

Test of WhereWand II Adapter

To: FCC 47 CFR Part 15.247 & IC RSS-210

Test Report Serial No.: ETSD04-A2 Rev A

TEST REPORT
FROM
MiCOM Labs

Test of WhereWand II Adapter
to
FCC 47 CFR Part 15.247 & IC RSS-210

Test Report Serial No.: ETSD04-A2 Rev A

This report supersedes: None

Manufacturer: WhereNet
2858 De La Cruz Blvd.
Santa Clara
California 95050, USA

Product Function: 2.4 GHz Active RFID Tag

Copy No: pdf **Issue Date:** 26th June '07

This Test Report is Issued Under the Authority of:

MiCOM Labs, Inc.
440 Boulder Court, Suite 200
Pleasanton, CA 94566 USA
Phone: +1 (925) 462-0304
Fax: +1 (925) 462-0306
www.micomlabs.com

CERTIFICATE #2381.01

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

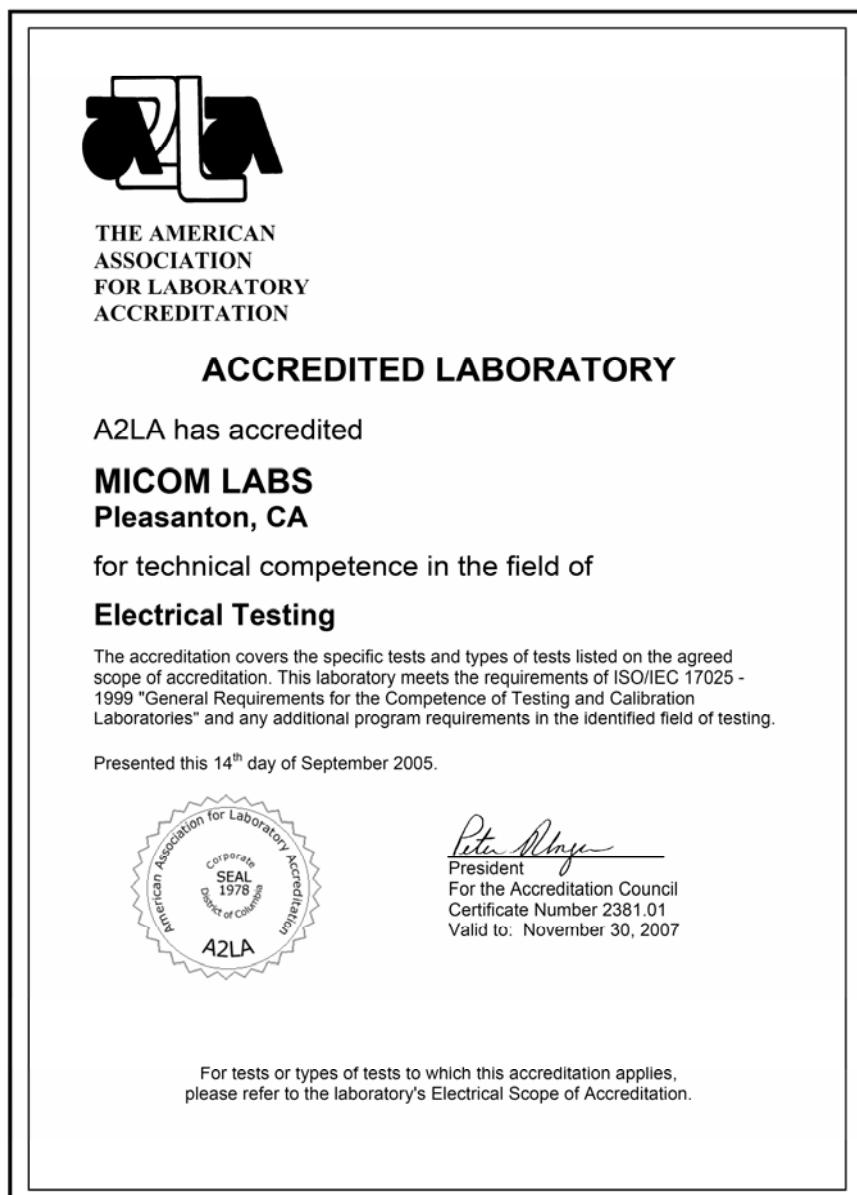
Title: WhereWand II Adapter
To: FCC 47 CFR Part 15.247 & IC RSS-210
Serial #: ETSD04-A2 Rev A
Issue Date: 26th June '07
Page: 3 of 58

This page has been left intentionally blank

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

TABLE OF CONTENTS

COVER PAGE	1
TITLE PAGE	2
ACCREDITATION & LISTINGS.....	5
1. TEST RESULT CERTIFICATE	8
2. REFERENCES AND MEASUREMENT UNCERTAINTY.....	9
2.1. Normative References	9
2.2. Test and Uncertainty Procedures	9
3. PRODUCT DETAILS AND TEST CONFIGURATIONS	10
3.1. Technical Details	10
3.2. Scope of Test Program.....	11
3.3. Equipment Model(s) and Serial Number(s)	12
3.4. Antenna Details	12
3.5. Cabling and I/O Ports	12
3.6. Test Configurations.....	13
3.7. Deviations from the Test Standard	13
3.8. Subcontracted Testing or Third Party Data	14
4. TEST SUMMARY	15
5. TEST RESULTS	17
5.1. Device Characteristics	17
5.1.1. <i>6 dB and 99 % Bandwidth</i>	17
5.1.2. <i>Peak Output Power</i>	21
5.1.3. <i>Peak Power Spectral Density</i>	25
5.1.4. <i>Conducted Spurious Emissions</i>	29
5.1.5. <i>Radiated Emissions</i>	37
5.1.6. <i>AC Wireline Conducted Emissions (150 kHz – 30 MHz)</i>	53
6. PHOTOGRAPHS.....	55
6.1. Radiated Emissions (above 1 GHz).....	55
6.2. General Measurement Test Set-Up	56
7. TEST EQUIPMENT DETAILS.....	57


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: WhereWand II Adapter
To: FCC 47 CFR Part 15.247 & IC RSS-210
Serial #: ETSD04-A2 Rev A
Issue Date: 26th June '07
Page: 5 of 58

ACCREDITATION & LISTINGS

MiCOM Labs, Inc. an accredited laboratory complies with the international standard BS EN ISO/IEC 17025. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; <http://www.a2la.org/scopepdf/2381-01.pdf>

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: WhereWand II Adapter
To: FCC 47 CFR Part 15.247 & IC RSS-210
Serial #: ETSD04-A2 Rev A
Issue Date: 26th June '07
Page: 6 of 58

LISTINGS

MiCOM Labs test facilities are listed by the following organizations;

North America

United States of America

Federal Communications Commission (FCC) Listing #: 102167

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: WhereWand II Adapter
To: FCC 47 CFR Part 15.247 & IC RSS-210
Serial #: ETSD04-A2 Rev A
Issue Date: 26th June '07
Page: 7 of 58

DOCUMENT HISTORY

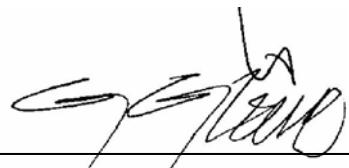
Document History		
Revision	Date	Comments
Draft		
Rev A	26 th June 2007	First issue.

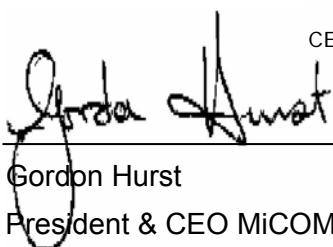
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: WhereWand II Adapter
To: FCC 47 CFR Part 15.247 & IC RSS-210
Serial #: ETSD04-A2 Rev A
Issue Date: 26th June '07
Page: 8 of 58

1. TEST RESULT CERTIFICATE

Manufacturer:	WhereNet 2858 De La Cruz Blvd. Santa Clara California 95050, USA	Tested By:	MiCOM Labs, Inc. 440 Boulder Court Suite 200 Pleasanton California, 94566, USA
EUT:	WhereWand II Adapter	Telephone:	+1 925 462 0304
Model:	WND-2100-00AA	Fax:	+1 925 462 0306
S/N:	Not Available		
Test Date(s):	1st to 6th June '07	Website:	www.micomlabs.com


STANDARD(S)	TEST RESULTS
FCC 47 CFR Part 15.247 & IC RSS-210	EQUIPMENT COMPLIES


MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

1. This document reports conditions under which testing was conducted and the results of testing performed.
2. Details of test methods used have been recorded and kept on file by the laboratory.
3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

Graeme Grieve
Quality Manager MiCOM Labs,

Gordon Hurst
President & CEO MiCOM Labs, Inc.

CERTIFICATE #2381.01

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: WhereWand II Adapter
To: FCC 47 CFR Part 15.247 & IC RSS-210
Serial #: ETSD04-A2 Rev A
Issue Date: 26th June '07
Page: 9 of 58

2. REFERENCES AND MEASUREMENT UNCERTAINTY

2.1. Normative References

Ref.	Publication	Year	Title
(i)	FCC 47 CFR Part 15.247	2005	Code of Federal Regulations
(ii)	Industry Canada RSS-210	Issue 6 Sept. 2005	Low Power License-Exempt Radiocommunication Devices (All Frequency Bands)
(iii)	ANSI C63.4	2003	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
(iv)	CISPR 22/ EN 55022	1997 1998	Limits and Methods of Measurements of Radio Disturbance Characteristics of Information Technology Equipment
(v)	M 3003	Edition 1 Dec. 1997	Expression of Uncertainty and Confidence in Measurements
(vi)	LAB34	Edition 1 Aug 2002	The expression of uncertainty in EMC Testing
(vii)	ETSI TR 100 028	2001	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
(viii)	A2LA	14 th September 2005	Reference to A2LA Accreditation Status – A2LA Advertising Policy

2.2. Test and Uncertainty Procedures

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor $k = 2$, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: WhereWand II Adapter
To: FCC 47 CFR Part 15.247 & IC RSS-210
Serial #: ETSD04-A2 Rev A
Issue Date: 26th June '07
Page: 10 of 58

3. PRODUCT DETAILS AND TEST CONFIGURATIONS

3.1. Technical Details

Details	Description
Purpose:	Test of the WhereNet WhereWand II Adapter Model WND-2100-00AA to FCC Part 15.247 and Industry Canada RSS-210 regulations
Applicant:	As Manufacturer
Manufacturer:	WhereNet 2858 De La Cruz Blvd. Santa Clara California 95050, USA
Laboratory performing the tests:	MiCOM Labs, Inc. 440 Boulder Court, Suite 200 Pleasanton, California 94566 USA
Test report reference number:	ETSD04-A2 Rev A
Date EUT received:	1st June 2007
Standard(s) applied:	FCC 47 CFR Part 15.247 & IC RSS-210
Dates of test (from - to):	1st to 6th June '07
No of Units Tested:	2
Type of Equipment:	RFID Active Tag
Manufacturers Trade Name:	WhereWand
Model:	WhereWand II Adapter
Location for use:	Indoor/Outdoor use
Declared Frequency Range(s):	2400 - 2483.5 MHz, 114 to 127 kHz
Type of Modulation:	DSSS, OOK, FSK magnetic transmit
Declared Nominal Output Power:	DSSS: 0 dBm \pm 1.5 dB OOK: 0 dBm \pm 1.5 dB
EUT Modes of Operation:	DSSS, OOK, FSK magnetic transmit
Transmit/Receive Operation:	Time Division Duplex
Software Revision	1.1.0 (0)
Rated Input Voltage and Current:	5 Vdc, 40 mA
Operating Temperature Range:	Declared range 0 to +55°C
ITU Emission Designator:	DSSS – 53M1W7D OOK – 6M1W7D
Microprocessor(s) Model:	Integrated LEON SPARC
Clock/Oscillator(s):	3 MHz, 30.521783 MHz
Frequency Stability:	\pm 20 ppm
Equipment Dimensions:	4.4"x2.7"x1.1"
Weight:	135 grams
Primary function of equipment:	RFID and real time local positioning and tracking device

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

3.2. Scope of Test Program

The scope of the test program was to test the WhereNet, WhereWand RFID and real time local positioning and tracking device for compliance against FCC 47 CFR Part 15.247 and Industry Canada RSS-210 specifications.

The WhereWand RFID real time local positioning and tracking device has three modes of operation which are not operating simultaneously;

DSSS & OOK: 2441.75 MHz

FSK magnetic transmit: 114.7 to 127 MHz

WhereNet WhereWand II WND-2100-00AA

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: WhereWand II Adapter
To: FCC 47 CFR Part 15.247 & IC RSS-210
Serial #: ETSD04-A2 Rev A
Issue Date: 26th June '07
Page: 12 of 58

3.3. Equipment Model(s) and Serial Number(s)

Type (EUT/Support)	Equipment Description (Including Brand Name)	Mfr	Model No.	Serial No.
EUT	WhereWand II RFID Tag	WhereNet	WND-2100-00AA	--
Support	Laptop	Dell		

3.4. Antenna Details

Antenna Type	Gain (dBi)	Manufacturer	Model No.	Serial No.
Ceramic Chip	+1.5	Johanson	2450AT45A100	--

3.5. Cabling and I/O Ports

Number and type of I/O ports

1. NONE

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

3.6. Test Configurations

Matrix of test configurations

Operational Mode	# Operating Channel(s)	Nominal Tx Pwr (dBm)	Frequencies (MHz)
DSSS	1	0	2441.75
OOK	1	0	2441.75

Only worst case plots are provided for each test parameter are identified within this report. Plots not included are held on file by the test laboratory and available upon request with client permission.

Client delivered two products one with integral antenna for radiated emission testing.

- 1).. conducted testing – connectorized (SMA)
- 2).. radiated testing – integral antenna

DSSS modulation 100% duty cycle
 OOK pulsed modulation

3.7. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program:

1. Voltage Variation

Voltage to the EUT for a Lithium standard required to be varied 15%. Nominal voltage +5Vdc, ± 0.75 vdc. Client declared that the type of Lithium battery utilized could not attain the upper voltage therefore the following voltages were used to exercise the EUT during the test.

Nominal: +5.0 Vdc
 Minimum: +4.25 Vdc (-15%)
 Maximum: +5.25 Vdc (+5%)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: WhereWand II Adapter
To: FCC 47 CFR Part 15.247 & IC RSS-210
Serial #: ETSD04-A2 Rev A
Issue Date: 26th June '07
Page: 14 of 58

3.8. Subcontracted Testing or Third Party Data

Radiated emissions are tested below and verified above 1 GHz at TUV Rheinland of North America's 10m chamber located at the following address:-

2305 Mission College Blvd.
Santa Clara
California 95054
USA

TUV Rheinland of North America IC Registration Number: IC 4453-1

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: WhereWand II Adapter
To: FCC 47 CFR Part 15.247 & IC RSS-210
Serial #: ETSD04-A2 Rev A
Issue Date: 26th June '07
Page: 15 of 58

4. TEST SUMMARY

List of Measurements

The following table represents the list of measurements required under the **FCC CFR47 Part 15.247** and **Industry Canada RSS-210** and **Industry Canada RSS-Gen**.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.247(a)(2) A8.2(1) 4.4	6 dB and 99 % Bandwidths	>=500 kHz	Conducted	Complies	5.1.1
15.247(b)(3) 15.31(e) A8.4(4)	Peak Output Power Voltage Variation	Shall not exceed 1W Variation of supply voltage 85 % -115 %	Conducted	Complies	5.1.2
15.247(e) A8.2	Peak Power Spectral Density	Shall not be greater than +8 dBm in any 3 kHz band	Conducted	Complies	5.1.3
15.247(d) 15.205 / 15.209 A8.5 2.2 4.7	Spurious Emissions (30MHz - 26 GHz)	The radiated emission in any 100 kHz of out-band shall be at least 20 dB below the highest in-band spectral density	Conducted	Complies	5.1.4

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: WhereWand II Adapter
To: FCC 47 CFR Part 15.247 & IC RSS-210
Serial #: ETSD04-A2 Rev A
Issue Date: 26th June '07
Page: 16 of 58

List of Measurements (continued)

The following table represents the list of measurements required under the **FCC CFR47 Part 15.247**, **Industry Canada RSS-210**, and **Industry Canada RSS-Gen**.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.247(d) 15.205 / 15.209 A8.5 2.2 2.6 4.7	Radiated Emissions Transmitter Radiated Spurious Emissions, Peak Emissions, Band Edge Industry Canada only RSS-Gen §4.8, §6	Restricted Bands Emissions above 1 GHz Emissions above 1 GHz	Radiated	Complies Complies Complies	5.1.5 5.1.5.1 5.1.5.2
15.205 / 15.209 2.2	Radiated Spurious Emissions	Emissions <1 GHz (30M-1 GHz)	Radiated	Complies	5.1.5.3
15.207 7.2.2	AC Wireline Conducted Emissions 150 kHz–30 MHz	Conducted Emissions	Conducted	Not Applicable Device dc powered	5.1.6

Note 1: Test results reported in this document relate only to the items tested

Note 2: The required tests demonstrated compliance as per client declaration of test configuration, monitoring methodology and associated pass/fail criteria

Note 3: Appendix A - Equipment Modifications highlights the equipment modifications that were required to bring the product into compliance with the above test matrix

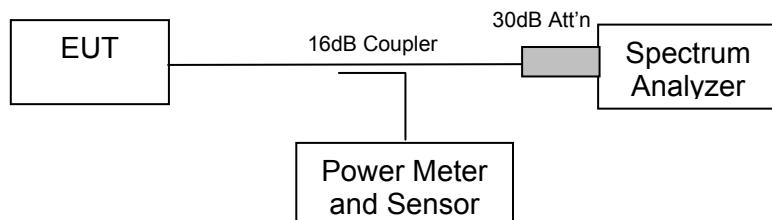
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5. TEST RESULTS

5.1. Device Characteristics

5.1.1. 6 dB and 99 % Bandwidth

FCC, Part 15 Subpart C §15.247(a)(2)


Industry Canada RSS-210 §A8.2

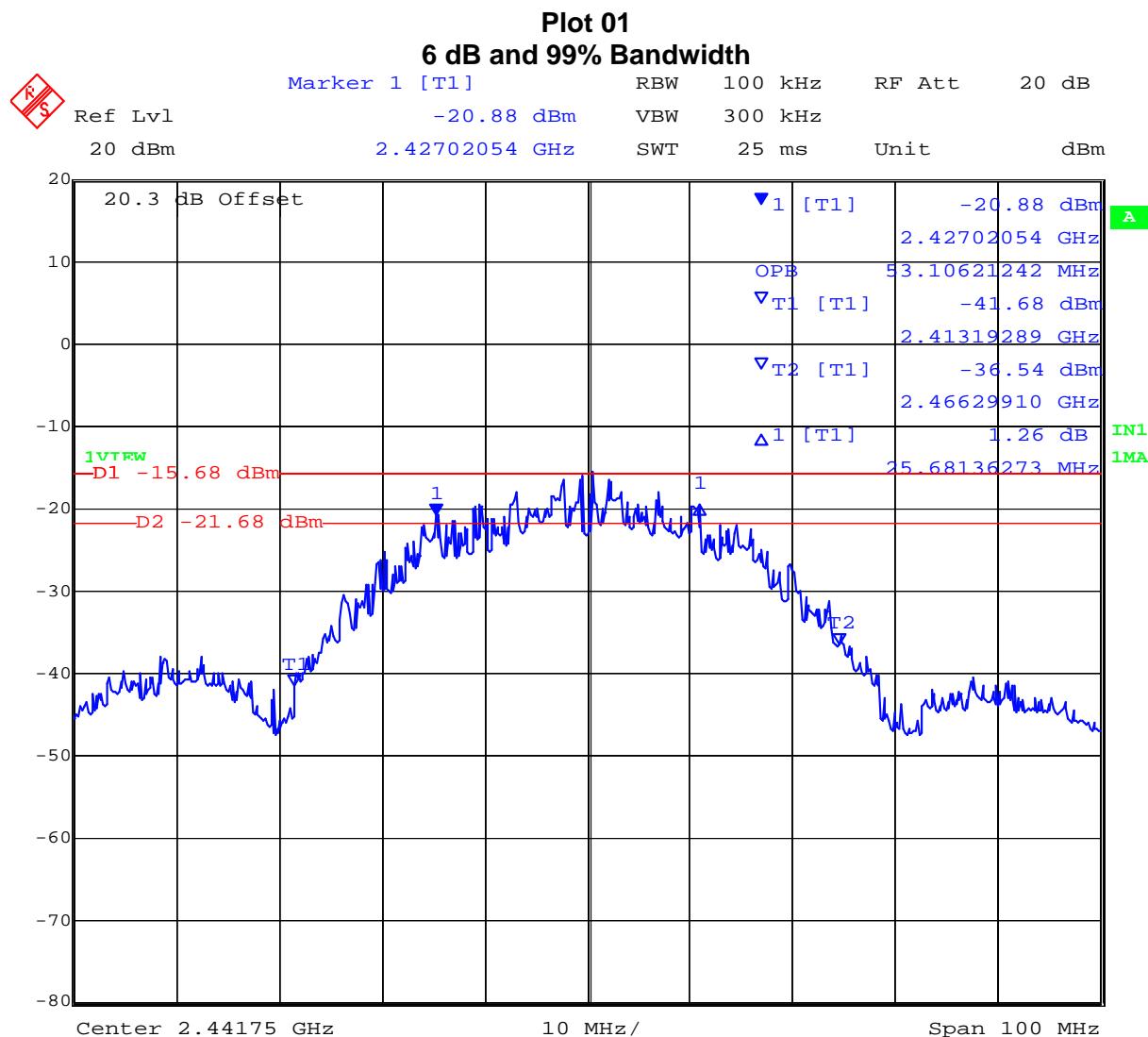
Industry Canada RSS-Gen §4.4

Test Procedure

The bandwidth at 6 dB and 99 % is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency. The analyzer was set for a 6 dB resolution bandwidth filter during this measurement.

Test Measurement Set up

Measurement set up for 6 dB and 99 % bandwidth test

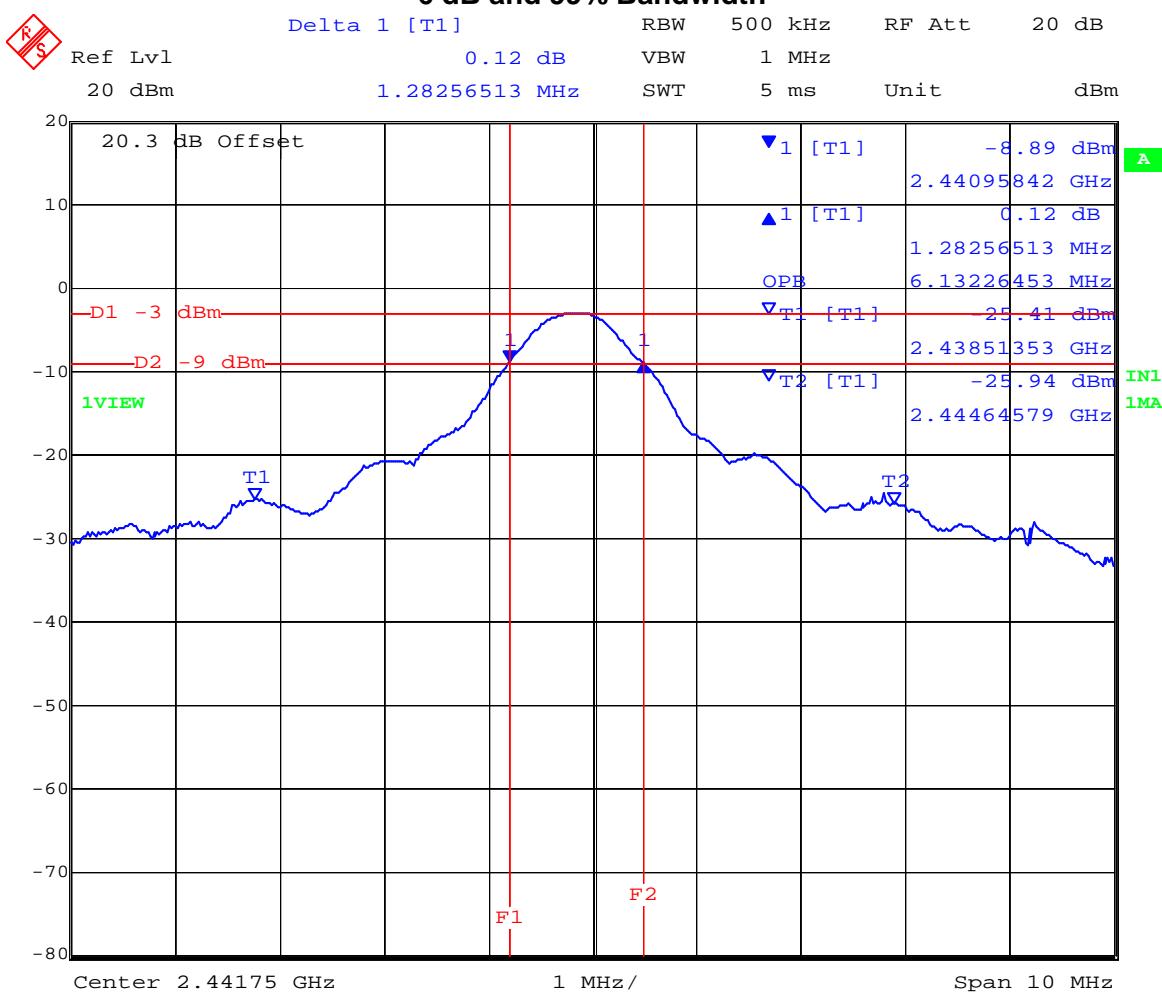

Measurement Results for 6 dB and 99 % Operational Bandwidth(s)

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

TABLE OF RESULTS – DSSS

Center Frequency (MHz)	6 dB Bandwidth (MHz)	99 % BW (MHz)	6 dB & 99 % BW Plot
2441.75	25.68136273	53.10621242	01


Date: 1.JUN.2007 15:14:30

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

TABLE OF RESULTS – OOK

Center Frequency (MHz)	6 dB Bandwidth (MHz)	99 % BW (MHz)	6 dB & 99 % BW Plots
2441.75	1.28256513	6.13226453	02

Plot 02
6 dB and 99% Bandwidth

Date: 1.JUN.2007 15:22:20

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: WhereWand II Adapter
To: FCC 47 CFR Part 15.247 & IC RSS-210
Serial #: ETSD04-A2 Rev A
Issue Date: 26th June '07
Page: 20 of 58

Specification

Limits

§15.247 (a)(2) & RSS-210 §A8.2(1)

The minimum 6 dB bandwidth shall be at least 500 kHz.

§ IC RSS-Gen 4.4.1 Occupied Bandwidth When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99% emission bandwidth, as calculated or measured.

§ IC RSS-Gen 4.4.2 6 dB Bandwidth Where indicated, the 6 dB bandwidth is measured at the points when the spectral density of the signal is 6 dB down from the in –band spectral density of the modulated signal, with the transmitter modulated by a representative signal.

Laboratory Measurement Uncertainty for Spectrum Measurement

Measurement uncertainty	±2.81 dB
-------------------------	----------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-03 'Measurement of RF Spectrum Mask'	0158, 0193, 0252, 0313, 0314, 0070, 0116, 0117

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5.1.2. Peak Output Power

FCC, Part 15 Subpart C §15.247(b)(3), §15.31(e)
Industry Canada RSS-210 §A8.4(4)

Test Procedure

The transmitter terminal of EUT was connected to the input of the spectrum analyzer set to measure peak power. The resolution filter bandwidth was set to 6 dB, peak detector selected and the analyzer built-in power function was used to measure peak power over the 99 % bandwidth. Initial measurements were employed to define which data rate provided the highest output power. Measurements were made while EUT was operating in a continuous transmission mode i.e. 100 % duty cycle at the appropriate center frequency.

Test Measurement Set up

Measurement set up for Transmitter Peak Output Power

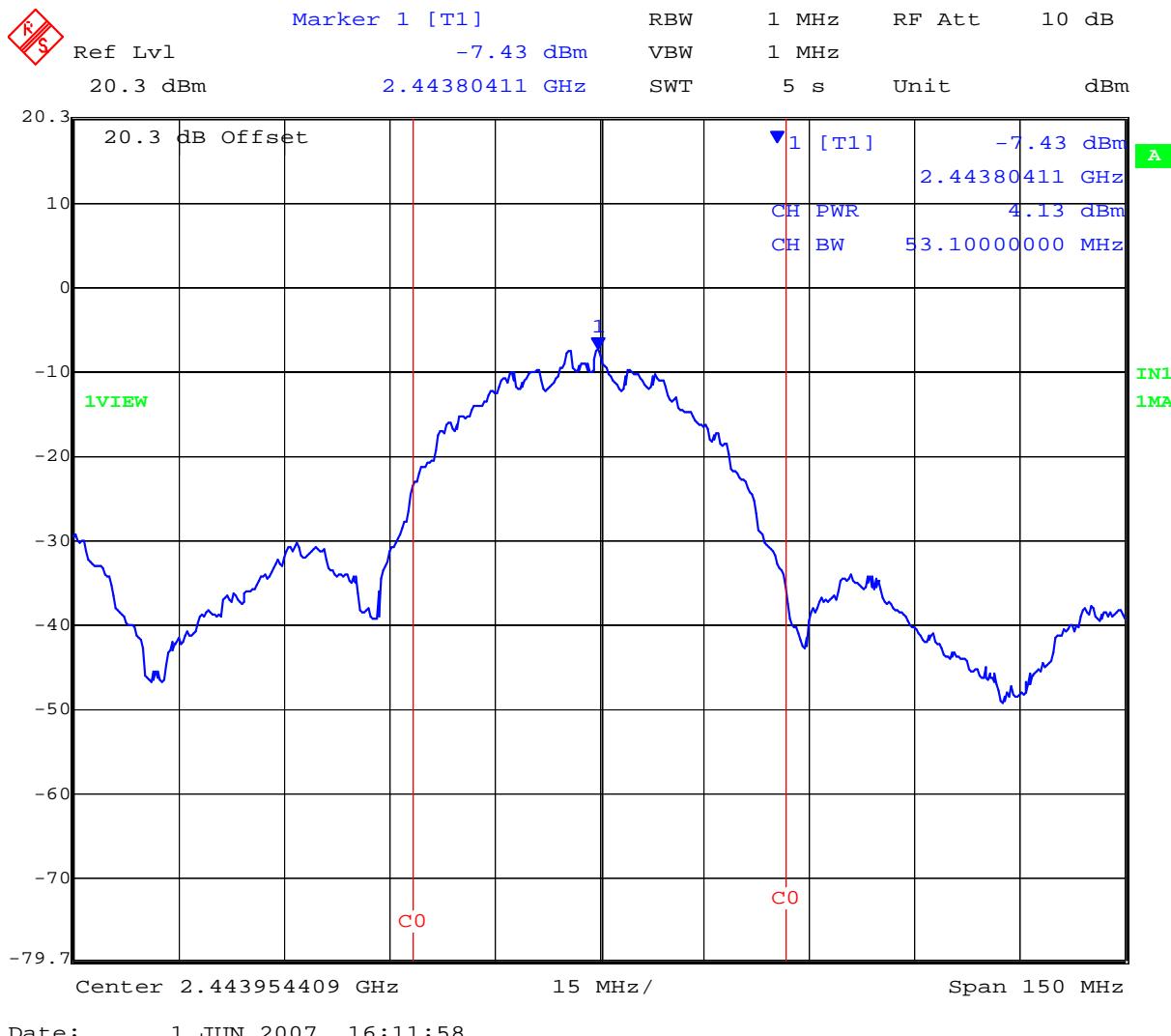
15.247 (c) Operation with directional antenna gains greater than 6 dBi

(1) Fixed point –to-point operation:

(i) Systems operating in the 2400 – 2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Type	Gain (dBi)	Antenna Gain >6dBi (dB)	Max. Allowable Peak Power (dBm)	Maximum EIRP (dBm)
Integral Chip	+1.5	No	30	36

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

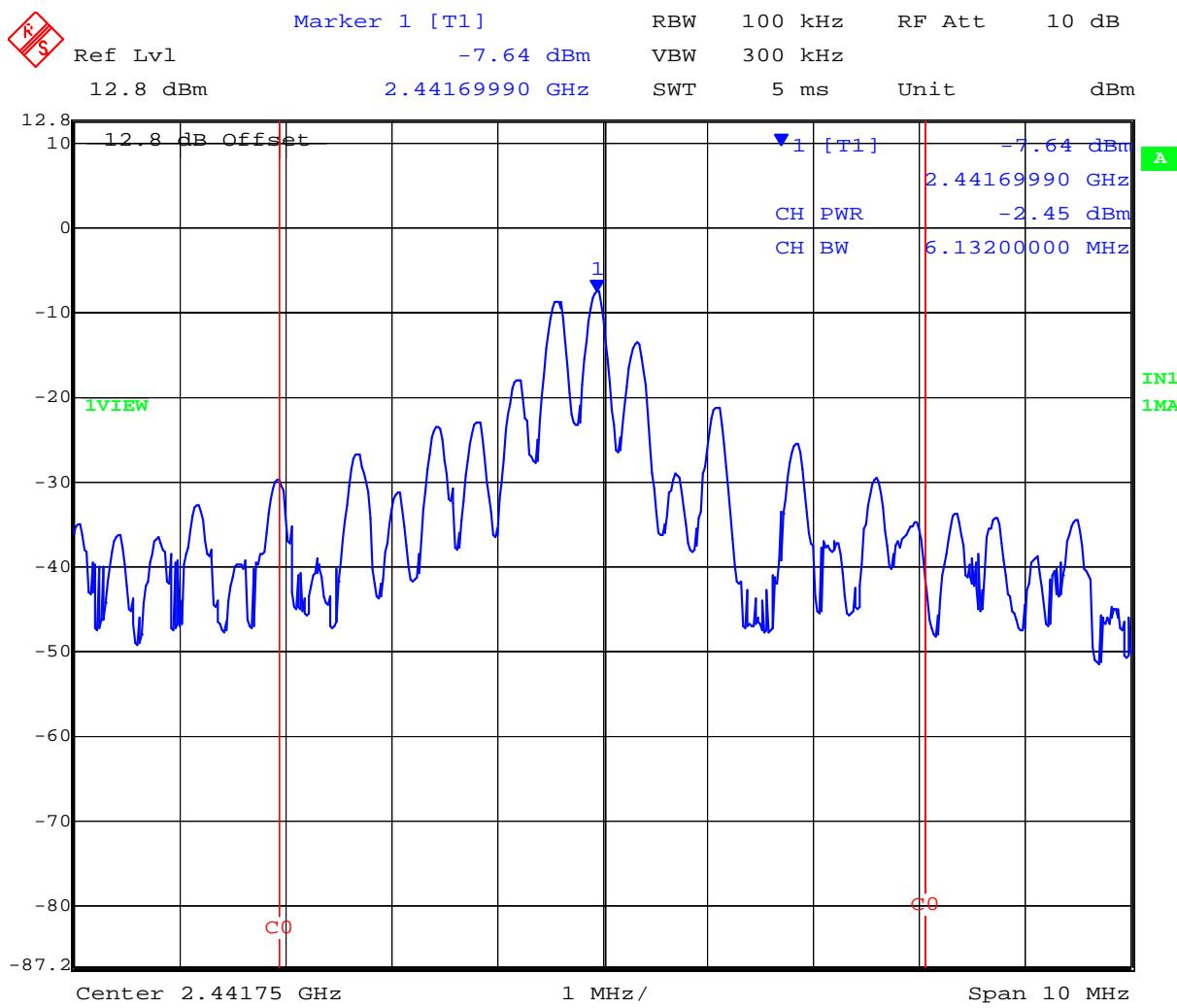

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

TABLE OF RESULTS – DS88

Center Frequency (MHz)	99% Measurement Bandwidth (MHz)	Peak Power (dBm)	EIRP (dBm)	Plot #
2441.75	53.10000000	4.13	5.63	03

Plot 03 2443.954 MHz Peak Power (dBm)



This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

TABLE OF RESULTS – OOK

Center Frequency (MHz)	99% Measurement Bandwidth (MHz)	Peak Power (dBm)	EIRP (dBm)	Plot #
2441.75	6.13226453	-2.45	-0.95	04

Plot 04
2441.75 MHz Peak Power (dBm)

Date: 25.JUN.2007 08:49:18

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Supply Voltage Variation

The supply voltage (nominal is 5 Vdc) was varied 15% between 4.25 Vdc (15%) and 5.25 Vdc.(5%) The client declared that 5.25 Vdc is the highest voltage available to the device (see Section 3.7). The system operated as intended at either extreme with no change in the above measurement bandwidths.

Specification

Limits

§15.247 (b) The maximum peak output power of the intentional radiator shall not exceed the following:

§15.247 (b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands: 1.0 watt.

§15.31 (e) For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.

§ RSS-210 A8.4(4) For systems employing digital modulation techniques operating in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands the maximum peak conducted power shall not exceed 1 watt.

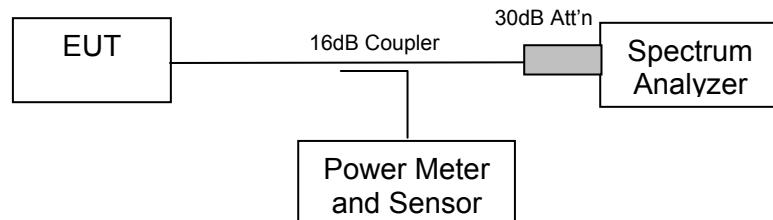
Laboratory Measurement Uncertainty for Power Measurements

Measurement uncertainty	±1.33 dB
-------------------------	----------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-01 'Measuring RF Output Power'	0158, 0193, 0252, 0313, 0314, 0070, 0116, 0117

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


5.1.3. Peak Power Spectral Density

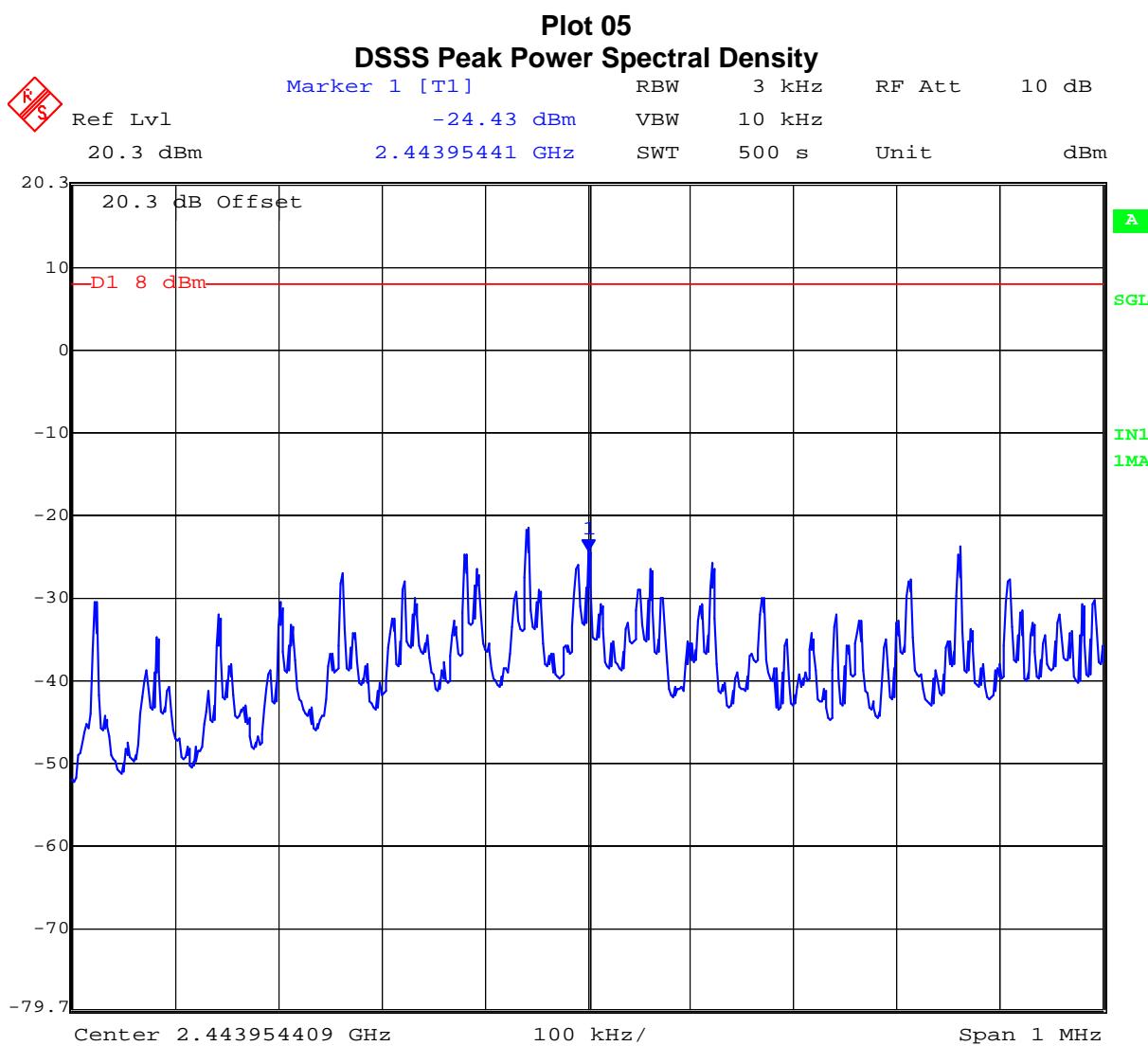
FCC, Part 15 Subpart C §15.247(e)
Industry Canada RSS-210 §A8.2

Test Procedure

The transmitter output was connected to a spectrum analyzer and the maximum level in a 3 kHz bandwidth was measured. A peak value was found over the full emission bandwidth and the frequency span reduced to obtain enhanced resolution. Sweep time => span / 3 kHz with video averaging turned off. The Peak Power Spectral Density is the highest level found across the emission in a 3 kHz resolution bandwidth.

Test Measurement Set up

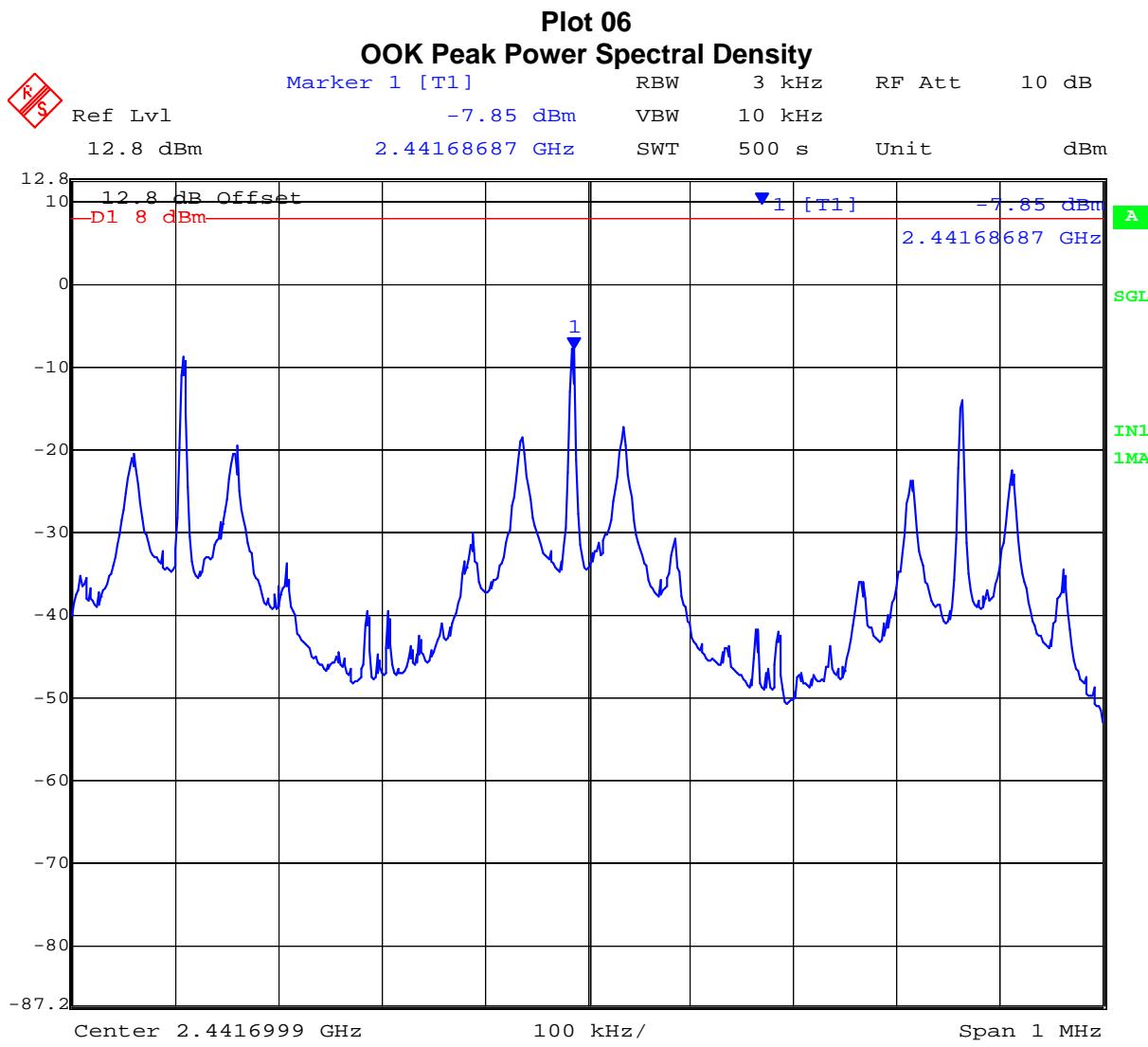
Measurement set up for Peak Power Spectral Density


Measurement Results for Peak Power Spectral Density

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

TABLE OF RESULTS – DSSS


Center Frequency (MHz)	Peak Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Margin (dBm)	Plot #
2,441.75	2,443.95441	-24.43	+8	-32.43	05

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

TABLE OF RESULTS – OOK

Center Frequency (MHz)	Peak Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Margin (dBm)	Plot #
2441.75	2,441.68687	-7.85	+8	-15.85	06

Date: 25.JUN.2007 09:06:18

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: WhereWand II Adapter
To: FCC 47 CFR Part 15.247 & IC RSS-210
Serial #: ETSD04-A2 Rev A
Issue Date: 26th June '07
Page: 28 of 58

Specification

Peak Power Spectral Density Limits

§15.247(e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than +8 dBm in any 3 kHz band during any time interval of continuous transmission

RSS-210 §A8.2(2) The transmitter power spectral density (into the antenna) shall not be greater than +8 dBm in any 3 kHz band during any time interval of continuous transmission or over 1.0 second if the transmission exceeds 1.0 second duration.

Laboratory Measurement Uncertainty for Spectral Density

Measurement uncertainty	±1.33 dB
-------------------------	----------

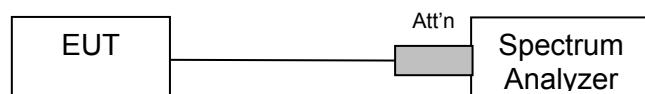
Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-01 'Measuring RF Output Power'	0158, 0193, 0252, 0313, 0314, 0070, 0116, 0117

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5.1.4. Conducted Spurious Emissions

FCC, Part 15 Subpart C §15.247(d); 15.205; 15.209


Industry Canada RSS-210 §A8.5, §2.2

Industry Canada RSS-Gen 4.7

Test Procedure

Conducted emissions were measured at a limit of 20 dB below the highest in-band spectral density measured with a spectrum analyzer connected to the antenna terminal. Emissions at the band edge were measured and recorded. Measurements were made while EUT was operating in transmit mode of operation at the appropriate center frequency.

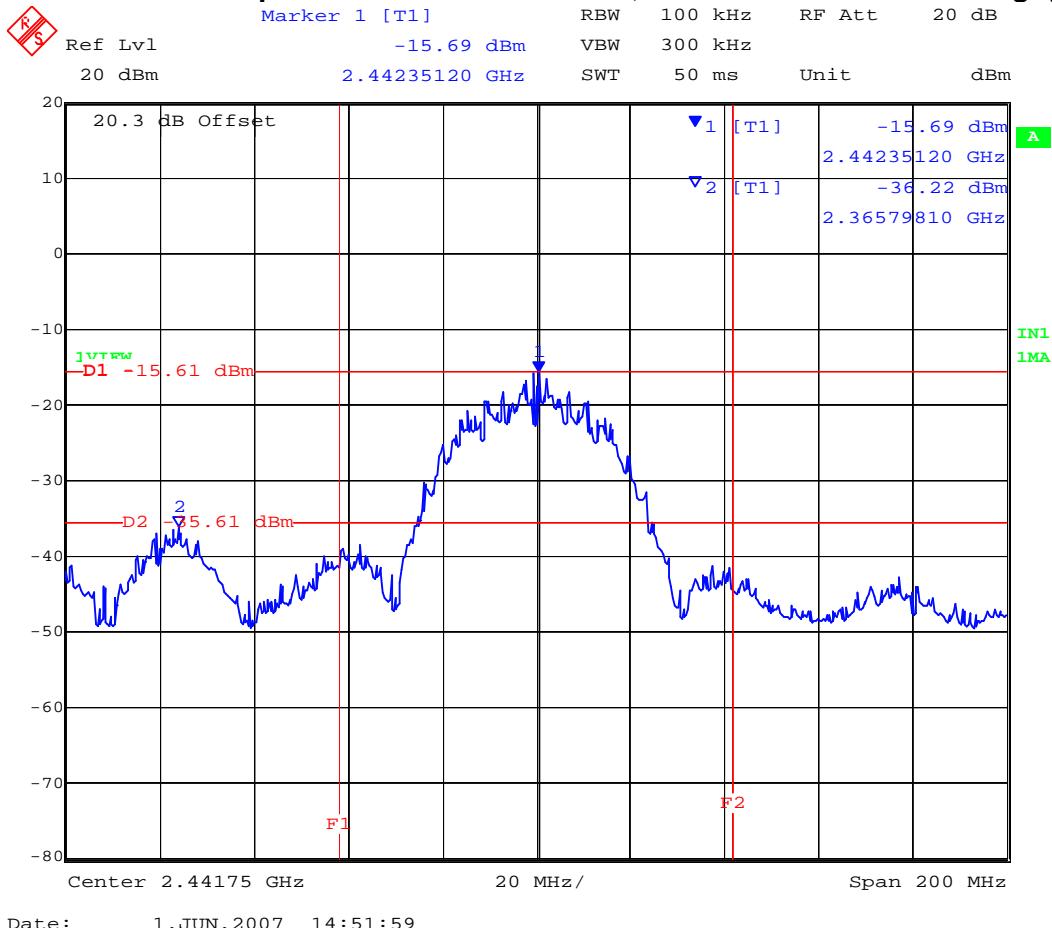
Test Measurement Set up

Band-edge measurement test configuration

Measurement Results of Conducted Spurious Emissions

Ambient conditions.

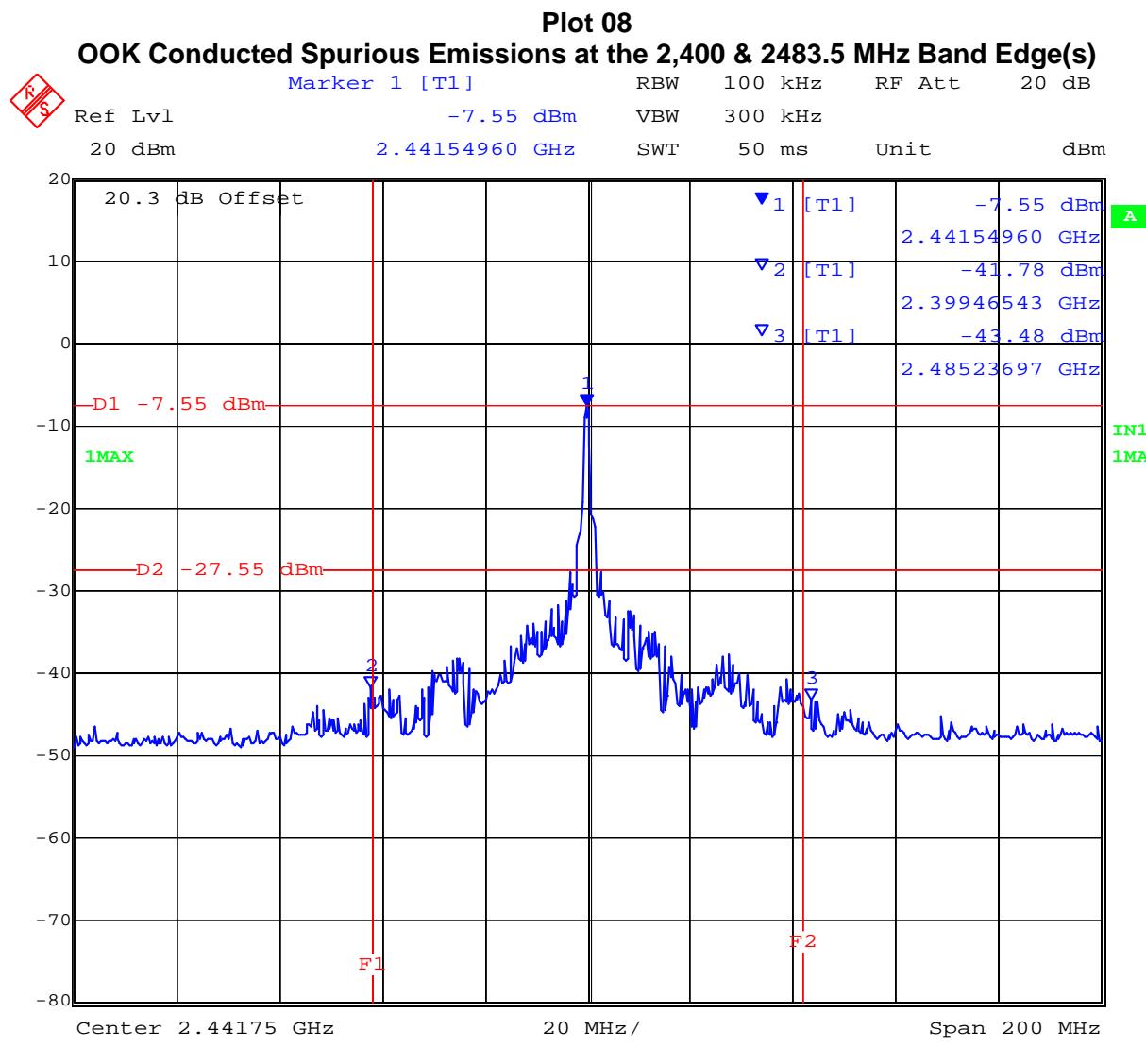
Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar


Conducted Band-Edge Results

Measurements were performed with the transmitter tuned to the channel closest to the band-edge being measured. All emissions were maximized during measurement. Limits which were derived from the band-edge measurements provided below are drawn on each plot.

TABLE OF RESULTS – DSSS

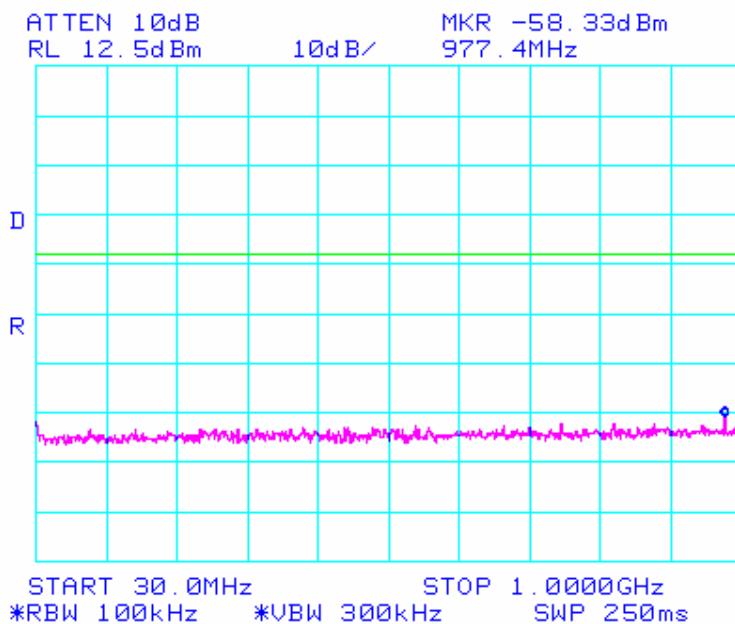
Center Frequency (MHz)	Band edge Frequency (MHz)	Limit (20 dB below peak of fundamental) (dBm)	Amplitude @ Band edge (dBm)	Plot #	Margin (dB)
2,441.75	2,400	-35.61	-36.22	07	-0.61
	2,483.5	-35.61	-41.00		-5.39


Plot 07
DSSS Conducted Spurious Emissions at the 2,400 & 2483.5 MHz Band Edge(s)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

TABLE OF RESULTS – OOK

Center Frequency (MHz)	Band edge Frequency (MHz)	Limit (20 dB below peak of fundamental) (dBm)	Amplitude @ Band edge (dBm)	Plot #	Margin (dB)
2,441.75	2,400	-27.55	-41.78	08	-14.23
	2,483.5	-27.55	-43.48		-15.93


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Spurious Emissions (1-26 GHz)

TABLE OF RESULTS – DSSS

Channel Centre Frequency (MHz)	Start Frequency (MHz)	Stop Frequency (MHz)	Maximum Emission Observed (dBm)	Limit (dBm)	Plot #	Margin (dB)
2441.75	30	1,000	-58.33	-25.0	09	-33.33
2441.75	1,000	26,500	-50.00	-25.0	10	-25.00


Plot 09 DSSS
2441.75 MHz Conducted Spurious Emissions 30 MHz to 7,000 MHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Plot 10 DSSS

2,441.75 MHz Conducted Spurious Emissions 1,000 MHz to 26,500 MHz

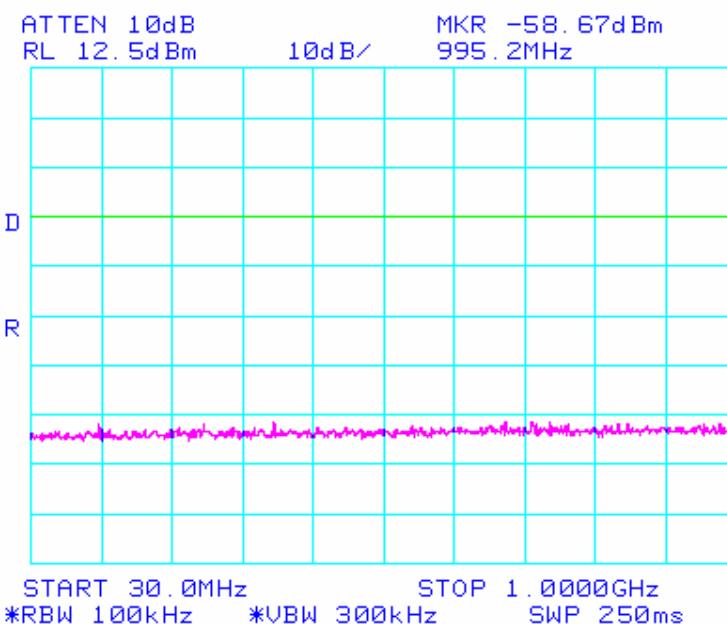
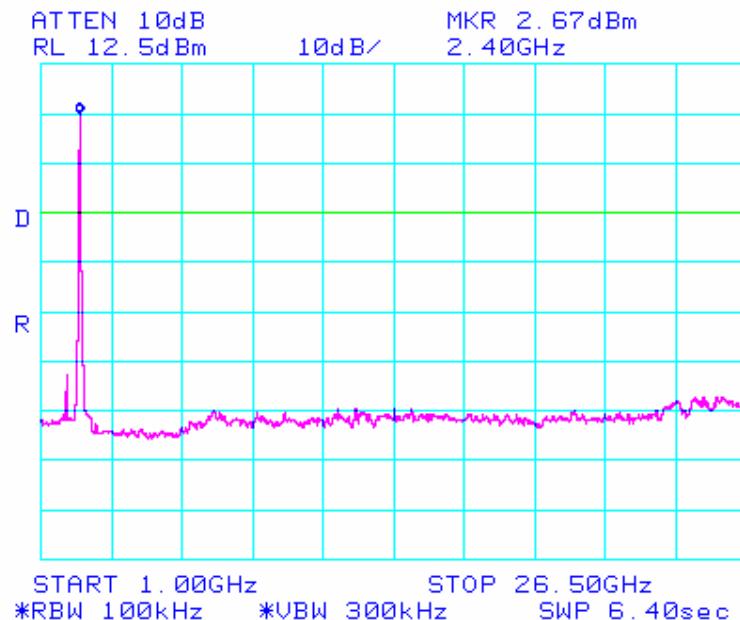

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

TABLE OF RESULTS – OOK

Channel Centre Frequency (MHz)	Start Frequency (MHz)	Stop Frequency (MHz)	Maximum Emission Observed (dBm)	Limit (dBm)	Plot #	Margin (dB)
2441.75	30	1,000	-58.67	-17.5	11	-41.17
2441.75	1,000	26,500	-44.00	-17.5	12	-26.50

Plot 11 OOK


2441.75 MHz Conducted Spurious Emissions 30 MHz to 1,000 MHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Plot 12 OOK

2441.75 MHz Conducted Spurious Emissions 1,000 MHz to 26,500 MHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: WhereWand II Adapter
To: FCC 47 CFR Part 15.247 & IC RSS-210
Serial #: ETSD04-A2 Rev A
Issue Date: 26th June '07
Page: 36 of 58

Specification

Limits Band-Edge

Lower Limit Band-edge	Upper Limit Band-edge	Limit below highest level of desired power
2,400 MHz	2,483.5 MHz	≥ 20 dB

§15.247(d) and RSS-210 §A8.5 In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

§15.247(d)

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section §15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(a)).

RSS-210 §A8.5 If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under section A8.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Tables 2 and 3 is not required. In addition, radiated emissions which fall in the restricted bands of Table 1 must also comply with the radiated emission limits specified in Tables 2 and 3.

RSS-Gen §4.7

The search for unwanted emissions shall be from the lowest frequency internally generated or used in the device (local oscillator, intermediate of carrier frequency), or from 30 MHz, whichever is the lowest frequency, to the 5th harmonic of the highest frequency generated without exceeding 40 GHz.

Laboratory Measurement Uncertainty for Conducted Spurious Emissions

Measurement uncertainty	±2.37 dB
-------------------------	----------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-05 'Measurement of Spurious Emissions'	0088, 0158, 0193, 0252, 0313, 0314, 0070, 0116, 0117.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5.1.5. Radiated Emissions

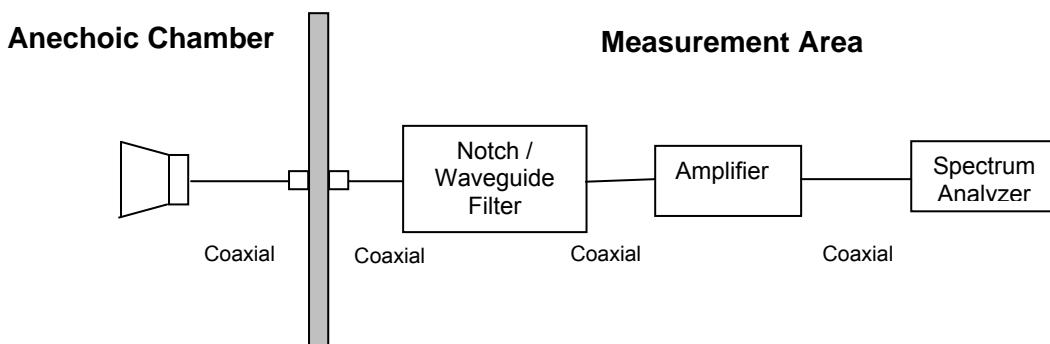
5.1.5.1. Transmitter Radiated Spurious Emissions (above 1 GHz)

FCC, Part 15 Subpart C §15.247(d) 15.205; 15.209

Industry Canada RSS-210 §A8.5, §2.2, §2.6

Industry Canada RSS-Gen §4.7

Test Procedure


Radiated emissions above 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter and waveguide filter was used to remove the fundamental frequency. The highest emissions relative to the limit are listed for each frequency spanned.

All measurements on any frequency or frequencies over 1 MHz are based on the use of measurement instrumentation employing an average detector function. All measurements above 1 GHz were performed using a minimum resolution bandwidth of 1 MHz.

The product was initially tested to find worst case orientation for the maximization of spurious emissions. Worst case orientation was used for all emission testing.

Due to the battery drain as a result of the 100% duty cycle transmission the internal battery was disconnected and an external power source (5.0 Vdc) was used.

Test Measurement Set up

Measurement set up for Radiated Emission Test

Title: WhereWand II Adapter
To: FCC 47 CFR Part 15.247 & IC RSS-210
Serial #: ETSD04-A2 Rev A
Issue Date: 26th June '07
Page: 38 of 58

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

$$FS = R + AF + CORR - FO$$

where: FS = Field Strength

R = Measured Spectrum analyzer Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL – AG + NFL

CL = Cable Loss

AG = Amplifier Gain

FO = Distance Falloff Factor

NFL = Notch Filter Loss or Waveguide Loss

For example:

Given receiver input reading of 51.5 dB μ V; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength of the measured emission is:

$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 \text{ dB}\mu\text{V/m}$$

Conversion between dB μ V/m (or dB μ V) and μ V/m (or μ V) are done as:

$$\text{Level (dB}\mu\text{V/m)} = 20 * \text{Log} (\text{level} (\mu\text{V/m}))$$

$$40 \text{ dB}\mu\text{V/m} = 100 \mu\text{V/m}$$

$$48 \text{ dB}\mu\text{V/m} = 250 \mu\text{V/m}$$

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Radiated Spurious Emissions above 1 GHz

Ambient conditions.

Temperature: 17 to 23°C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

Measurements performed with EUT set for 100% Duty Cycle

Manufacturer's Declared Operational Duty Cycle: 2 %

DSSS OPERATIONAL MODE

DSSS Configuration Peak Emissions & Band Edge

TABLE OF RESULTS – DSSS Configuration

Emission Type	Frequency (MHz)	Raw (dBuV)	Cable Loss (dB)	AF (dB)	Peak Level (dBuV/m)	Average Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)
Peak.	2445.133	92	2.98	-13	81.97	--	--	--
Band Edge ¹	2378.400	62.84	2.94	-13.04	52.74	18.76	54.00	-35.24
Band Edge ¹	2484.333	66.84	2.99	-12.95	56.88	22.90	54.00	-31.10

¹ Band edge measurement: Per FCC's Digital Transmission Systems, Measurements and Procedures Public Notice DA 00-705 Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems. Average value of emission is calculated by the following equation;

Peak value - 20 Log (duty cycle)

Operational duty cycle: 2 % (ON 2.55 mS, OFF 125 mS) where 100mS is the measurement period

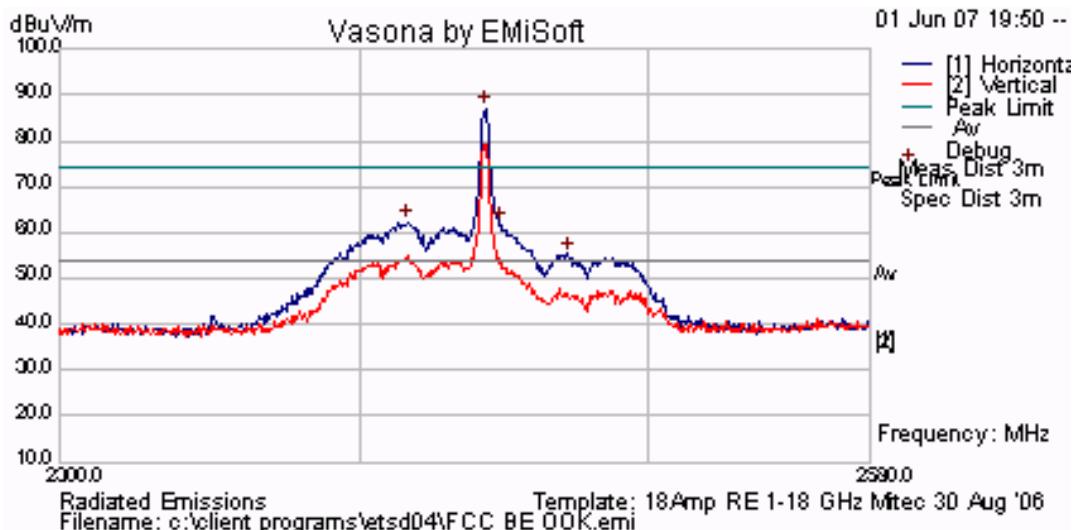
Peak value - 20 Log (0.0204) = -33.98 dB

DSSS Configuration Spurious Emissions >1GHz

TABLE OF RESULTS – DSSS Configuration

Freq. (MHz)	Pol. (H/V)	Corrected Peak Field Strength (dB μ V/m)	Corrected Average Field Strength (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
				54	
				54	
				54	

No emissions found within 6 dB of the limit


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

OOK OPERATIONAL MODE

Measurements performed with EUT set for Pulsed Mode

Manufacturer's Declared Operational Duty Cycle: 28.24 %

OOK Configuration Peak Emissions & Band Edge

TABLE OF RESULTS – OOK Configuration

Emission Type	Frequency (MHz)	Raw (dBuV)	Cable Loss (dB)	AF (dB)	Peak Level (dBuV/m)	Average Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)
Peak.	2443.267	97.17	2.97	-13.00	87.14	--	--	--
Band Edge ¹	2390.927	63.89	2.95	-13.02	53.82	42.84	54	-11.16
Band Edge ¹	2496.753	61.61	3.00	-12.96	51.64	40.66	54	-13.34

¹ Band edge measurement: Per FCC's Digital Transmission Systems, Measurements and Procedures Public Notice DA 00-705 Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems. Average value of emission is calculated by the following equation;

Peak value - 20 Log (duty cycle)

Operational duty cycle: 28.24 %

Peak value - 20 Log (0.2824) = -10.98 dB

OOK Configuration Spurious Emissions >1GHz

TABLE OF RESULTS – OOK Configuration

Freq. (MHz)	Pol. (H/V)	Corrected Peak Field Strength (dB μ V/m)	Corrected Average Field Strength (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)

No emissions found within 6 dB of the limit

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Specification Limits

FCC §15.247(d) and RSS-210 §A8.5 In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

FCC §15.247(d)

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section §15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(a)).

IC RSS-210 §A8.5 If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under section A8.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Tables 2 and 3 is not required. In addition, radiated emissions which fall in the restricted bands of Table 1 must also comply with the radiated emission limits specified in Tables 2 and 3.

IC RSS-Gen §4.7

The search for unwanted emissions shall be from the lowest frequency internally generated or used in the device (local oscillator, intermediate of carrier frequency), or from 30 MHz, whichever is the lowest frequency, to the 5th harmonic of the highest frequency generated without exceeding 40 GHz.

FCC §15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

FCC §15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

FCC §15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

Title: WhereWand II Adapter
To: FCC 47 CFR Part 15.247 & IC RSS-210
Serial #: ETSD04-A2 Rev A
Issue Date: 26th June '07
Page: 44 of 58

Frequency (MHz)	Field Strength (μ V/m)	Field Strength (dB μ V/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

Laboratory Measurement Uncertainty for Radiated Emissions

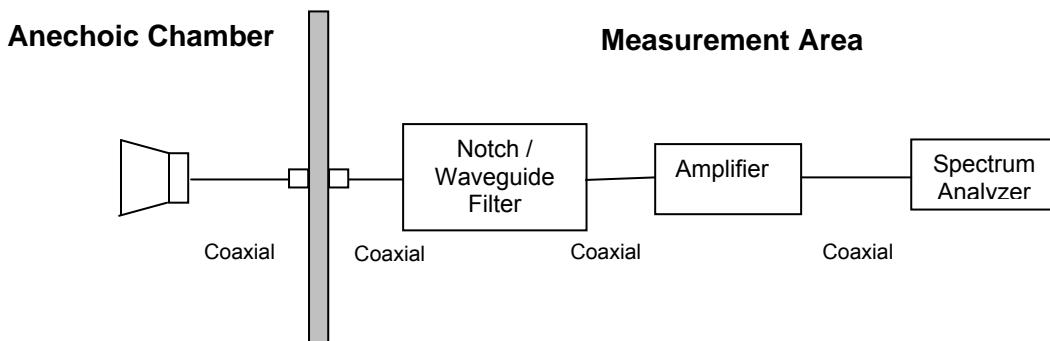
Measurement uncertainty	+5.6/ -4.5 dB
-------------------------	---------------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-03 'Measurement of Radiated Emissions'	0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5.1.5.2. Receiver Radiated Spurious Emissions (above 1 GHz)


Industry Canada RSS-Gen §4.8, §6

Test Procedure

Radiated emissions above 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter and waveguide filter was used to remove the fundamental frequency. The highest emissions relative to the limit are listed for each frequency spanned.

All measurements on any frequency or frequencies over 1 MHz are based on the use of measurement instrumentation employing an average detector function. All measurements above 1 GHz were performed using a minimum resolution bandwidth of 1 MHz.

Test Measurement Set up

Measurement set up for Radiated Emission Test

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

$$FS = R + AF + CORR - FO$$

where: FS = Field Strength

R = Measured Spectrum analyzer Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL - AG + NFL

CL = Cable Loss

AG = Amplifier Gain

FO = Distance Falloff Factor

NFL = Notch Filter Loss or Waveguide Loss

Title: WhereWand II Adapter
To: FCC 47 CFR Part 15.247 & IC RSS-210
Serial #: ETSD04-A2 Rev A
Issue Date: 26th June '07
Page: 46 of 58

For example:

Given receiver input reading of 51.5 dB μ V; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength of the measured emission is:

$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 \text{ dB}\mu\text{V/m}$$

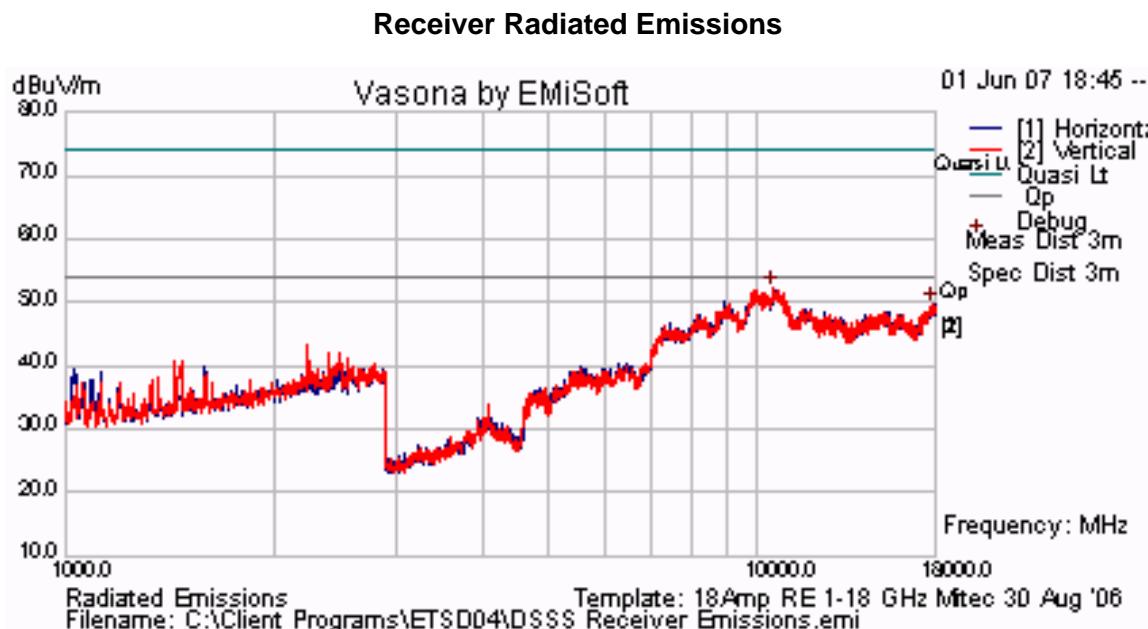
Conversion between dB μ V/m (or dB μ V) and μ V/m (or μ V) are done as:

$$\text{Level (dB}\mu\text{V/m)} = 20 * \text{Log} (\text{level (\mu V/m)})$$

$$40 \text{ dB}\mu\text{V/m} = 100 \mu\text{V/m}$$

$$48 \text{ dB}\mu\text{V/m} = 250 \mu\text{V/m}$$

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


Receiver Radiated Spurious Emissions above 1 GHz

Receiver results cover all variants

TABLE OF RESULTS

Freq. (MHz)	Pol. (H/V)	Corrected Peak Field Strength (dB μ V/m)	Corrected Average Field Strength (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)

No Spurious emissions were found

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: WhereWand II Adapter
To: FCC 47 CFR Part 15.247 & IC RSS-210
Serial #: ETSD04-A2 Rev A
Issue Date: 26th June '07
Page: 48 of 58

Specification

Receiver Radiated Spurious Emissions

Industry Canada RSS-Gen §4.8,

The search for spurious emissions shall be from the lowest frequency internally generated or used in the receiver (e.g. local oscillator, intermediate or carrier frequency), or 30 MHz, whichever is the higher, to at least 3 times the highest tunable or local oscillator frequency, whichever is the higher, without exceeding 40 GHz.

RSS-Gen §6

The following receiver spurious emission limits shall be complied with;

- If a radiated measurement is made, all spurious emissions shall comply with the limits of Table 1.

Frequency (MHz)	Field Strength (μ V/m)	Field Strength (dB μ V/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

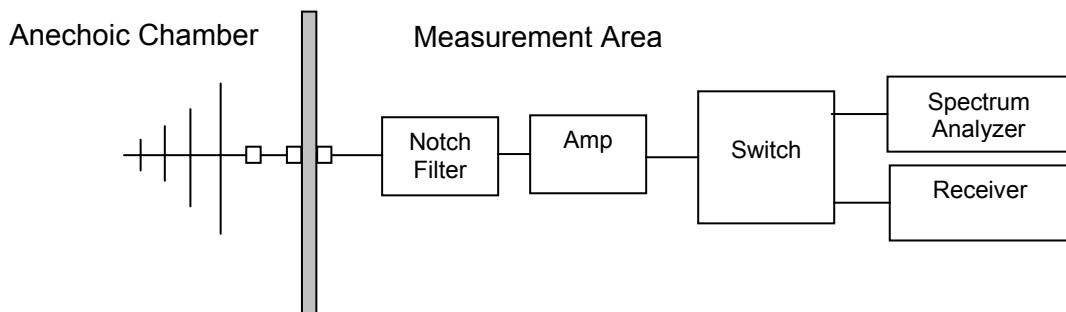
Laboratory Measurement Uncertainty for Radiated Emissions

Measurement uncertainty	+5.6/ -4.5 dB
-------------------------	---------------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-03 'Measurement of Radiated Emissions'	0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


5.1.5.3. Radiated Spurious Emissions (30M-1 GHz)

FCC, Part 15 Subpart C §15.205/ §15.209
Industry Canada RSS-210 §2.2

Test Procedure

Preliminary radiated emissions are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarity. The emissions are recorded with a spectrum analyzer in peak hold mode. Emissions closest to the limits are measured in the quasi-peak mode. Only the highest emissions relative to the limit are listed.

Test Measurement Set up

The product was initially tested to find worst case orientation for the maximization of spurious emissions. Worst case orientation was used for all emission testing.

Title: WhereWand II Adapter
To: FCC 47 CFR Part 15.247 & IC RSS-210
Serial #: ETSD04-A2 Rev A
Issue Date: 26th June '07
Page: 50 of 58

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. In this test facility, the Antenna Factor, Cable Loss, and Amplifier Gains are loaded into the Rohde & Schwarz Receiver and the corrected field strength can be read directly on the receiver.

$$FS = R + AF + CORR$$

where:

FS = Field Strength

R = Measured Receiver Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL – AG + NFL

CL = Cable Loss

AG = Amplifier Gain

For example:

Given a Receiver input reading of 51.5dB μ V; Antenna Factor of 8.5dB; Cable Loss of 1.3dB; Falloff Factor of 0dB, an Amplifier Gain of 26dB and Notch Filter Loss of 1dB. The Field Strength of the measured emission is:

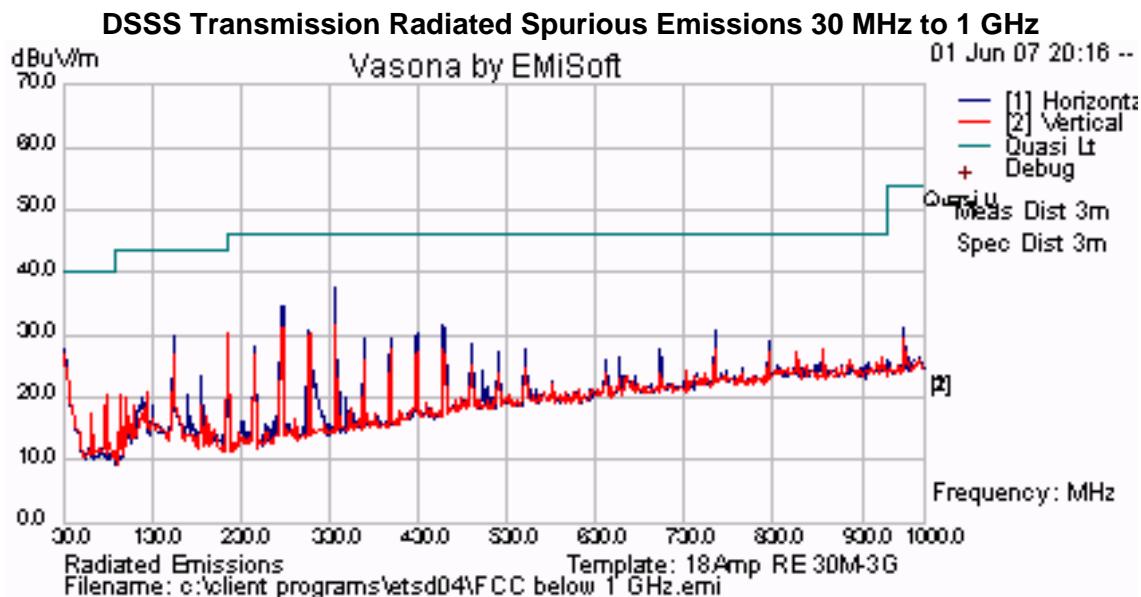
$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3\text{dB}\mu\text{V/m}$$

Conversion between dB μ V/m (or dB μ V) and μ V/m (or μ V) are done as:

$$\text{Level (dB}\mu\text{V/m)} = 20 * \text{Log} (\text{level (}\mu\text{V/m)})$$

$$40 \text{ dB}\mu\text{V/m} = 100\mu\text{V/m}$$

$$48 \text{ dB}\mu\text{V/m} = 250\mu\text{V/m}$$


Measurement Results for Spurious Emissions (30 MHz – 1 GHz)

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

TABLE OF RESULTS

Freq. (MHz)	Peak (dBuV/m)	QP (dBuV/m)	QP Lmt (dBuV/m)	QP Margin (dB)	Angle (deg)	Height (cm)	Polarity

No emissions were found within 6 dB of the limit

Title: WhereWand II Adapter
To: FCC 47 CFR Part 15.247 & IC RSS-210
Serial #: ETSD04-A2 Rev A
Issue Date: 26th June '07
Page: 52 of 58

Specification

Limits

§15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

§15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

§15.209 (a) and RSS-Gen §2.2 Limit Matrix

Frequency(MHz)	Field Strength (μ V/m)	Field Strength (dB μ V/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

Laboratory Measurement Uncertainty for Radiated Emissions

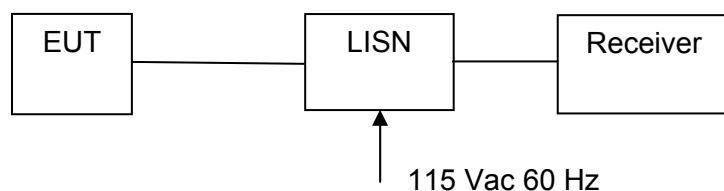
Measurement uncertainty	+5.6/ -4.5 dB
-------------------------	---------------

Traceability

Method	Test Equipment Used
Measurements were made per Sanmina work instruction	8546A HP Receiver and RF Filter, HP Pre-amp, Antenna EMCO Biconilog

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5.1.6. AC Wireline Conducted Emissions (150 kHz – 30 MHz)


FCC, Part 15 Subpart C §15.207
Industry Canada RSS-Gen §7.2.2

Test Procedure

The EUT is configured in accordance with ANSI C63.4. The conducted emissions are measured in a shielded room with a spectrum analyzer in peak hold in the first instance. Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation. The highest emissions relative to the limit are listed.

All six transmitters were operational and terminated in a 50Ω load.

Test Measurement Set up

Measurement set up for AC Wireline Conducted Emissions Test

Measurement Results for AC Wireline Conducted Emissions (150 kHz – 30 MHz)

No test required the device was battery operated

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Specification

Limit

§15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 $\mu\Omega$ line impedance stabilization network (LISN), see §15.207 (a) matrix below. Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

RSS-Gen §7.2.2

The radio frequency voltage that is conducted back into the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table below. The tighter limit applies at the frequency range boundaries.

§15.207 (a) and RSS-Gen §7.2.2 Limit Matrix

The lower limit applies at the boundary between frequency ranges

Frequency of Emission (MHz)	Conducted Limit (dB μ V)	
	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

* Decreases with the logarithm of the frequency

Laboratory Measurement Uncertainty for Conducted Emissions

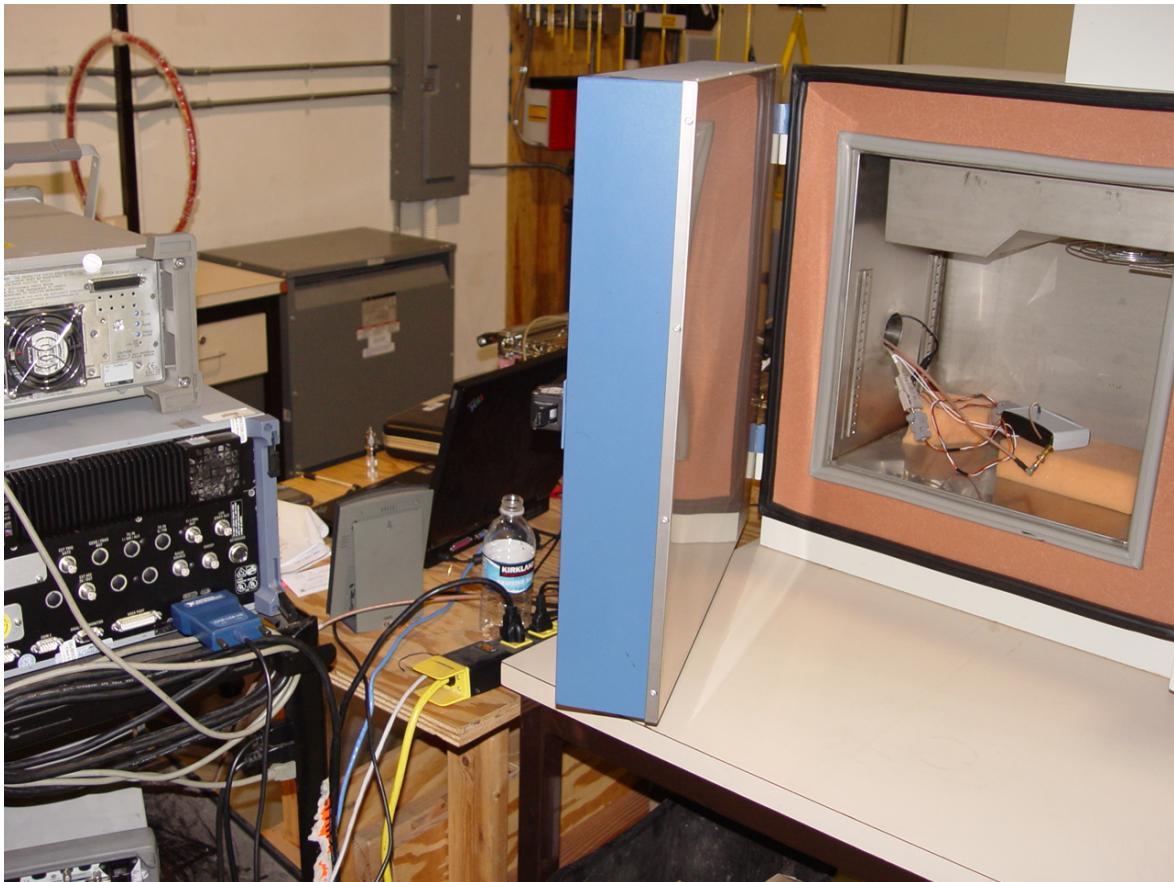
Measurement uncertainty	± 2.64 dB
-------------------------	---------------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-EMC-01 'Measurement of Conducted Emissions'	0158, 0184, 0193, 0190, 0293, 0307

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6. PHOTOGRAPHS


6.1. Radiated Emissions (above 1 GHz)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6.2. General Measurement Test Set-Up

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: WhereWand II Adapter
To: FCC 47 CFR Part 15.247 & IC RSS-210
Serial #: ETSD04-A2 Rev A
Issue Date: 26th June '07
Page: 57 of 58

7. TEST EQUIPMENT DETAILS

Asset #	Instrument	Manufacturer	Part #	Serial #
0088	Spectrum Analyzer	Hewlett Packard	8564E	3410A00141
0104	1-18GHz Horn Antenna	The Electro-Mechanics Company	3115	9205-3882
0134	Amplifier	Com Power	PA 122	181910
0158	Barometer /Thermometer	Control Co.	4196	E2846
0193	EMI Receiver	Rhode & Schwartz	ESI 7	838496/007
0252	SMA Cable	Megaphase	Sucoflex 104	None
0304	2.4GHzHz Notch Filter	Micro-Tronics	--	001
0310	2m SMA Cable	Micro-Coax	UFA210A-0-0787-3G03G0	209089-001
0312	3m SMA Cable	Micro-Coax	UFA210A-1-1181-3G0300	209092-001
0313	Coupler	Hewlett Packard	86205A	3140A01285
0314	30dB N-Type Attenuator	ARRA	N9444-30	1623
0070	Power Meter	Hewlett Packard	437B	3125U11552
0116	Power Sensor	Hewlett Packard	8485A	3318A19694
0117	Power Sensor	Hewlett Packard	8487D	3318A00371
0184	Pulse Limiter	Rhode & Schwartz	ESH3Z2	357.8810.52
0190	LISN	Rhode & Schwartz	ESH3Z5	836679/006
0293	BNC Cable	Megaphase	1689 1GVT4	15F50B001
0307	BNC Cable	Megaphase	1689 1GVT4	15F50B002

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

400 Boulder Court, Suite 200
Pleasanton, CA 94566, USA
Tel: 1.925.462.0304
Fax: 1.925.462.0306
www.micomlabs.com