

REPORT OF MEASUREMENT

NOTIFICATION

Product : Communications Receiver (Pager Receiver)

Applicant : Hephzibah Industries Co., Ltd.

Grantee Name : Hephzibah Industries Co., Ltd.

FCC ID. : NTD-H20930NP

Trade Name : REX

Model No. : HP-2000

Report No. : 341-037

Date : May 22, 1998

KOREA ACADEMY OF INDUSTRIAL TECHNOLOGY(KAITECH)

Address : 222-13, Guro-Dong, Guro-Gu, Seoul, Korea
Tel. : (02)860-1462~4. Telefax : (02)860~1468

JIN-JOO LEE, Ph.D

President

Korea Institute of Industrial Technology

II. GENERAL REQUIREMENTS OF THE EUT

1. Labelling Requirement (Section 15.19)

This device complies with Part 15 of the FCC Rules. Operation is subject to the condition that this device does not cause harmful interference.

1.1 Location on Enclosure : Manual for Installation and Operating Instruction

1.2 How Applied : Printing

2. Information to User (Section 15.21)

The following or similar statements were provided in the manual for user instruction. Please refer page 1 of the attached manual for details.

CAUTION : Any changes or modifications in construction of this device which are not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

3. Special Accessories (Section 15.27)

3.1 Were the special Accessories provided? [] yes, [] no

3.2 If yes, details for the special accessories are as follows :

3.3 If yes, were the appropriate instructions provided on the first page of the text concerned with the device? [] yes, [] no

3.4 Are these accessories provided of the type which can be readily obtained from multiple retail outlets? [] yes, [] no

And therefore does the manual specify what additional components or accessories are required to be used in order to comply with the Rules?

[] yes, [] no

III. RADIATED EMISSION MEASUREMENT (Section 15.109)

1. Test Procedure

1.1 Preliminary Testing for Reference

This pager receiver(EUT) is designed to operate in the band 929.0125MHz to 931.9875MHz by changing a local oscillator installed in internal PCB. According to section 15.31(m), the measurements were performed with three equipments which were selected as bottom, middle, and top frequency in the operating band.

Preliminary testing was performed in a KAITECH absorber-lined room to determine the emission characteristics of the EUT. The EUT was placed on the wooden table which has dimensions of 0.8 meters in height, 1 meter in length and 1.5 meters in width. Receiving antenna(Biconical antenna : 30 to 300MHz, Log-periodic antenna : 200 to 1000MHz or Horn Antenna : 1 to 18GHz) was placed at the distance of 1 meter from the EUT.

An attempt was made to maximize the emission level with the various configurations of the EUT while rotating the table and varying antenna height.

Emissions level from the EUT with various configurations were examined on a Spectrum Analyzer connected with a RF amplifier and graphed by a plotter.

1.2 Final Radiated Emission Test at a Absorber-Lined Room

The final measurement of radiated field strength was carried out in a KAITECH Absorber-Lined Room that was listed up at FCC according to the "Radiated Emissions Testing" procedure specified by ANSI C63.4.

Based on the test results in preliminary test, measurement was made in same test set up and configuration which produced maximum emission level. Receiving antenna was installed at 3-meter distance from the EUT, and was connected to an EMI receiver or spectrum analyzer(for above 1GHz) with a RF amplifier.

Turntable was rotated through 360 degrees and receiving antenna height was varied from 1 to 4 meters above the ground plane to read maximum emission level.

If necessary, the radiated emission measurements could be performed at a closer distance than specified distance to ensure higher accuracy and their results were extrapolated to the specified distance using an inverse linear distance extrapolation factor(20dB/decade) as per Section 15.31(f).

The maximum emission level from the EUT occurred in such configuration as shown in the following photograph.

4. Measurement Data

4.1 Operating Frequency (Bottom : 929.0125MHz Tuning)

- Resolution Bandwidth : CISPR Quasi-Peak (6dB Bandwidth : 120kHz)
 Peak (3dB Bandwidth : 300kHz)
- Measurement Distance : 3 Meter

Note

*	D.M.	: Detect Mode (P : Peak, Q : Quasi-Peak, A : Average)
	A.P.	: Antenna Polarization (H : Horizontal, V : Vertical)
	A.F.	: Antenna Factor
	C.L.	: Cable Loss
	A.G.	: Amplifier Gain
	D.C.F.	: Distance Correction Factor

** Margin (dB) = Emission Level (dB) - Limit (dB)

The observed EMI receiver(ESVS30) noise floor level was 2.0dB μ W. And all other emissions not reported on data were more than 25dB below the permitted level.

4.2 Operating Frequency (Middle : 931.1875MHz Tuning)

- Resolution Bandwidth : CISPR Quasi-Peak (6dB Bandwidth : 120kHz)
 Peak (3dB Bandwidth : 300kHz)
- Measurement Distance : 3 Meter

Note

*	D.M.	: Detect Mode (P : Peak, Q : Quasi-Peak, A : Average)
	A.P.	: Antenna Polarization (H : Horizontal, V : Vertical)
	A.F.	: Antenna Factor
	C.L.	: Cable Loss
	A.G.	: Amplifier Gain
	D.C.F.	: Distance Correction Factor

** Margin (dB) = Emission Level (dB) - Limit (dB)

The observed EMI receiver(ESVS30) noise floor level was 2.0dB μ N. And all other emissions not reported on data were more than 25dB below the permitted level.

4.3 Operating Frequency (Top : 931.9875MHz Tuning)

- Resolution Bandwidth : CISPR Quasi-Peak (6dB Bandwidth : 120kHz)
 Peak (3dB Bandwidth : 300kHz)
- Measurement Distance : 3 Meter

Note

*	D.M. : Detect Mode (P : Peak, Q : Quasi-Peak, A : Average)
	A.P. : Antenna Polarization (H : Horizontal, V : Vertical)
	A.F. : Antenna Factor
	C.L. : Cable Loss
	A.G. : Amplifier Gain
	D.C.F. : Distance Correction Factor

** Margin (dB) = Emission Level (dB) - Limit (dB)

The observed EMI receiver(ESVS30) noise floor level was 2.0dB/N. And all other emissions not reported on data were more than 25dB below the permitted level.

IV. TEST EQUIPMENT USED FOR MEASUREMENTS

<u>Equipment</u>	<u>Model No.</u>	<u>Manufacturer</u>	<u>Serial No.</u>	<u>Effective Cal. Duration</u>
[x] EMI Receiver (20MHz-1GHz)	ESVS30	R & S	830516/002	07/04/97-07/04/98
[x] Spectrum Analyzer (9kHz-26.5GHz)	8563A	H. P.	3222A02069	01/30/98-01/30/99
[] Spectrum Analyzer (100Hz-22GHz)	8566B	H. P.	3014A07057	05/29/97-05/29/98
[] Quasi-Peak Adapter (10kHz-1GHz)	85650A	H. P.	3107A01511	05/29/97-05/29/98
[] RF-Preselector (20Hz-2GHz)	85685A	H. P.	3010A01181	05/29/97-05/29/98
[] Test Receiver (9kHz-30MHz)	ESH3	R & S	860905/001	07/04/96-07/04/98
[x] Pre-Amplifier (0.1-3000MHz, 30dB)	8347A	H. P.	2834A00543	05/29/97-05/29/98
[] Pre-Amplifier (1-26.5GHz, 35dB)	8449B	H. P.	3008A00302	06/30/97-06/30/98
[] LISN(50Ω, 50µH) (10kHz-100MHz)	3825/2	EMCO	9010-1710	-
[] LISN(50Ω, 50µH) (10kHz-100MHz)	3825/2	EMCO	9011-1720	-
[x] Plotter	7470A	H. P.	3104A21292	-
[] Tuned Dipole Ant. (30MHz-300MHz)	VHA 9103	Schwarzbeck	-	*
[x] Tuned Dipole Ant. (300MHz-1GHz)	UHA 9105	Schwarzbeck	-	*
[x] Biconical Ant. (30MHz-300MHz)	BBA 9106	Schwarzbeck	-	*
[x] Log Periodic Ant. (200MHz-1GHz)	3146	EMCO	-	*
[] Horn Ant. (1GHz-18GHz)	3115	EMCO	-	*
[] Audio Generator	LAV-190	LEADER	5020297	07/01/96-07/01/98
[] DC Power Supply	6260B	H.P.	1145A04822	-
[] Shielded Room (5.0m x 4.5m)		SIN-MYUNG	-	-

* Each set of antennas has been calibrated to ensure correlation with ANSI C63.5 standard.
The calibration of antennas is traceable to Korea Standard Research Institute(KSRI).