


# ENGINEERING TEST REPORT



## PATROL SUITE PMD Model No.: PMD09 FCC ID: NSNPMDO9

*Applicant:*

**G4S Justice Services Canada, Inc.**  
#103 – 6592, 176 Street  
Surrey, BC  
Canada V3S 4G5

*In Accordance With*

**Federal Communications Commission (FCC)**  
**Part 15, Subpart C, Section 15.247**  
**Frequency Hopping System**  
**Operating in 2402-2480 MHz Band**

**UltraTech's File No.: G4S-006F15C247**

This Test report is Issued under the Authority of  
Tri M. Luu, Professional Engineer,  
Vice President of Engineering  
UltraTech Group of Labs

Date: May 29, 2009



Report Prepared by: JaeWook Choi

Tested by: Hung Trinh, RFI Technician

Issued Date: May 29, 2009

Test Dates: May 14, 2009

- The results in this Test Report apply only to the sample(s) tested, and the sample tested is randomly selected.
- This report must not be used by the client to claim product endorsement by NVLAP or any agency of the US Government.

## UltraTech Group of Labs

3000 Bristol Circle, Oakville, Ontario, Canada, L6H 6G4  
Tel.: (905) 829-1570 Fax.: (905) 829-8050  
Website: [www.ultratech-labs.com](http://www.ultratech-labs.com) , Email: [vic@ultratech-labs.com](mailto:vic@ultratech-labs.com) , Email: [tri@ultratech-labs.com](mailto:tri@ultratech-labs.com)



0685

91038

1309

46390-2049

200093-0 SL2-IN-E-1119R

CA2049

## TABLE OF CONTENTS

|                                                                                                |           |
|------------------------------------------------------------------------------------------------|-----------|
| <b>EXHIBIT 1. INTRODUCTION .....</b>                                                           | <b>1</b>  |
| 1.1. SCOPE.....                                                                                | 1         |
| 1.2. RELATED SUBMITTAL(S)/GRANT(S).....                                                        | 1         |
| 1.3. NORMATIVE REFERENCES .....                                                                | 1         |
| <b>EXHIBIT 2. PERFORMANCE ASSESSMENT .....</b>                                                 | <b>2</b>  |
| 2.1. CLIENT INFORMATION .....                                                                  | 2         |
| 2.2. EQUIPMENT UNDER TEST (EUT) INFORMATION .....                                              | 2         |
| 2.3. EUT'S TECHNICAL SPECIFICATIONS .....                                                      | 3         |
| 2.4. LIST OF EUT'S PORTS.....                                                                  | 3         |
| 2.5. ANCILLARY EQUIPMENT .....                                                                 | 4         |
| <b>EXHIBIT 3. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS .....</b>               | <b>5</b>  |
| 3.1. CLIMATE TEST CONDITIONS .....                                                             | 5         |
| 3.2. OPEOPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS .....                              | 5         |
| <b>EXHIBIT 4. SUMMARY OF TEST RESULTS .....</b>                                                | <b>6</b>  |
| 4.1. LOCATION OF TESTS .....                                                                   | 6         |
| 4.2. APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS .....                                | 6         |
| 4.3. MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES .....                       | 6         |
| <b>EXHIBIT 5. MEASUREMENTS, EXAMINATIONS &amp; TEST DATA FOR EMC EMISSIONS.....</b>            | <b>7</b>  |
| 5.1. TEST PROCEDURES .....                                                                     | 7         |
| 5.2. MEASUREMENT UNCERTAINTIES.....                                                            | 7         |
| 5.3. MEASUREMENT EQUIPMENT USED .....                                                          | 7         |
| 5.4. ESSENTIAL/PRIMARY FUNCTIONS AS DECLARED BY THE MANUFACTURER .....                         | 7         |
| 5.5. TRANSMITTER SPURIOUS RADIATED EMISSIONS AT 3 METERS [§§ 15.247(D), 15.209 & 15.205] ..... | 8         |
| <b>EXHIBIT 6. MEASUREMENT UNCERTAINTY.....</b>                                                 | <b>13</b> |
| 6.1. LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY .....                                     | 13        |
| 6.2. RADIATED EMISSION MEASUREMENT UNCERTAINTY .....                                           | 14        |

## EXHIBIT 1. INTRODUCTION

### 1.1. SCOPE

|                                      |                                                                                                                                                                                                                                                                                                              |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Reference:</b>                    | FCC Part 15, Subpart C, Section 15.247                                                                                                                                                                                                                                                                       |
| <b>Title:</b>                        | Code of Federal Regulations (CFR), Title 47 – Telecommunication, Part 15                                                                                                                                                                                                                                     |
| <b>Purpose of Test:</b>              | Equipment Certification for Frequency Hopping System Transmitter Operating in the Frequency Band 2400-2483.5 MHz                                                                                                                                                                                             |
| <b>Test Procedures:</b>              | Both conducted and radiated emissions measurements were conducted in accordance with American National Standards Institute ANSI C63.4 - American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz. |
| <b>Environmental Classification:</b> | <input checked="" type="checkbox"/> Commercial, industrial or business environment<br><input type="checkbox"/> Residential environment                                                                                                                                                                       |

### 1.2. RELATED SUBMITTAL(S)/GRANT(S)

None.

### 1.3. NORMATIVE REFERENCES

| Publication                | Year                 | Title                                                                                                                                                               |
|----------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 47 CFR Parts 0-19          | 2008                 | Code of Federal Regulations – Telecommunication                                                                                                                     |
| ANSI C63.4                 | 2003                 | American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz |
| CISPR 22 & EN 55022        | 2006                 | Information Technology Equipment - Radio Disturbance Characteristics – Limits and Methods of Measurement                                                            |
| CISPR 16-1-1<br>+A1<br>+A2 | 2006<br>2006<br>2007 | Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-1: Measuring Apparatus                                                     |
| CISPR 16-1-2<br>+A1<br>+A2 | 2003<br>2004<br>2006 | Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-2: Conducted disturbances                                                  |
| KDB Publication No. 558074 | 2005                 | Guidance on Measurements for Digital Transmission Systems (47 CFR 15.247)                                                                                           |
| KDB Publication No. 447498 | 2008                 | Mobile and Portable Device RF Exposure Procedure and Equipment Authorization Policies                                                                               |

## EXHIBIT 2. PERFORMANCE ASSESSMENT

### 2.1. CLIENT INFORMATION

| APPLICANT              |                                                                                                                                                             |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Name:</b>           | G4S Justice Services Canada, Inc.                                                                                                                           |
| <b>Address:</b>        | #103 – 6592, 176 Street<br>Surrey, BC<br>Canada V3S 4G5                                                                                                     |
| <b>Contact Person:</b> | Mr. Harv Hundal<br>Phone #: (604)576-8658 x238<br>Fax #: (604)576-0436<br>Email Address: <a href="mailto:harv.hundal@ca-g4s.com">harv.hundal@ca-g4s.com</a> |

| MANUFACTURER           |                                                                                                                                                             |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Name:</b>           | G4S Justice Services Canada, Inc.                                                                                                                           |
| <b>Address:</b>        | #103 – 6592, 176 Street<br>Surrey, BC<br>Canada V3S 4G5                                                                                                     |
| <b>Contact Person:</b> | Mr. Harv Hundal<br>Phone #: (604)576-8658 x238<br>Fax #: (604)576-0436<br>Email Address: <a href="mailto:harv.hundal@ca-g4s.com">harv.hundal@ca-g4s.com</a> |

### 2.2. EQUIPMENT UNDER TEST (EUT) INFORMATION

The following information (with the exception of the Date of Receipt) has been supplied by the applicant.

|                                       |                                                                                                                                                                                                       |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Brand Name</b>                     | G4S Justice Services Canada, Inc.                                                                                                                                                                     |
| <b>Product Name:</b>                  | PATROL SUITE PMD                                                                                                                                                                                      |
| <b>Model Name or Number:</b>          | PMD09                                                                                                                                                                                                 |
| <b>Serial Number:</b>                 | Test Sample                                                                                                                                                                                           |
| <b>Type of Equipment:</b>             | Remote Control/Security Device Transceiver                                                                                                                                                            |
| <b>Input Power Supply Type:</b>       | 5 VDC $\pm$ 0.25V, 500 mA max via USB                                                                                                                                                                 |
| <b>Primary User Functions of EUT:</b> | Used to remotely monitor presence and status of a PTX device worn by an offender, and to view the status information on a Bluetooth enabled PDA device. The PMD is also used to wake up a PTX device. |

## 2.3. EUT'S TECHNICAL SPECIFICATIONS

| BLUETOOTH TRANSMITTER                  |                                                                                                               |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------|
| <b>Equipment Type:</b>                 | Portable                                                                                                      |
| <b>Intended Operating Environment:</b> | Commercial, industrial or business environment                                                                |
| <b>RF Output Power Rating:</b>         | 1.63 mW                                                                                                       |
| <b>Operating Frequency Range:</b>      | 2402-2480 MHz                                                                                                 |
| <b>Duty Cycle:</b>                     | 5.39 %                                                                                                        |
| <b>20 dB Bandwidth:</b>                | 1023 kHz                                                                                                      |
| <b>Modulation Type:</b>                | G1D                                                                                                           |
| <b>Antenna Connector Type:</b>         | Integral antenna housed inside the enclosure.                                                                 |
| <b>Antenna Description:</b>            | Manufacturer: n/a<br>Type Chip antenna mounted on PCB<br>Model n/a<br>Gain: -1.48 dBi<br>Frequency Range: n/a |

## 2.4. LIST OF EUT'S PORTS

| Port Number | EUT's Port Description   | Number of Identical Ports | Connector Type | Cable Type (Shielded/Non-shielded) |
|-------------|--------------------------|---------------------------|----------------|------------------------------------|
| 1           | USB Power, changing only | 1                         | MicroUSB B     | Shielded                           |

## 2.5. ANCILLARY EQUIPMENT

The EUT was tested while connected to the following representative configuration of ancillary equipment necessary to exercise the ports during tests:

| Ancillary Equipment # 1  |                        |
|--------------------------|------------------------|
| Description:             | Switching Power Supply |
| Brand Name:              | Phihong                |
| Model Name or Number:    | PSB05R-050Q            |
| Serial Number:           | N/A                    |
| Cable Length & Type:     | < 3 m, Non-shielded    |
| Connected to EUT's Port: | USB                    |

## EXHIBIT 3. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS

### 3.1. CLIMATE TEST CONDITIONS

The climate conditions of the test environment are as follows:

|              |         |
|--------------|---------|
| Temperature: | 21°C    |
| Humidity:    | 51%     |
| Pressure:    | 102 kPa |

### 3.2. OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS

|                                  |                                                                                                                             |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| <b>Operating Modes:</b>          | For testing purpose only, the EUT was set to transmit continuously by setting the unit into the 1 <sup>st</sup> test state. |
| <b>Special Test Software:</b>    | None.                                                                                                                       |
| <b>Special Hardware Used:</b>    | None.                                                                                                                       |
| <b>Transmitter Test Antenna:</b> | The EUT is tested with the antenna fitted in a manner typical of normal intended use as integral antenna equipment.         |

| Transmitter Test Signals         |               |
|----------------------------------|---------------|
| <b>Frequency Band(s):</b>        | 2402-2480 MHz |
| <b>RF Power Output:</b>          | 1.63 mW       |
| <b>Normal Test Modulation:</b>   | Bluetooth     |
| <b>Modulating Signal Source:</b> | Internal      |

## EXHIBIT 4. SUMMARY OF TEST RESULTS

### 4.1. LOCATION OF TESTS

All of the measurements described in this report were performed at Ultratech Group of Labs located in the city of Oakville, Province of Ontario, Canada.

AC Power Line Conducted Emissions were performed in UltraTech's shielded room, 24'(L) by 16'(W) by 8'(H).

Radiated Emissions were performed at the Ultratech's 3-10 TDK Semi-Anechoic Chamber situated in the Town of Oakville, province of Ontario. This test site been calibrated in accordance with ANSI C63.4, and found to be in compliance with the requirements of Sec. 2.948 of the FCC Rules. The descriptions and site measurement data of the Oakville 3-10 TDK Semi-Anechoic Chamber has been filed with FCC office (FCC File No.: 91038) and Industry Canada office (Industry Canada File No.: 2049A-3). Expiry Date: 2011-05-01.

### 4.2. APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS

| FCC Section(s)             | Test Requirements                                                                 | Compliance (Yes/No)                   |
|----------------------------|-----------------------------------------------------------------------------------|---------------------------------------|
| 2.1093                     | Radiofrequency radiation exposure evaluation: portable devices                    | Yes, see attached RF exposure exhibit |
| 15.203                     | Antenna requirements                                                              | Yes*                                  |
| 15.207(a)                  | Power Line Conducted Emissions                                                    | Yes**                                 |
| 15.247(a)(1)               | Hopping Frequency Separation                                                      | Yes*** (§ 7.1..2)                     |
| 15.247(a)(1)(iii)          | Number of Hopping Channels and Average Time of Occupancy                          | Yes *** (§§ 7.1..3 & 7.1.4)           |
| 15.247(b)(1)               | Peak Output Power                                                                 | Yes *** (§7.1.5)                      |
| 15.247(c)                  | Band-Edge and RF Conducted Spurious Emissions at the Transmitter Antenna Terminal | Yes *** (§7.1.9)                      |
| 15.247(d) & 15.247(f)      | Peak Power Spectral Density                                                       | Yes *** (§7.1.8)                      |
| 15.247(d), 15.209 & 15.205 | Transmitter Spurious Radiated Emissions                                           | Yes****                               |

**PATROL SUITE PMD, Model No.: PMD09**, by **G4S Justice Service Canada, Inc** has also been tested and found to comply with **FCC Part 15, Subpart B - Class B Digital Devices**. The engineering test report has been documented and kept on file and it is available upon request.

\* This device has integral antenna permanently mounted on the PCB.

\*\* The power line conducted emission test results are incorporated in the § 15.225 report of this filing.

\*\*\*Refer to the attached original test report for the Bluetooth module (FCC ID: ED9LMX9838, M/N: LMX9838SB).

\*\*\*\*Simultaneous transmitters' radiated emissions was checked and verified to be compliant.

### 4.3. MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES

None.

---

#### ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: [vic@ultratech-labs.com](mailto:vic@ultratech-labs.com), Website: <http://www.ultratech-labs.com>

File #: G4S-006F15C247

May 29, 2009

## **EXHIBIT 5. MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS**

### **5.1. TEST PROCEDURES**

This section contains test results only. Details of test methods and procedures can be found in ANSI C63.4; FCC KDB Publication No. 558074: Guidance on Measurements for Digital Transmission Systems.

### **5.2. MEASUREMENT UNCERTAINTIES**

The measurement uncertainties stated were calculated in accordance with requirements of UKAS Document NIS 81 with a confidence level of 95%. Please refer to EXHIBIT 6. for Measurement Uncertainties.

### **5.3. MEASUREMENT EQUIPMENT USED**

The measurement equipment used complied with the requirements of the Standards referenced in the Methods & Procedures ANSI C63.4 and CISPR 16-1-1.

### **5.4. ESSENTIAL/PRIMARY FUNCTIONS AS DECLARED BY THE MANUFACTURER**

To remotely monitor presence and status of a PTX device worn by an offender, and to view the status information on a Bluetooth enabled PDA device. The PMD is also used to wake up a PTX device.

## 5.5. TRANSMITTER SPURIOUS RADIATED EMISSIONS AT 3 METERS [§§ 15.247(d), 15.209 & 15.205]

### 5.5.1. Limit(s)

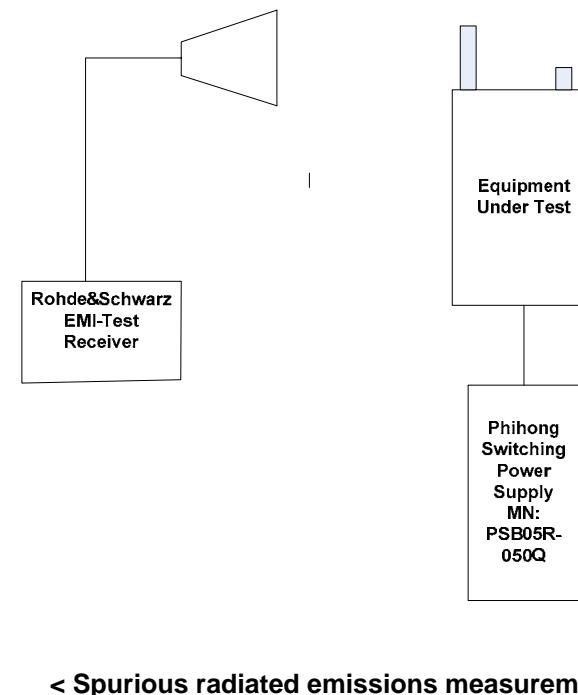
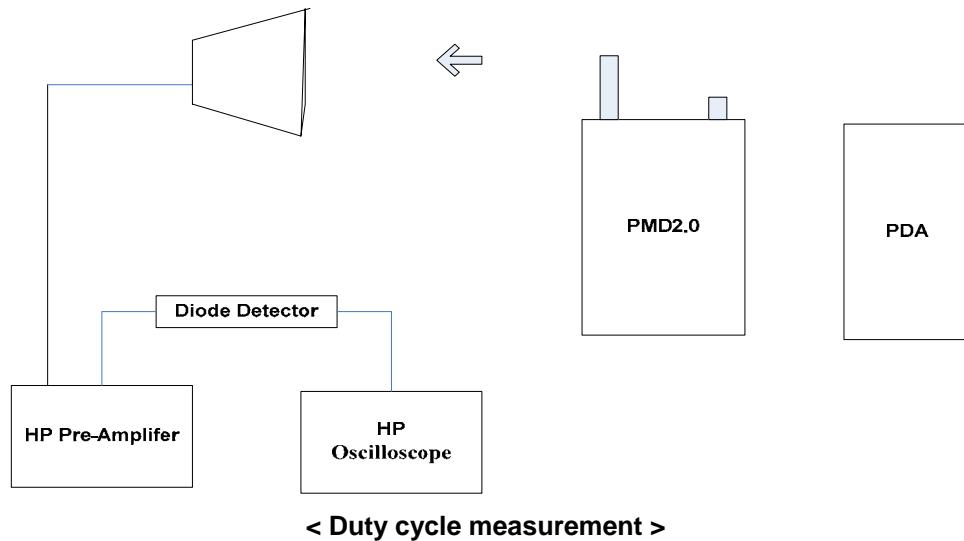
§ 15.247 (d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

### Section 15.205(a) - Restricted Bands of Operation

| MHz                            | MHz                 | MHz           | GHz              |
|--------------------------------|---------------------|---------------|------------------|
| 0.090–0.110 .....              | 16.42–16.423        | 399.9–410     | 4.5–5.15         |
| <sup>1</sup> 0.495–0.505 ..... | 16.69475–16.69525   | 608–614       | 5.35–5.46        |
| 2.1735–2.1905 .....            | 16.80425–16.80475   | 960–1240      | 7.25–7.75        |
| 4.125–4.128 .....              | 25.5–25.67          | 1300–1427     | 8.025–8.5        |
| 4.17725–4.17775 .....          | 37.5–38.25          | 1435–1626.5   | 9.0–9.2          |
| 4.20725–4.20775 .....          | 73–74.6             | 1645.5–1646.5 | 9.3–9.5          |
| 6.215–6.218 .....              | 74.8–75.2           | 1660–1710     | 10.6–12.7        |
| 6.26775–6.26825 .....          | 108–121.94          | 1718.8–1722.2 | 13.25–13.4       |
| 6.31175–6.31225 .....          | 123–138             | 2200–2300     | 14.47–14.5       |
| 8.291–8.294 .....              | 149.9–150.05        | 2310–2390     | 15.35–16.2       |
| 8.362–8.366 .....              | 156.52475–156.52525 | 2483.5–2500   | 17.7–21.4        |
| 8.37625–8.38675 .....          | 156.7–156.9         | 2655–2900     | 22.01–23.12      |
| 8.41425–8.41475 .....          | 162.0125–167.17     | 3260–3267     | 23.6–24.0        |
| 12.29–12.293 .....             | 167.72–173.2        | 3332–3339     | 31.2–31.8        |
| 12.51975–12.52025 .....        | 240–285             | 3345.8–3358   | 36.43–36.5       |
| 12.57675–12.57725 .....        | 322–335.4           | 3600–4400     | ( <sup>2</sup> ) |
| 13.36–13.41.                   |                     |               |                  |

<sup>1</sup>Until February 1, 1999, this restricted band shall be 0.490–0.510 MHz.

<sup>2</sup>Above 38.6



### Section 15.209(a) -- Field Strength Limits within Restricted Frequency Bands --

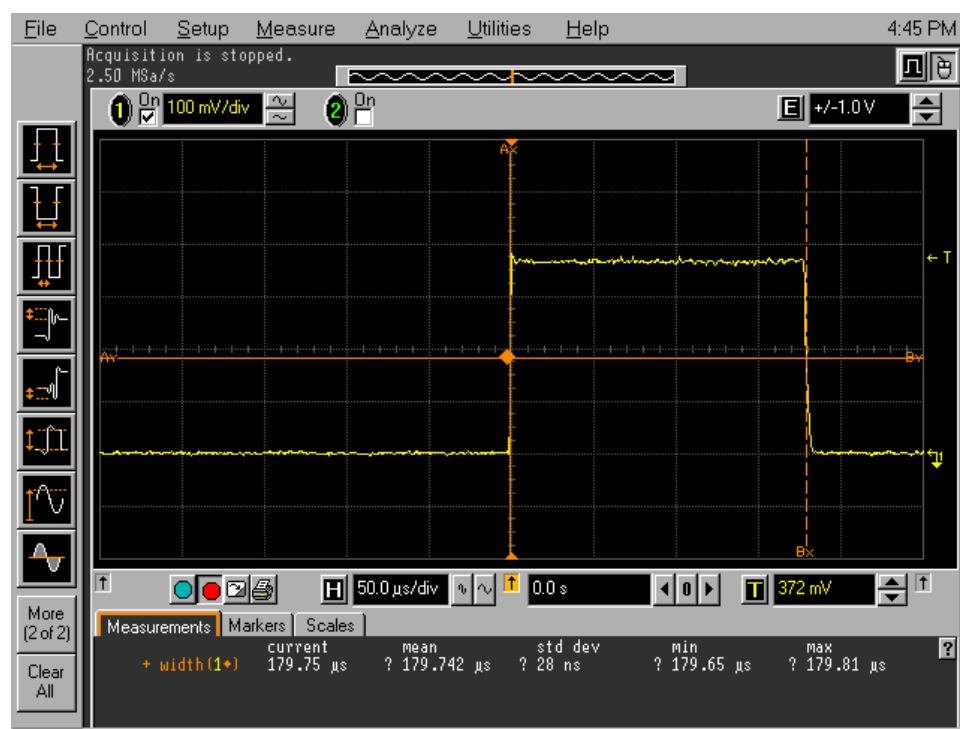
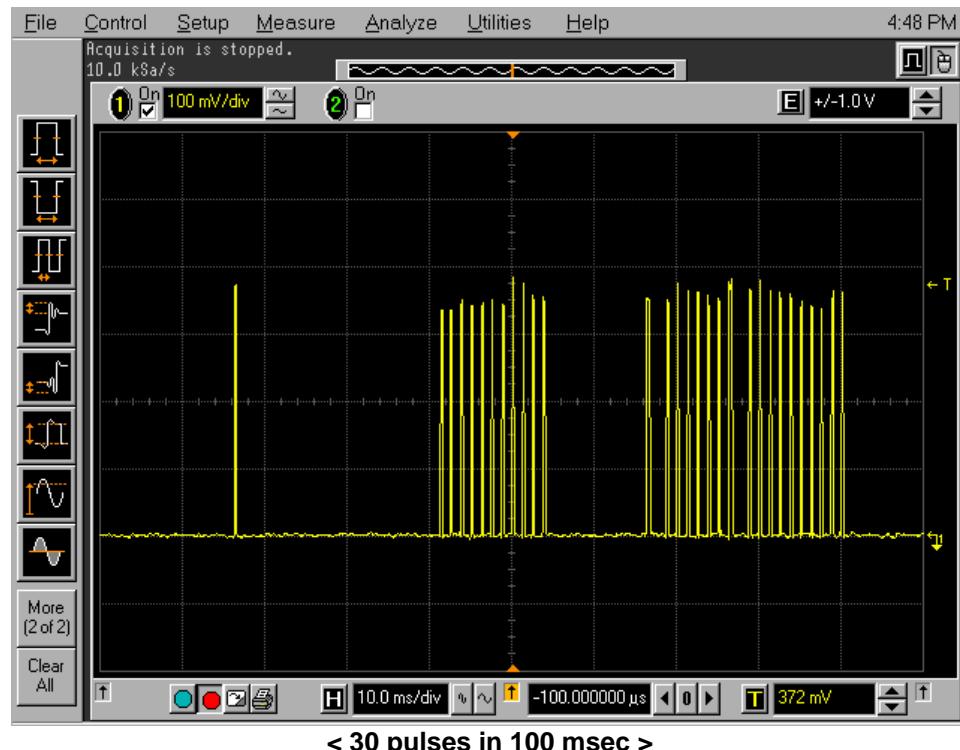
| Frequency (MHz) | Field Strength (microvolts/meter) | Measurement Distance (meters) |
|-----------------|-----------------------------------|-------------------------------|
| 0.009 - 0.490   | 2,400 / F (kHz)                   | 300                           |
| 0.490 - 1.705   | 24,000 / F (kHz)                  | 30                            |
| 1.705 - 30.0    | 30                                | 30                            |
| 30 – 88         | 100                               | 3                             |
| 88 – 216        | 150                               | 3                             |
| 216 – 960       | 200                               | 3                             |
| Above 960       | 500                               | 3                             |

### 5.5.2. Method of Measurements

KDB Publication No. 558074: Guidance on Measurements for Digital Transmission Systems (47 CFR 15.247)

### 5.5.3. Test Arrangement





#### 5.5.4. Test Equipment List

| Test Instruments  | Manufacturer    | Model No. | Serial No. | Frequency Range     |
|-------------------|-----------------|-----------|------------|---------------------|
| Spectrum Analyzer | Rhode & Schwarz | FSEK30    | 100077     | 20 Hz - 40 GHz      |
| RF Amplifier      | Hewlett Packard | 8447F     | 2944A04098 | 0.1 - 1300 MHz      |
| RF Amplifier      | Hewlett Packard | 8449B     | 3008A00769 | 1 - 26.5 GHz        |
| Biconilog antenna | EMCO            | 3142C     | 34792      | 26 - 3000 MHz       |
| Diode Detector    | NARDA           | 503A-03   | 0105       | 0.01 - 18 GHz       |
| Horn Antenna      | EMCO            | 3155      | 6570       | 1 - 18 GHz          |
| Horn Antenna      | EMCO            | 3160-09   | 1007       | 18 - 26.5 GHz       |
| Horn Antenna      | EMCO            | 3160-10   | 1001       | 26.5 - 40 GHz       |
| Oscilloscope      | Hewlett Packard | 54810A    | US38380192 | 500 MHz BW, 1 GSa/s |

#### 5.5.5. Test Data

##### Remarks:

- All spurious emissions that are within 20 dB below the specified limit are recorded below in the table.
- EUT is tested in three orthogonal positions to measure highest emission.
- 5.39 % duty cycle or -25.36 dB duty cycle correction factor was applied.
  - **Duty cycle:**  $30 \times 179.75 \mu\text{sec} = 5392.5 \mu\text{sec} = 5.3925 \text{ msec}$
  - **Duty cycle correction factor:**  $20 \times \log(5.3925 \text{ msec} / 100 \text{ msec}) = -25.36 \text{ dB}$
- Only this transmitter was transmitting during test; however it was checked and confirmed that turning on other two transmitters which made all three transmitters transmit simultaneously did not affect test results.



ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: [vic@ultratech-labs.com](mailto:vic@ultratech-labs.com), Website: <http://www.ultratech-labs.com>

File #: G4S-006F15C247

May 29, 2009

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

|                        |                 |  |  |  |  |  |  |
|------------------------|-----------------|--|--|--|--|--|--|
| Fundamental Frequency: | 2402 MHz        |  |  |  |  |  |  |
| Test Frequency Range:  | 30 MHz – 25 GHz |  |  |  |  |  |  |

| Frequency<br>(MHz) | RF<br>Peak Level<br>(dB $\mu$ V/m) | RF<br>Avg Level<br>(dB $\mu$ V/m) | Antenna<br>Plane<br>(H/V) | Limit<br>15.209<br>(dB $\mu$ V/m) | Limit<br>15.247<br>(dB $\mu$ V/m) | Margin<br>(dB) | Pass/<br>Fail |
|--------------------|------------------------------------|-----------------------------------|---------------------------|-----------------------------------|-----------------------------------|----------------|---------------|
| 2402               | 96.01                              | --                                | V                         | --                                | --                                | --             | --            |
| 2402               | 97.79                              | --                                | H                         | --                                | --                                | --             | --            |
| 4804*              | 58.15                              | 32.79                             | V                         | 54                                | 77.79                             | -21.21         | Pass          |
| 4804*              | 59.43                              | 34.07                             | H                         | 54                                | 77.79                             | -19.93         | Pass          |

|                        |                 |  |  |  |  |  |  |
|------------------------|-----------------|--|--|--|--|--|--|
| Fundamental Frequency: | 2437 MHz        |  |  |  |  |  |  |
| Test Frequency Range:  | 30 MHz – 25 GHz |  |  |  |  |  |  |

| Frequency<br>(MHz) | RF<br>Peak Level<br>(dB $\mu$ V/m) | RF<br>Avg Level<br>(dB $\mu$ V/m) | Antenna<br>Plane<br>(H/V) | Limit<br>15.209<br>(dB $\mu$ V/m) | Limit<br>15.247<br>(dB $\mu$ V/m) | Margin<br>(dB) | Pass/<br>Fail |
|--------------------|------------------------------------|-----------------------------------|---------------------------|-----------------------------------|-----------------------------------|----------------|---------------|
| 2437               | 93.81                              | --                                | V                         | --                                | --                                | --             | --            |
| 2437               | 96.75                              | --                                | H                         | --                                | --                                | --             | --            |
| 4882*              | 57.34                              | 31.98                             | V                         | 54                                | 76.75                             | -22.02         | Pass          |
| 4882*              | 59.59                              | 34.23                             | H                         | 54                                | 76.75                             | -19.77         | Pass          |

|                        |                 |  |  |  |  |  |  |
|------------------------|-----------------|--|--|--|--|--|--|
| Fundamental Frequency: | 2480 MHz        |  |  |  |  |  |  |
| Test Frequency Range:  | 30 MHz – 25 GHz |  |  |  |  |  |  |

| Frequency<br>(MHz) | RF<br>Peak Level<br>(dB $\mu$ V/m) | RF<br>Avg Level<br>(dB $\mu$ V/m) | Antenna<br>Plane<br>(H/V) | Limit<br>15.209<br>(dB $\mu$ V/m) | Limit<br>15.247<br>(dB $\mu$ V/m) | Margin<br>(dB) | Pass/<br>Fail |
|--------------------|------------------------------------|-----------------------------------|---------------------------|-----------------------------------|-----------------------------------|----------------|---------------|
| 2480               | 94.52                              | --                                | V                         | --                                | --                                | --             | --            |
| 2480               | 97.48                              | --                                | H                         | --                                | --                                | --             | --            |
| 4960*              | 58.67                              | 33.31                             | V                         | 54                                | 77.48                             | -20.69         | Pass          |
| 4960*              | 58.72                              | 33.36                             | H                         | 54                                | 77.48                             | -20.64         | Pass          |
| 7440*              | 53.50                              | 28.14                             | V                         | 54                                | 77.48                             | -25.86         | Pass          |
| 7440*              | 51.55                              | 26.19                             | H                         | 54                                | 77.48                             | -27.81         | Pass          |
| 9920               | 57.87                              | 32.51                             | V                         | 54                                | 77.48                             | -44.97         | Pass          |
| 9920               | 54.85                              | 29.49                             | H                         | 54                                | 77.48                             | -47.99         | Pass          |

#### ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: [vic@ultratech-labs.com](mailto:vic@ultratech-labs.com), Website: <http://www.ultratech-labs.com>

File #: G4S-006F15C247

May 29, 2009

## EXHIBIT 6. MEASUREMENT UNCERTAINTY

The measurement uncertainties stated were calculated in accordance with the requirements of NIST Technical Note 1297 and NIS 81 (1994)

### 6.1. LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY

| CONTRIBUTION<br>(Line Conducted)                                                                                                                                        | PROBABILITY<br>DISTRIBUTION | UNCERTAINTY (dB) |             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------|-------------|
|                                                                                                                                                                         |                             | 9-150 kHz        | 0.15-30 MHz |
| EMI Receiver specification                                                                                                                                              | Rectangular                 | $\pm 1.5$        | $\pm 1.5$   |
| LISN coupling specification                                                                                                                                             | Rectangular                 | $\pm 1.5$        | $\pm 1.5$   |
| Cable and Input Transient Limiter calibration                                                                                                                           | Normal (k=2)                | $\pm 0.3$        | $\pm 0.5$   |
| Mismatch: Receiver VRC $\Gamma_1 = 0.03$<br>LISN VRC $\Gamma_R = 0.8(9 \text{ kHz}) 0.2 (30 \text{ MHz})$<br>Uncertainty limits $20\text{Log}(1 \pm \Gamma_1 \Gamma_R)$ | U-Shaped                    | $\pm 0.2$        | $\pm 0.3$   |
| System repeatability                                                                                                                                                    | Std. deviation              | $\pm 0.2$        | $\pm 0.05$  |
| Repeatability of EUT                                                                                                                                                    | --                          | --               | --          |
| Combined standard uncertainty                                                                                                                                           | Normal                      | $\pm 1.25$       | $\pm 1.30$  |
| Expanded uncertainty U                                                                                                                                                  | Normal (k=2)                | $\pm 2.50$       | $\pm 2.60$  |

Sample Calculation for Measurement Accuracy in 450 kHz to 30 MHz Band:

$$u_c(y) = \sqrt{\sum_{i=1}^m u_i^2(y)} = \pm \sqrt{(1.5^2 + 1.5^2)/3 + (0.5/2)^2 + (0.05/2)^2 + 0.35^2} = \pm 1.30 \text{ dB}$$

$$U = 2u_c(y) = \pm 2.6 \text{ dB}$$

## 6.2. RADIATED EMISSION MEASUREMENT UNCERTAINTY

| CONTRIBUTION<br>(Radiated Emissions)                                                                                                            | PROBABILITY<br>DISTRIBUTION | UNCERTAINTY ( $\pm$ dB) |               |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------|---------------|
|                                                                                                                                                 |                             | 3 m                     | 10 m          |
| Antenna Factor Calibration                                                                                                                      | Normal (k=2)                | $\pm 1.0$               | $\pm 1.0$     |
| Cable Loss Calibration                                                                                                                          | Normal (k=2)                | $\pm 0.3$               | $\pm 0.5$     |
| EMI Receiver specification                                                                                                                      | Rectangular                 | $\pm 1.5$               | $\pm 1.5$     |
| Antenna Directivity                                                                                                                             | Rectangular                 | $+0.5$                  | $+0.5$        |
| Antenna factor variation with height                                                                                                            | Rectangular                 | $\pm 2.0$               | $\pm 0.5$     |
| Antenna phase center variation                                                                                                                  | Rectangular                 | 0.0                     | $\pm 0.2$     |
| Antenna factor frequency interpolation                                                                                                          | Rectangular                 | $\pm 0.25$              | $\pm 0.25$    |
| Measurement distance variation                                                                                                                  | Rectangular                 | $\pm 0.6$               | $\pm 0.4$     |
| Site imperfections                                                                                                                              | Rectangular                 | $\pm 2.0$               | $\pm 2.0$     |
| Mismatch: Receiver VRC $\Gamma_1 = 0.2$<br>Antenna VRC $\Gamma_R = 0.67(B_i) 0.3 (L_p)$<br>Uncertainty limits $20\log(1 \pm \Gamma_1 \Gamma_R)$ | U-Shaped                    | +1.1<br>-1.25           | $\pm 0.5$     |
| System repeatability                                                                                                                            | Std. Deviation              | $\pm 0.5$               | $\pm 0.5$     |
| Repeatability of EUT                                                                                                                            |                             | -                       | -             |
| Combined standard uncertainty                                                                                                                   | Normal                      | +2.19 / -2.21           | +1.74 / -1.72 |
| Expanded uncertainty U                                                                                                                          | Normal (k=2)                | +4.38 / -4.42           | +3.48 / -3.44 |

Calculation for maximum uncertainty when 3m biconical antenna including a factor of k = 2 is used:

$$U = 2u_c(y) = 2x(+2.19) = +4.38 \text{ dB} \quad \text{And} \quad U = 2u_c(y) = 2x(-2.21) = -4.42 \text{ dB}$$