

Test Report

Test Report No.:	KTI02EF0159		
Registration No.:	99058		
Applicant:	Jung Woo International Inc.		
Applicant Address:	495-4, Chowonjee-Ri, Daegoc-Myun, Kimpo-City, Kyunggi-Do, Korea		
Product:	SELF-BALLASTED LAMP		
FCC ID:	NTHES1225	Model No.	ES1225
Receipt No.:	02-0200	Date of receipt:	January 2,2002
Date of Issue:	February 22, 2002		
Testing location	Korea Technology Institute Co., Ltd. 51-19, Sanglim3-Ri, Docheok-Myeun, Gwangju-Shi, Gyeungki-Do, Korea		
Test Standards:	FCC/OET MP-5		
Rule Parts:	FCC Part 18,		
Equipment Class:	RF lighting devices (Consumer Equipment)		
Test Result:	The above mentioned product has been tested and passed.		

Tested by: S. B. Kim/ Engineer

Approved by: G. C. Min/ President

Signature Date

Signature Date

Other Aspects :	
Abbreviations :	• OK, Pass=passed • Fail=failed • N/A=not applicable

This test report is not permitted to copy partly without our permission.
 This test result is dependent on only equipment to be used.
 This test result is based on a single evaluation of one sample of the above mentioned.
 This test report must not be used by the client to claim product endorsement by NVLAP or
 any agency of the U.S Government.
 We certify this test report has been based on the measurement standards that is traceable
 to the national or international standards.

Contents

Contents	2
List of Tables	2
List of Figures	2
List of Photographs	3
1. General	3
2. Test Site	3
2.1 Location	4
2.2 List of Test and Measurement Instruments	4
2.3 Test Data	4
2.4 Test Environment	5
3. Description of the tested samples	5
3.1 Rating and Physical characteristics	5
3.2 Submitted documents	6
4. Measurement conditions	6
4.1 Modes of operation	6
4.2 Additional equipments	6
4.3 Uncertainty	6
4.4 Test Setup	7
5. Emission Test	8
5.1 Conducted Emissions	11
5.2 Radiated Emissions	12
6. Photographs of the Test Set-up	14
Label	15
Annex1	
Annex2 Photographs of EUT	16~19

List of Tables

Table 1	List of test and measurement equipment	4
Table 2	Test Data. Conducted Emissions	11
Table 3	Test Data. Radiated Emissions	13
List of Figures		
Figure 1	Spectral Diagram, LINE-PE	9
Figure 2	Spectral Diagram, Neutral-PE	10
List of Photographs		
Photograph 1	Setup for Conducted Emissions	16
Photograph 2	Setup for Radiated Emissions	17

1. General

This equipment has been shown to be capable of compliance with the applicable technical standards and was tested in accordance with the measurement procedures as indicated in this report.

We attest to the accuracy of data. All measurements reported herein were performed by Korea Technology Institute Co., LTD. And were made under Chief Engineer's supervision.

We assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

2. Test Site

Korea Technology Institute Co., LTD

2.1 Location

51-19, Sanglim3-Ri, Docheok-Myeon, Gwangju-Shi, Gyeungki-Do, Korea

The Test Site is in compliance with ANSI C63.4/1992 for measurement of radio Interference.

Korea Technology Institute Co., Ltd.

Page 4 of 13

2.2 List of Test and Measurement Instruments

Table 1 : List of Test and Measurement Equipment

• **Conducted Emissions**

Kind of Equipment
 Type
 S/N
 Calibrated until

Spectrum Analyzer
 R3261C
 61720417
 11.2002

Field Strength Meter
 ESPC
 832827/011
 9.2002

LISN
 KNW407
 8-1157-2
 10.2002

LISN
 ESH2-Z5
 8254601019
 6.2002

Conducted Cable
 N/A
 N/A
 11.2002

• **Radiated Emissions**

Kind of Equipment
 Type
 S/N
 Calibrated until

Field Strength Meter
 ESPC
 832827/011
 9.2002

Spectrum Analyzer
 R3261C
 61720417
 11.2002

Pre Amplifier
 HP 8447D
 2944A06874
 11.2002

BiconiLog Antenna
 EMCO 3142B
 1705
 12.2002

3. Description of the tested samples

The EUT is SELF-BALLASTED LAMP

3.1 Rating and Physical Characteristics

- Consumption Power: 25W
- Input Voltage: AC 120V
- Frequency of input line: 60Hz
- Life: 10,000Hrs

3.2 Submitted Documents

- User's Guide
- Block Diagram

4. Measurement Conditions

Testing Input Voltage: AC 120V.

4.1 Modes of Operation

The EUT was in the following operation mode during all testing;
After warming up time of 30 minutes, Testing in mode of Lamp on.

4.2 Additional Equipment

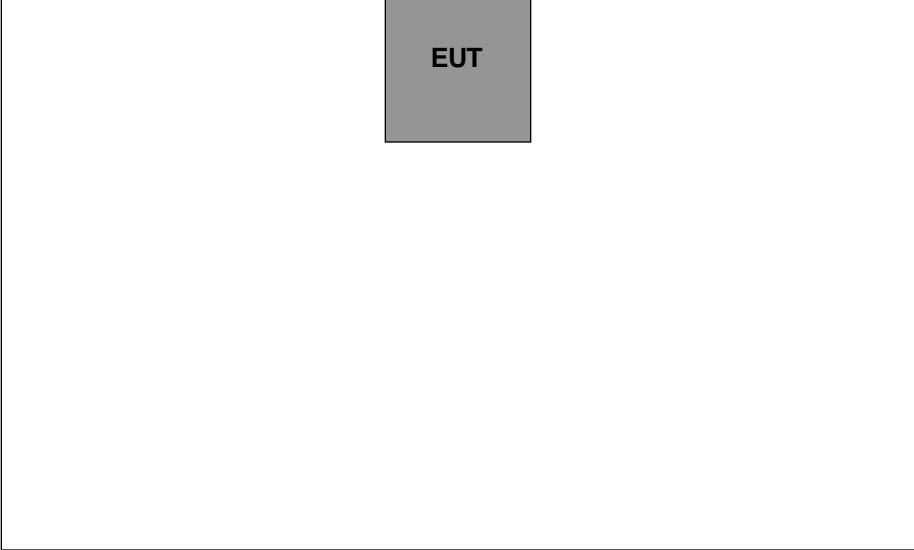
DEVICE TYPE
Manufacturer
M/N
S/N
FCC ID

4.3 Uncertainty

1) Radiated disturbance

U_c (Combined standard Uncertainty) = $\pm 1.8\text{dB}$

Expanded uncertainty $U=KU_c$


$K = 2$

$U = \pm 3.6\text{dB}$

2) Conducted disturbance

$U_c = \pm 0.88\text{dB}$

$U = KU_c=2xU_c = \pm 1.8\text{dB}$

A large rectangular frame represents the test setup. Inside this frame, a smaller gray rectangular box is positioned in the upper right quadrant, labeled 'EUT' (Equipment Under Test).

EUT

4.4 Test setup

5. EMISSION Test

5.1 Conducted Emissions

Result : Pass

The line-conducted facility is located inside a 2.3M x 3.5M x 5.5M shielded closure.

The shielding effectiveness of the shielded room is in accordance with MIL-Std-285 or NSA 605-05. A 1m x 1.5m wooden table 40cm high is placed 40cm away from the conducting ground plane and 40cm away from the sidewall of the shielded room. Kyoritsu Model KNW-407 (10kHz-30MHz) 50ohm/50 uH Line-Impedance Stabilization Networks (LISN) are bonded to the shielded room.

The EUT is powered from the R&S LISN and the support equipment is powered from the Kyoritsu LISN. Power to the LISN are filtered by a high-current high-insertion loss shield enclosures power line filters (100dB 14kHz-1GHz).

The purpose of the filter is to attenuate ambient signal interference and this filter is also bonded to the shielded enclosure.

All electrical cables are shielded by braided tinned copper zipper tubing with inner diameter of 1/2".

If the EUT is a DC-Powered device, power will be derived from the source power supply it normally will be powered from and this supply lines will be connected to the R&S LISN.

All interconnecting cables more than 1 meter were shortened by non-inductive bundling (serpentine fashion) to a 1-meter length.

Sufficient time for the EUT, Support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer to determine the frequency producing the maximum EME from the EUT.

The spectrum was scanned from 450kHz to 30MHz with 1msec. Sweep time.

The frequency producing the maximum level was reexamined using EMI field Intensity meter (ESPC) and Quasi-Peak adapter. The detector function was set to CISPR quasi-peak mode.

The bandwidth of the receiver was set to 10kHz. The EUT, support equipment, and interconnecting

Each emission was maximized by: switching power lines; varying the mode of operation or resolution; clock or data exchange speed; if applicable; whichever determined the worst-case emission.

Photographs of the worst-case emission can be seen in photograph of conducted test.

Each EME reported was calibrated using self-calibrating mode.

Figure 1 : Spectral Diagram, LINE – PE

FCC PAER18 Calss B

18 Jan 2002 10:58

EUT: ES1225
Manuf:
Op Cond:
Operator: K.B.JUNG
Test Spec:
Comment: LINE -PE

Scan Settings		(1 Range)			Receiver Settings		
Start	Stop	Step	IF BW	Detector	M-Time	Atten	OpRge
450kHz	30MHz	50kHz	10kHz	QP	1msec	10 dB	60dB

Prescan Measurement: Detector: X QP
Meas Time: see scan settings
Peaks: 8
Acc Margin: 25 dB

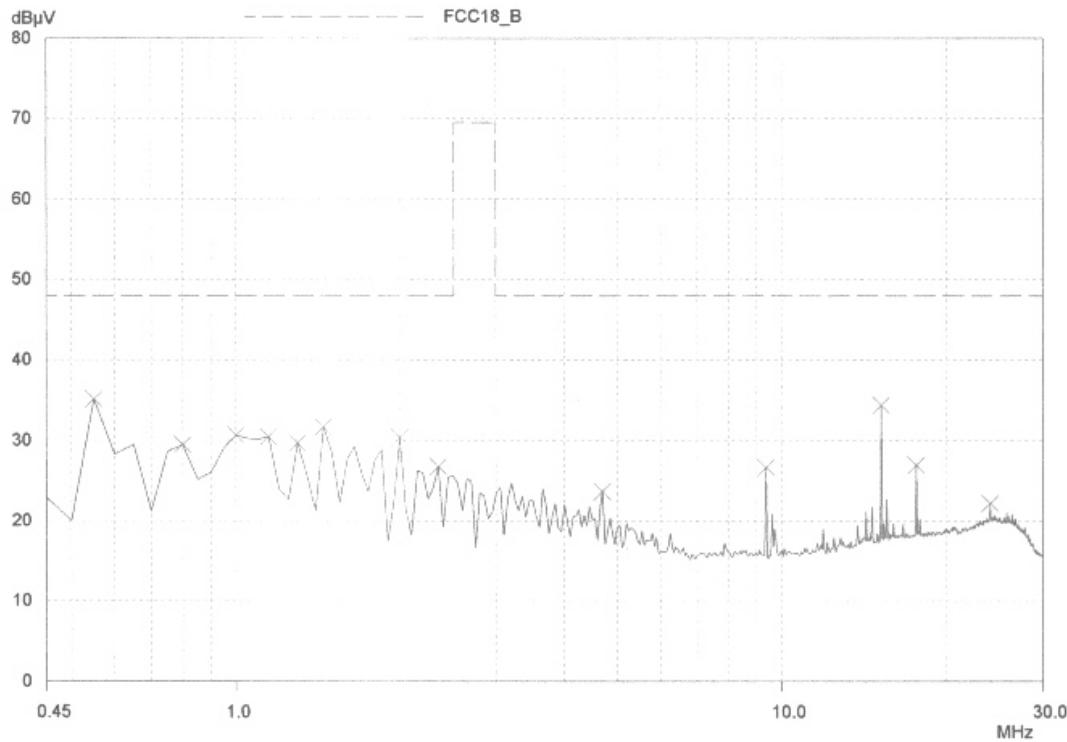
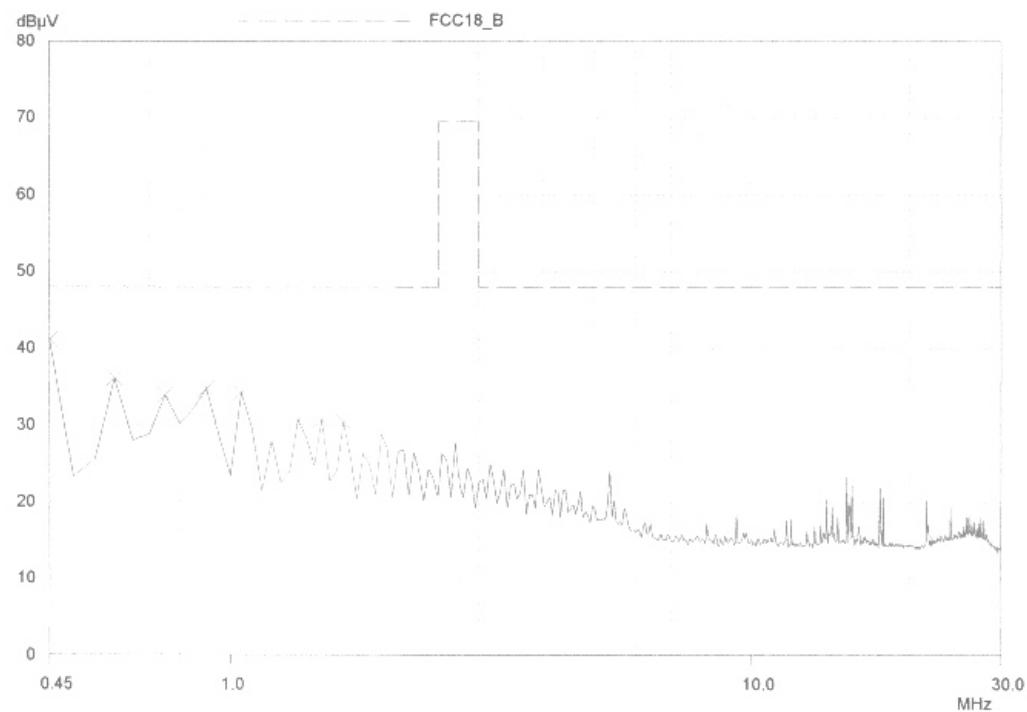


Figure 2 : Spectral Diagram, NEUTRAL – PE


FCC PART 18 Calss B

18 Jan 2002 10:49

EUT: ES1225
Manuf:
Op Cond:
Operator: K.B.Jung
Test Spec:
Comment: Netural - PE

Scan Settings	(1 Range)				Receiver Settings			
	Start	Stop	Step	IF BW	Detector	M-Time	Atten	OpRge
	450kHz	30MHz	50kHz	10kHz	QP	1msec	10 dB	60dB

Prescan Measurement: Detector: X QP
Meas Time: see scan settings
Peaks: 8
Acc Margin: 25 dB

Korea Technology Institute Co., Ltd.

Page 11 of 13

Table 2 : Test Data, Conducted Emissions

Frequency

(MHz)

(1)Reading

(dB V)

Line

(2)Limit

(dB V)

(3)Margin

(dB)

0.45

41.10

N

48.00

6.90

0.55

35.10

H

48.00

12.90

0.6

36.04

N

48.00

11.96

0.75

33.85

N

48.00

14.15

0.9

34.70

N

48.00

13.30

1.05

34.17

N

48.00

13.83

15.2

34.35

H

48.00

13.65

NOTES:

1. All modes of operation were investigated
And the worst-case emission are reported.
2. All other emissions are non-significant.
3. All readings are calibrated by self-mode in receiver.
4. Measurements using CISPR quasi-peak mode.
5. Line H = LINE-PE, Line N = NEUTRAL-PE
6. C/F = Correction Factor
7. C/L = Cable Loss
8. The limit for Consumer equipment is 250 uV (48dBuV) from 450KHz to 2.51MHz and 3.0 to 30.0MHz. The limit from 2.51MHz to 3.0MHz

Korea Technology Institute Co., Ltd.

Page 13 of 13

5.2 Radiated Emissions

Result: Pass

Preliminary measurements were made indoors at 1 meter using broadband antennas, broadband Amplifier, and spectrum analyzer to determine the frequency producing the maximum EME. Appropriate precaution was taken to ensure that all EME from the EUT were maximized and Investigated. The system configurations, clock speed, mode of operation or video resolution, turntable azimuth with respect to the antenna were noted for each frequency found. The spectrum was scanned from 30MHz to 1000 MHz using BiLog antenna.

Final measurements were made outdoors at 10-meter test range using EMCO antennas. The test equipment was placed on a wooden table situated on a 4x4 meter area adjacent to the measurement area. Turntable was to protect from weather in the dome that made with Polyethylene film. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. Each frequency found during pre-scan measurements was re-examined and investigated using EMI/Field Intensity Meter (ESPC) R & S. The detector function was set to CISPR quasi-peak mode and the bandwidth of the receiver was set to 120kHz or 1 MHz depending on the frequency or type or signal.

The EUT, support equipment and interconnecting cables were re-configured to the set-up producing the maximum emission for the frequency and were placed on top of a 0.4meter high non-metallic 1 x 1.5 meter table.

The EUT, support equipment, and interconnecting cables were re-arranged and manipulated to maximize each EME emission. The turntable containing the system was rotated; the antenna height was varied 1 to 4 meters and stopped at the azimuth or height producing the maximum emission. Each emission was maximized by: varying the mode of operation or resolution; clock or data exchange speed, and/or support equipment, if applicable; and changing the polarity of the antenna, whichever determined the worst-case emission.

Photographs of the worst-case emission can be seen in photograph of radiated emission test. Each EME reported was calibrated using self-calibrating mode.

Table 3 : Test Data, Radiated Emissions

Frequency (MHz)	Pol.	Height [m]	Angle [°]	(1)
Reading (dB V)	(2)	AFCL (dB/m)	(3)	Actual ((dB V/m)
(4)	Limit (dB V/m)	(5)	Margin (dB)	

Table. Radiated Measurements at 10-meters

Test Results were under the required limit with 20dB margin or more.

Notes:

1. All modes of operation were investigated
And the worst-case emission are reported.
2. All other emission are non-significant.
3. All readings are calibrated by self-mode in receiver.
4. Measurements using CISPR quasi-peak mode.
5. AFCL = Antenna factor and cable loss
6. H = Horizontal, V = Vertical Polarization
7. The limit for Part 18 lighting device is 29.5dB_{UV}/m from 30MHz to 88MHz,
33dB_{UV}/m from 88MHz to 216MHz, 35.5dB_{UV}/m from 216MHz to 1000MHz.

• Margin Calculation

$$(5) \text{Margin} = (4)\text{Limit} - (3)\text{Actual}$$

$$[(3)\text{Actual} = (1)\text{Reading} + (2)\text{AFCL}]$$

KTI02EF0159

FCC ID: NTHES1225