shows an example of how the hop pattern is distributed among sequential messages. Here R_1 is the first random number computed from the RNG, R_2 is the second number computer from the RNG, etc. Note that the value of R_1 is not 1 and the value of R_2 is not 2. The <u>values</u> of R are determined as shown in **Table 1**.

Table 3. Distributions of Hops Across Multiple messages.

	Msg									
	Part 1	Part 2	Part 3	Part 4	Part 5	Part 6	Part 7	Part 8	Part 9	Part 10
Message 1	R_1	R_2	R_3	R_4	R_5	R_6	R_7	R_8	R_9	R_{10}
Message 2	R ₁₁	R_{12}	R ₁₃	R ₁₄	R ₁₅	R ₁₆	R ₁₇	R ₁₈	R ₁₉	R_{20}
• • •										
Message 6	R_{51}	R ₅₂	R ₅₃	R ₅₄	R ₅₅	R ₅₆	R ₅₇	R ₅₈	R ₅₉	R ₆₀
Message 7	R ₆₁	R ₆₂	R ₆₃	R_1	R_2	R_3	R_4	R_5	R_6	R_7

DRAFT

System Receiver Input Bandwidth

The associated receiver uses a digital signal processor to implement a 3rd order CICⁱ filter to match the receiver bandwidth to the transmitted signal.

System Receiver Hopping Capability

The associated receiver uses a digital quadrature tuner to shift frequencies in synchronization with the transmitted signal. A 32-bit unique-word synchronization sequence is used to detect initial synchronization.

Genium Inc. 4

_

ⁱ CIC – Cascade-Integrator-Comb filter. This is an efficient class of finite impulse response (FIR) digital filters that operate without the use of digital multipliers. This is a common technique used in modern communication systems such as digitally implemented cell phone receivers. Reference: Hogenauer, Eugene, "An Economical Class of Digital Filters for Decimation and Interpolation", IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. ASSP-29 No. 2, April 1981.