Home Wireless Networks Inc. FCC Part 15, Certification Application 95-0002-XXX

December 1, 1998

MEASUREMENT/TECHNICAL REPORT

COMPANY NAME: Home Wireless Networks Inc.

MODEL:	95-0002-XXX			
FCC ID:	NSK0002A			
DATE:	December 1, 1998			
This report concerns (che	This report concerns (check one): Original grant X Class II change			
Equipment type: Sprea	ad Spectrum Transmitter			
Deferred grant requested If yes, defer until: date	per 47 CFR 0.457(d)(1)(ii)? yes No_X_			
-	the Commission by <u>N.A.</u> Date nnouncement of the product so that the grant can be issued			
3505 Francis Alpharetta, C Phone Numb				

TABLE OF CONTENTS

LETTER OF CONFIDENTIALITY

SECTION 1

GENERAL INFORMATION

- 1.1 Product Description
- 1.2 Related Submittal(s)/Grant(s)

SECTION 2

TESTS AND MEASUREMENTS

- 2.1 Configuration of Tested System and Test Procedure
- 2.2 Test Facility
- 2.3 Test Equipment
- 2.4 Modifications
- 2.5 Antenna Description
- 2.6 Peak Power (Antenna Conducted at Antenna Terminal)
- 2.7 Antenna Conducted Spurious Emissions
- 2.8 Peak Radiated Spurious Emissions
- 2.9 Average Radiated Spurious Emissions
- 2.10 Minimum 6 dB Bandwidth
- 2.11 Power Spectral Density
- 2.12 Processing Gain
- 2.13 Power Line Conducted Emissions for Transmitter
- 2.14 Radiated Emissions for Digital Device & Receiver (if Applicable)
- 2.15 Power Line Conducted for Digital Device & Receiver (if Applicable)

SECTION 3

LABELING INFORMATION

SECTION 4

BLOCK DIAGRAM(S)/ SCHEMATIC(S)

SECTION 5

PHOTOGRAPHS

SECTION 6

USER'S MANUAL

LIST OF FIGURES AND TABLES

FIGURES

Test Configuration
Photograph(s) for Spurious and Fundamental Emissions
Photograph(s) for Digital Device Emissions
Photograph(s) for Digital Device Conducted Emissions
Peak Power
Conducted Spurious Emissions
Peak Radiated Spurious Emissions
Average Radiated Spurious Emissions
6 dB Bandwidth
Power Spectral Density

TABLES

EUT and Peripherals
Test Instruments
Peak Power Output
Power Spectral Density
Power Line Conducted Emissions for Transmitter
Radiated Emissions for Digital Device and Receiver
Power Line Conducted Emissions for Digital Device and Receiver

SECTION 1 GENERAL INFORMATION

GENERAL INFORMATION

1.1 Product Description

The Equipment Under Test (EUT) is a Home Wireless Networks, Inc., Model 95-0002-XXX, FCC ID: NSK0002A. The Home Wireless Networks, Inc. Model 95-0002-XXX is a wireless access unit (WAU) with an RJ-11 interface which is designed to allow you to connect analog devices such as standard telephones, modems, fax machines, and answering machines to your Home Wireless Network.

The following is a list of the channels designed into the EUT:

Ohamai	Channel Farming	/Addison
	Channel Frequency	
0		905.728
1		906.240
2		906.752
3		907.264
4		907.776
5		908.288
6		908,800
7		909.312
8		909.824
9		910.336
10		910.848
11		911.360
12		911.872
13		912.384
14		912.896
15		913.408
16		913.920
17		914.432
18		914.944
19		915.456
20		915.968
21		916.480
22		916.992
23		917.504
24		918.016
25		918.528
26		919.040
27		919.552
28		920.064
29		920.576
30		921.088
31		921.600
32		922.112
33		922.624
34		923.136
35		923.648
50		

1.2 Related Submittal(s)/Grant(s)

The EUT will be used with part of a system to send and receive voice and/or data. The transceiver presented in this report will be used with another transceiver which has been submitted under FCC ID: NSK0005A.

The EUT is subject to the following authorizations:

- a) Certification as a transmitter
- b) Verification as a receiver and digital device

The information contained in this report is presented for both the certification & verification authorization(s) of the EUT.

SECTION 2 TESTS AND MEASUREMENTS

TEST AND MEASUREMENTS

2.1 Configuration of Tested System and Test Procedure

The sample was tested per ANSI C63.4, Methods of Measurement from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz (1992). Conducted and radiated emissions data were taken with the test receiver or spectrum analyzer's resolution bandwidth adjusted to 9 kHz and 120 kHz, respectively. All measurements are peak unless stated otherwise. The video filter associated with the spectrum analyzer was off throughout the evaluation process. Interconnecting cables were manipulated as necessary to maximize emissions. A block diagram of the tested system is shown in Figure 1. Test configuration photographs for spurious and fundamental emissions are shown in Figure 2.

The sample used for testing was received by U.S. Technologies on October 27, 1998 in good condition.

2.2 Test Facility

Testing was performed at US Tech's measurement facility at 3505 Francis Circle, Alpharetta, GA. This site has been fully described and submitted to the FCC, and accepted in their letter marked 31040/SIT. Additionally this site has also been fully described and submitted to Industry Canada (IC), and has been approved under file number IC2982.

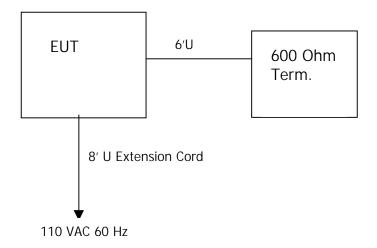

2.3 Test Equipment

Table 2 describes test equipment used to evaluate this product.

2.4 Modifications

No modifications were made by US Tech to bring the EUT into compliance with FCC Part 15, Class B limits for the transmitter portion of the EUT or the Class B limits for the Digital Device Requirements.

FIGURE 1
TEST CONFIGURATION

Test Date: October 29, 1998 & November 2, 1998

UST Project: 98-588

Customer: Home Wireless Networks, Inc.

Model: 95-0002-XXX

FIGURE 2a

Photograph(s) for Spurious and Fundamental Emissions (Front)

Test Date: October 29, 1998 & November 2, 1998

UST Project: 98-588

Customer: Home Wireless Networks, Inc.

Model: 95-0002-XXX

FIGURE 2b

Photograph(s) for Spurious and Fundamental Emissions (Back)

Test Date: November 2, 1998 & November 3, 1998

UST Project: 98-588

Customer: Home Wireless Networks, Inc.

Model: 95-0002-XXX

FIGURE 2c

Photograph(s) for Digital Device Emissions (Front)

Test Date: November 2, 1998 & November 3, 1998

UST Project: 98-588

Customer: Home Wireless Networks, Inc.

Model: 95-0002-XXX

FIGURE 2d

Photograph(s) for Digital Device Emissions (Back)

Test Date: November 27, 1998

UST Project: 98-588

Customer: Home Wireless Networks, Inc.

Model: 95-0002-XXX

FIGURE 2e

Photograph(s) for Digital Device Conducted Emissions

TABLE 1

EUT and Peripherals

PERIPHERAL MANUFACTURER	MODEL NUMBER	SERIAL NUMBER	FCC ID:	CABLES P/D
Transceiver (EUT) Home Wireless Networks, Inc.	95-0002-XXX	None	NSK0002A (Pending)	8' U Extension Cord to 100 VAC 60 Hz
600 Ohm Term. US Tech	None	None	None	6' U

TABLE 2 TEST INSTRUMENTS

TYPE	MANUFACTURER	MODEL	SN.
SPECTRUM ANALYZER	HEWLETT-PACKARD	8593E	3710A03009
SPECTRUM ANALYZER	HEWLETT-PACKARD	8593E	3205A00124
SPECTRUM ANALYZER	HEWLETT-PACKARD	8558B	2332A09900
S A DISPLAY	HEWLETT-PACKARD	853A	2404A02387
COMB GENERATOR	HEWLETT-PACKARD	8406A	1632A01519
RF PREAMP	HEWLETT-PACKARD	8447D	1937A03355
RF PREAMP	HEWLETT-PACKARD	8449B	3008A00480
HORN ANTENNA	EMCO	3115	3723
BICONICAL ANTENNA	EMCO	3110	9307-1431
LOG PERIODIC ANTENNA	EMCO	3146	9110-3600
BILOG	CHASE	CBL6112A	2238
LISN	SOLAR ELE.	8012	865577
LISN	SOLAR ELE.	8028	910494
LISN	SOLAR ELE.	8028	910495
THERMOMETER	FLUKE	52	5215250
MULTIMETER	FLUKE	85	53710469
FUNCTION GENERATOR	TEKTRONIX	CFG250	CFG250TW15059
PLOTTER	HEWLETT-PACKARD	7475A	2325A65394

2.5 Antenna Description (Paragraph 15.203)

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

The Model Home Wireless Networks, Inc. 95-0002-XXX incorporates an internal antenna only.

Manufacturer: Home Wireless Networks, Inc.

3145 Avalon Ridge Place Norcross, GA 30071

Type: Metal Patch Antenna

Model Number: None

Gain: -1 dBi

Connector: Metal Contacts on PCB (Internal Antenna Only)

2.6 Peak power within the band 902 - 928 MHz per FCC Section 15.247(b)

Peak power within the band 902 - 928 MHz has been measured with a spectrum analyzer by connecting the spectrum analyzer directly via a short cable to the antenna output terminals or across the antenna leads on the PCB as specified by the manufacturer. The spectrum analyzer was set for a 50 Ω impedance with the VBW \geq RBW 6 dB bandwidth. The results of the measurements are given in Table 3 and Figure 3a through Figure 3c. If the spectrum analyzer did not have a RBW greater than the 6 dB bandwidth for the largest fundamental bandwidth, then the data was taken using the channel power function of the spectrum analyzer.

The EUT did not incorporate any antennas of directional gain greater than 6 dBi, therefore the output power has <u>not</u> been reduced as required by 15.247(b)(3).

TABLE 3 PEAK POWER OUTPUT

Test Date: October 27, 1998

UST Project: 98-588

Customer: Home Wireless Networks, Inc.

Model: 95-0002-XXX

Frequency of Fundamental (MHz)	Measurement (dBm)*	Measurement (Watt)*	FCC Limit (Watt)
905.73	16.43	0.044	1.0
914.94	16.94	0.049	1.0
923.65	16.26	0.042	1.0

Tester	(in A)			
Signature:	0	Name:	Tim R. Johnson	

^{*} Measurement includes 0.1 cable loss

Figure 3a.

Peak Power per FCC Section 15.247(b) (Low)

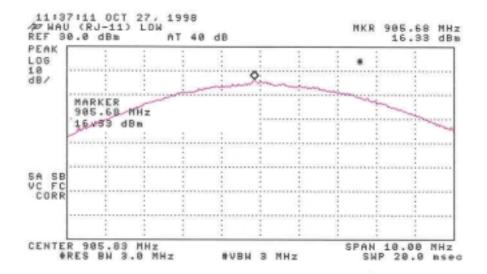


Figure 3b.

Peak Power per FCC Section 15.247(b) (Mid)

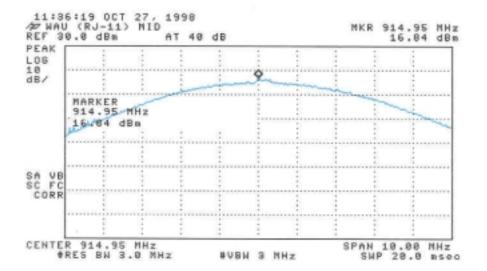
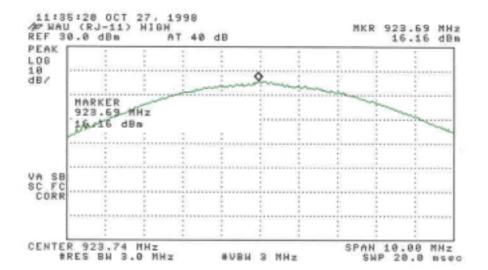



Figure 3c.
Peak Power per FCC Section 15.247(b) (High)

2.7 Antenna Conducted Spurious Emissions in the Frequency Range 30 - 10000 MHz (FCC Section 15.247(c))

Spurious emissions in the frequency range 30-10000 MHz have been measured with a spectrum analyzer by connecting the spectrum analyzer directly via a short cable to the antenna output terminals or across the antenna leads on the PCB as specified by the manufacturer. The spectrum analyzer was set for a $50~\Omega$ impedance with the RBW = 100~kHz & VBW > RBW. All spurious emissions measured were greater than 20~dB down from the fundamental. The results of conducted spurious emissions are given in Figure 4a through Figure 4I.

Figure 4a Conducted Spurious Emissions 15.247(c) Low

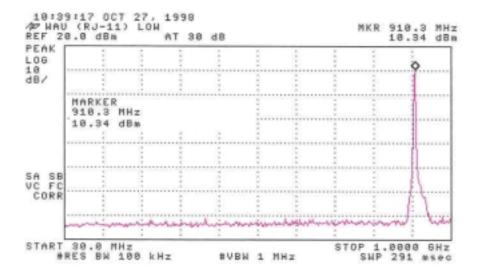


Figure 4b
Conducted Spurious Emissions 15.247(c) Low

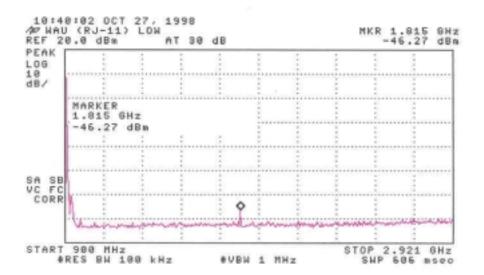


Figure 4c Conducted Spurious Emissions 15.247(c) Low

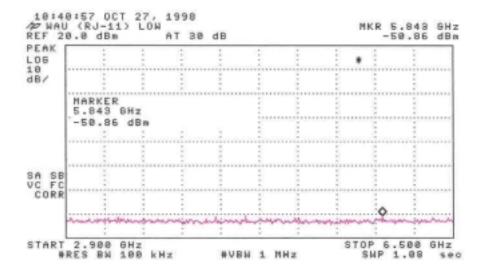


Figure 4d Conducted Spurious Emissions 15.247(c) Low

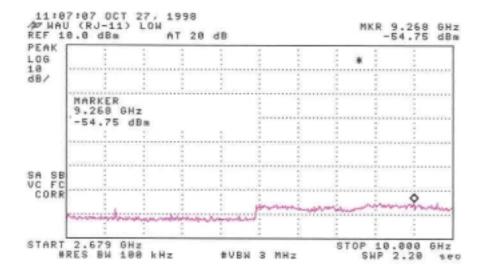


Figure 4e Conducted Spurious Emissions 15.247(c) Mid

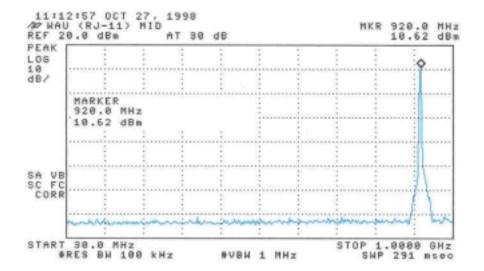


Figure 4f Conducted Spurious Emissions 15.247(c) Mid

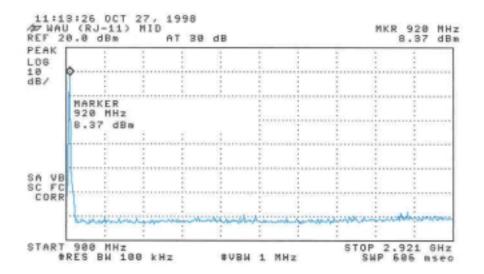


Figure 4g
Conducted Spurious Emissions 15.247(c) Mid

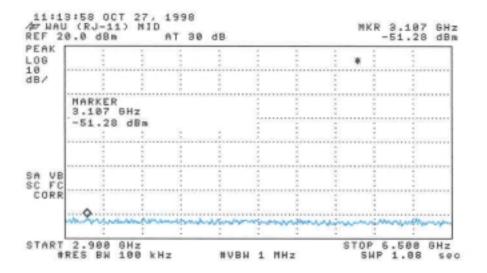


Figure 4h
Conducted Spurious Emissions 15.247(c) Mid

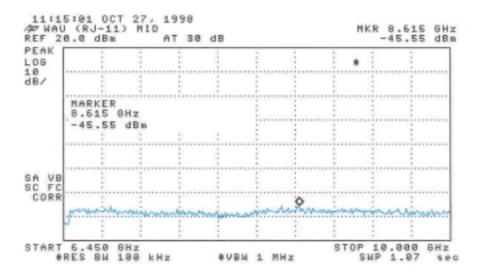


Figure 4i
Conducted Spurious Emissions 15.247(c) High

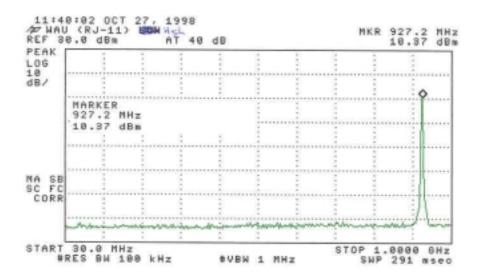


Figure 4j
Conducted Spurious Emissions 15.247(c) High

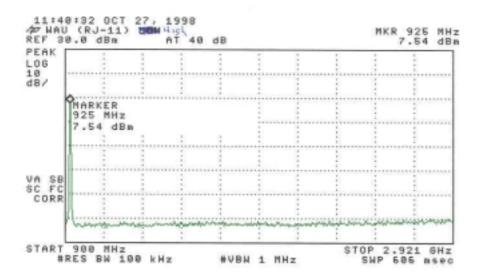


Figure 4k
Conducted Spurious Emissions 15.247(c) High

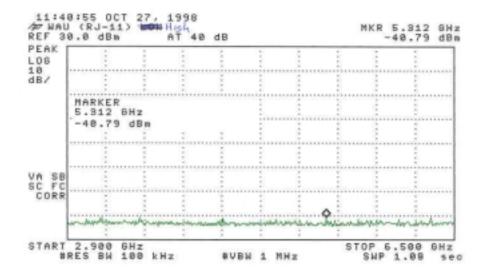
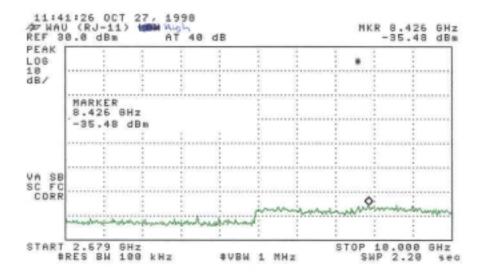



Figure 4I Conducted Spurious Emissions 15.247(c) High

2.8 Peak Radiated Spurious Emissions in the Frequency Range 30 -10000 MHz (FCC Section 15.247(c))

The results of peak radiated spurious emissions falling within restricted bands are given in Table 4a (low), Table 4b, (mid), Table 4c (high) and Figure 5a through 5g.

TABLE 4a PEAK RADIATED SPURIOUS EMISSIONS (Low)

Freq. (GHz)	Test Data* (dBm) @3m	Amp. Gain (dB)	Antenna Factor (dB)	Cable Loss (dB)	Results (uV/m) @3m	FCC Limits (uV/m) @3m
2.7177	-60.6	34.6	31.4	3.8	224.0	5000
3.6214	-60.3	34.4	33.0	4.4	306.7	5000

TABLE 4b PEAK RADIATED SPURIOUS EMISSIONS (Mid)

Freq. (GHz)	Test Data* (dBm) @3m	Amp. Gain (dB)	Antenna Factor (dB)	Cable Loss (dB)	Results (uV/m) @3m	FCC Limits (uV/m) @3m
2.7203	-61.3	34.6	31.4	3.8	206.7	5000
3.6207	-60.8	34.4	33.0	4.4	289.4	5000

TABLE 4c PEAK RADIATED SPURIOUS EMISSIONS (High)

Freq. (GHz)	Test Data* (dBm) @3m	Amp. Gain (dB)	Antenna Factor (dB)	Cable Loss (dB)	Results (uV/m) @3m	FCC Limits (uV/m) @3m
2.7209	-60.0	34.6	31.4	3.8	240.1	5000
3.6211	-60.6	34.4	33.0	4.4	296.2	5000
4.5305	-62.3	34.3	34.2	4.4	282.8	5000

^{* =} Data adjusted by + 1 dB for high pass filter

SAMPLE CALCULATION:

RESULTS (uV/m @ 3m) = Antilog ((-60.6 - 34.6 + 31.4 + 3.8 + 107)/20) = 224.0 CONVERSION FROM dBm TO dBuV = 107 dB

Test Results	(W Ry			
Reviewed By:	0	Name:	Tim R. Johnson	

^{** =} Instrumentation ground floor

Figure 5a
Peak Radiated Spurious Emissions 15.247(c) Low

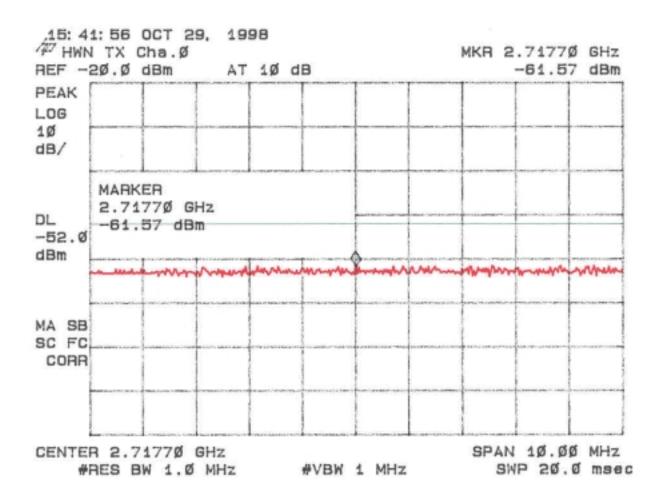


Figure 5b
Peak Radiated Spurious Emissions 15.247(c) Low

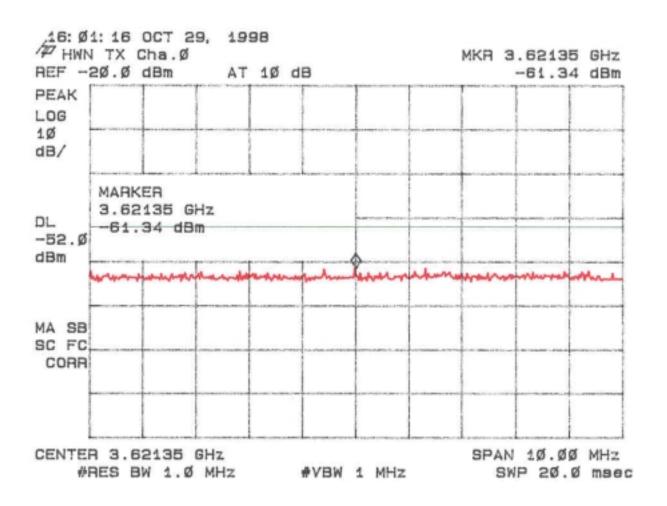


Figure 5c
Peak Radiated Spurious Emissions 15.247(c) Mid

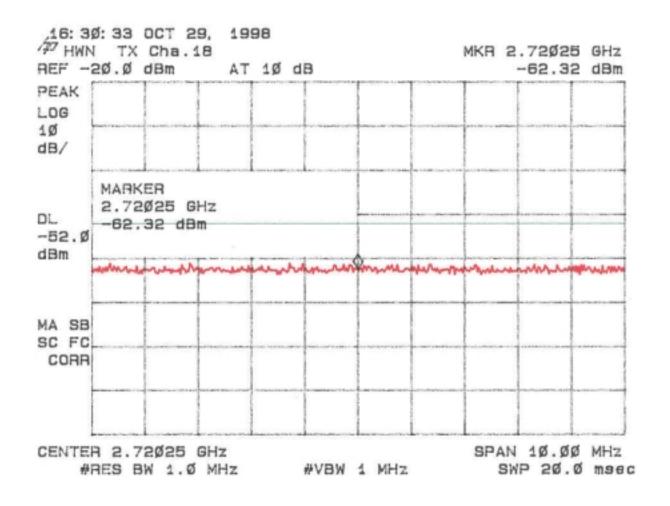


Figure 5d
Peak Radiated Spurious Emissions 15.247(c) Mid

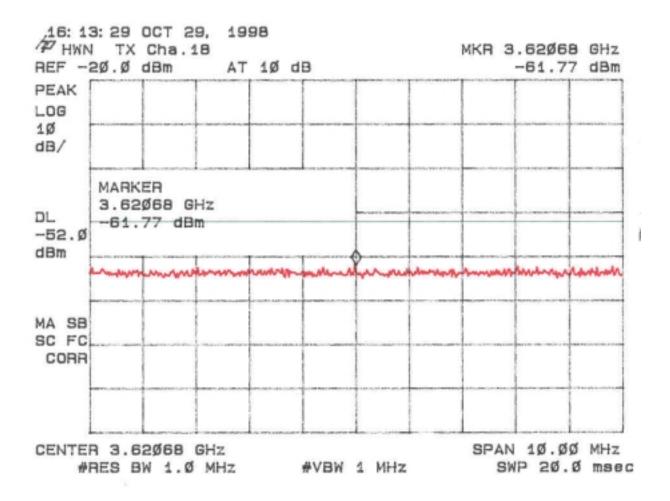


Figure 5e
Peak Radiated Spurious Emissions 15.247(c) High

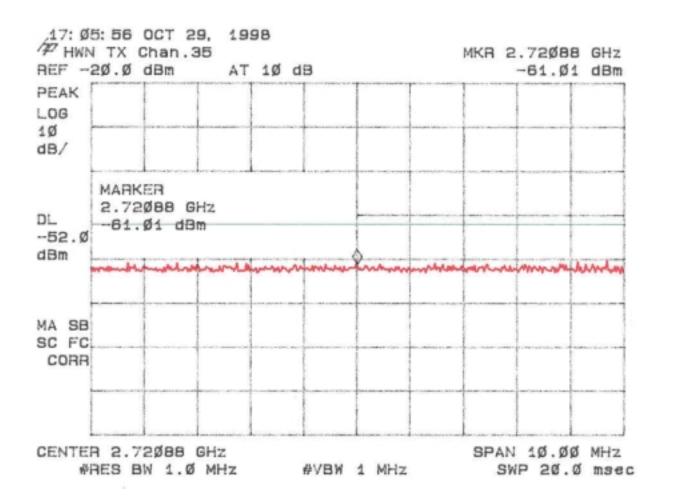
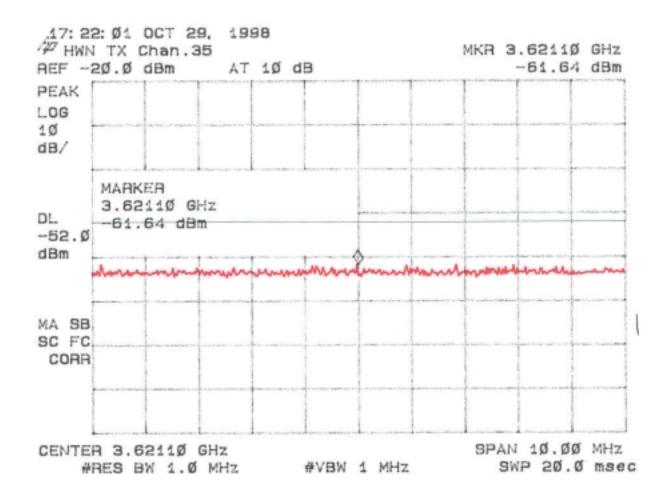
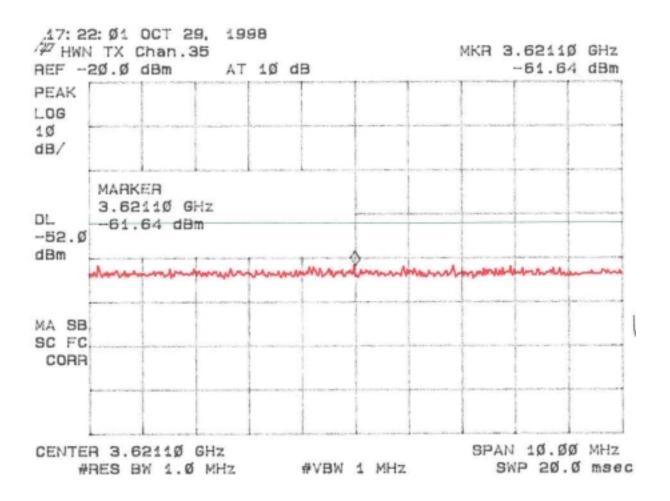




Figure 5f
Peak Radiated Spurious Emissions 15.247(c) High

Figure 5g Peak Radiated Spurious Emissions 15.247(c) High

2.9 Average Radiated Spurious Emissions in the Frequency Range 30 - 10000 MHz (FCC Section 15.247(c))

The results of average radiated spurious emissions falling within restricted bands are given in Table 5a (low), Table 5b (mid), Table 5c (high) and Figure 6a through 6g.

TABLE 5a AVERAGE RADIATED SPURIOUS EMISSIONS (Low)

Freq. (GHz)	Test Data* (dBm) @3m	Amp. Gain (dB)	Antenna Factor (dB)	Cable Loss (dB)	Results (uV/m) @3m	FCC Limits (uV/m) @3m
2.7177	-73.8	34.6	31.4	3.8	49.0	500
3.6214	-74.8	34.4	33.0	4.4	57.8	500

TABLE 5b AVERAGE RADIATED SPURIOUS EMISSIONS (Mid)

Freq. (GHz)	Test Data* (dBm) @3m	Amp. Gain (dB)	Antenna Factor (dB)	Cable Loss (dB)	Results (uV/m) @3m	FCC Limits (uV/m) @3m
2.7203	-73.6	34.6	31.4	3.8	50.2	500
3.6207	-74.9	34.4	33.0	4.4	57.1	500

TABLE 5c AVERAGE RADIATED SPURIOUS EMISSIONS (High)

Freq. (GHz)	Test Data* (dBm) @3m	Amp. Gain (dB)	Antenna Factor (dB)	Cable Loss (dB)	Results (uV/m) @3m	FCC Limits (uV/m) @3m
2.7209	-73.5	34.6	31.4	3.8	50.8	500
3.6211	-74.7	34.4	33.0	4.4	58.4	500
4.5305	-75.4	34.3	34.2	4.4	62.6	500

^{* =} Data adjusted by + 1dB for high pass filter.

SAMPLE CALCULATION:

RESULTS (uV/m @ 3m) = Antilog ((-73.8 - 34.6 + 31.4 + 3.8 + 107)/20) = 49.0 CONVERSION FROM dBm TO dBuV = 107 dB

Test Results	-/	. 1			
Reviewed By:	6.4	i ligh	Name:	Tim R. Johnson	

^{** =} Instrumentation ground floor.

Figure 6a Average Radiated Spurious Emissions 15.247(c) Low

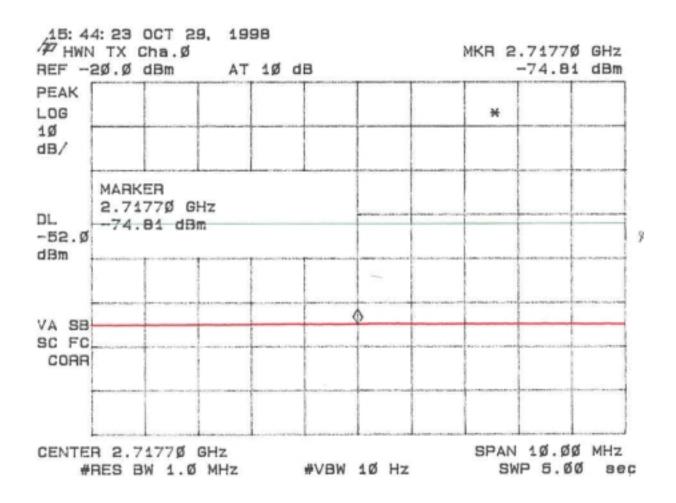


Figure 6b Average Radiated Spurious Emissions 15.247(c) Low

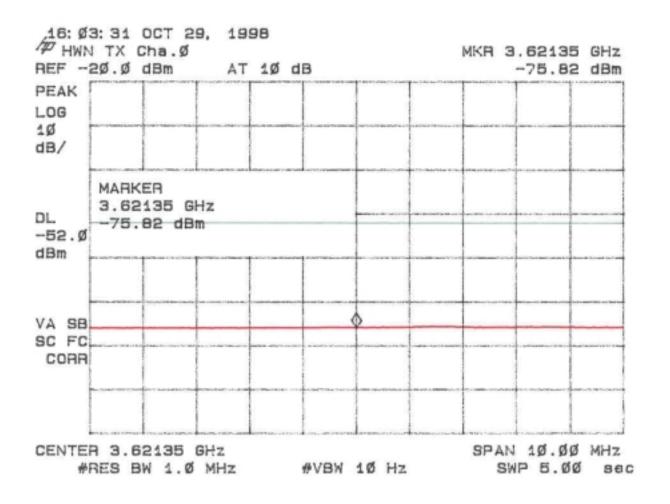
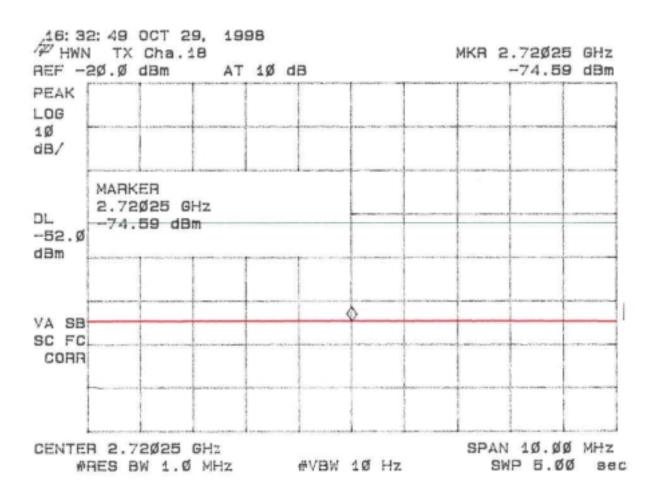
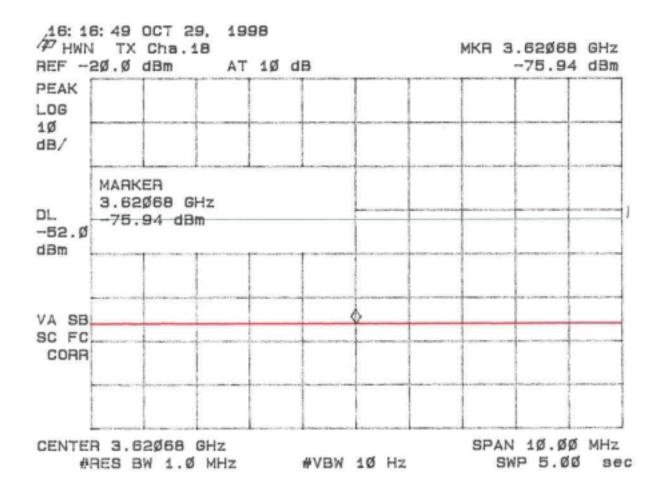
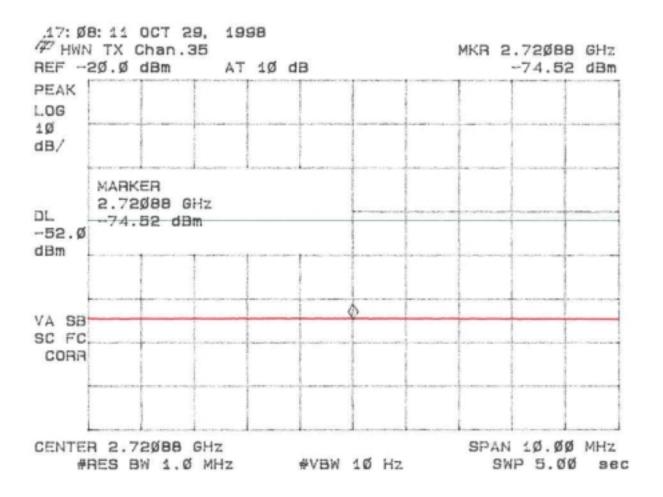
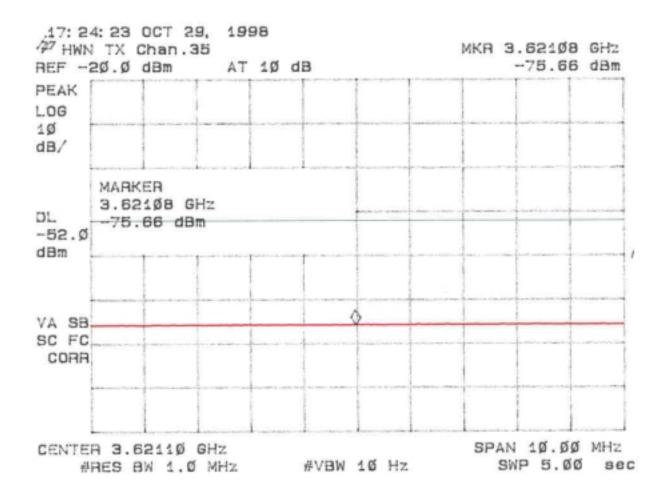



Figure 6c
Average Radiated Spurious Emissions 15.247(c) Mid

Figure 6d Average Radiated Spurious Emissions 15.247(c) Mid

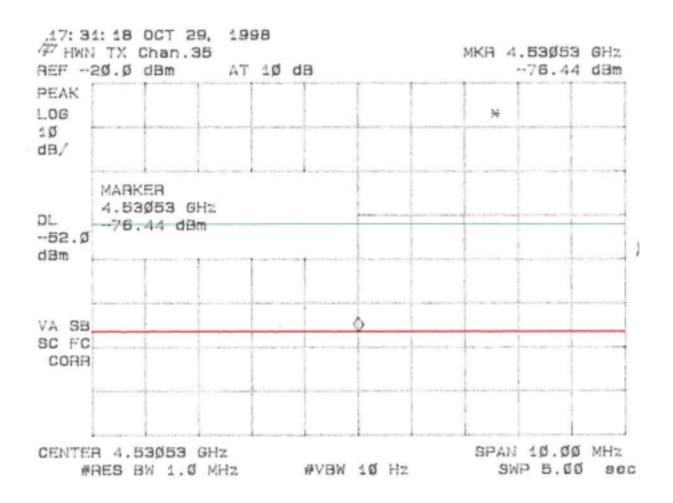

Figure 6e Average Radiated Spurious Emissions 15.247(c) High

Figure 6f Average Radiated Spurious Emissions 15.247(c) High

Figure 6g Average Radiated Spurious Emissions 15.247(c) High

2.10 Minimum 6 dB Bandwidth per FCC Section 15.247(a)(2)

The minimum 6 dB bandwidth of the EUT was measured. The spectrum analyzer was set for a 50 Ω impedance with the RBW=100 kHz and VBW \geq RBW. If the EUT incorporates different spreading codes or data rates these were each investigated, the one which produced the smallest 6 dB bandwidth was selected for test. All bandwidths measured are greater than 500 kHz minimum requirement specified by the FCC. The results of this test are given in Figure 7a through Figure 7c.

Figure 7a.
6 dB Bandwidth per FCC Section 15.247(a)(2) (low)

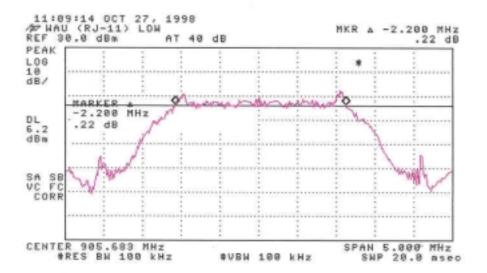


Figure 7b. 6 dB Bandwidth per FCC Section 15.247(a)(2) (Mid)

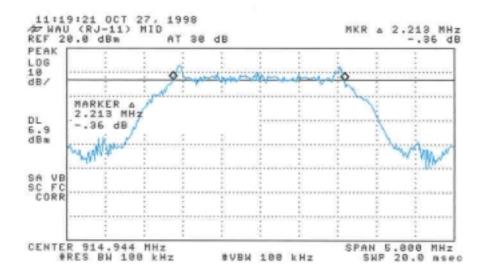
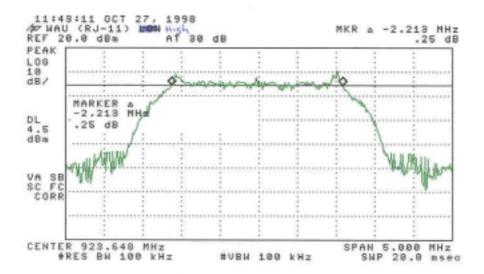



Figure 7c. 6 dB Bandwidth per FCC Section 15.247(a)(2) (High)

2.11 Power Spectral Density FCC Section 15.247(b) and 15.247(d)

The transmitter power spectral density averaged over any 1 second interval is given in Table 7a (low), Table 7b (mid), Table 7c (high) and Figure 8a through Figure 8c. If the EUT incorporates different spreading codes or data rates these were each investigated and the one which produced the highest spectral density was selected for test. The measurement was made using a spectrum analyzer utilizing noise marker mode. A 34.8 dBm adjustment has been added to the measurement to correct from 1 Hz to 3 kHz measurement.

POWER SPECTRAL DENSITY

Test Date: October 27, 1998

UST Project: 98-588

Customer: Home Wireless Networks, Inc.

Model: 95-0002-XXX

TABLE 7a POWER SPECTRAL DENSITY (Low)

Test Data (dBm) Normalized to 1 Hz	Results (dBm)	FCC Limit (dBm)
-44.32	-9.52	8.0

TABLE 7a POWER SPECTRAL DENSITY (Mid)

Test Data (dBm) Normalized to 1 Hz	Results (dBm)	FCC Limit (dBm)
-41.63	-6.82	8.0

TABLE 7a POWER SPECTRAL DENSITY (High)

Test Data (dBm) Normalized to 1 Hz	Results (dBm)	FCC Limit (dBm)
-45.44	-10.64	8.0

Note: 34.8 dBm has been added to correct from 1 Hz to 3 kHz

Tester	(in the			
Signature: _	v	_ Name: _	Tim R. Johnson	

Figure 8a
Power Spectral Density 15.247(b) and 15.247(d) Low

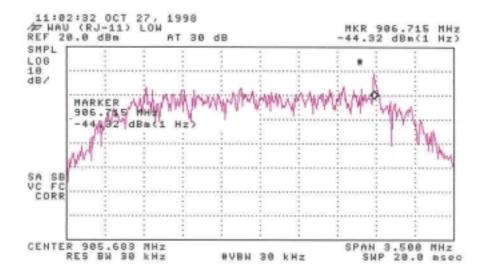


Figure 8b Power Spectral Density 15.247(b) and 15.247(d) Mid

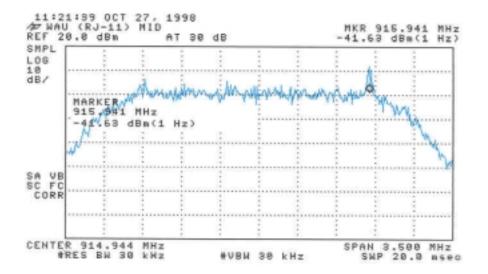
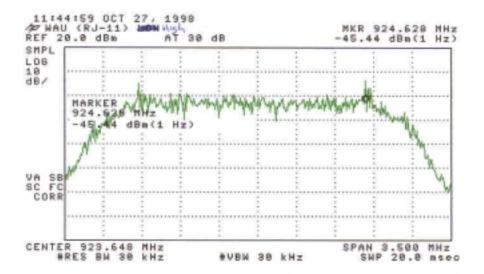



Figure 8c
Power Spectral Density 15.247(b) and 15.247(d) High

2.12 Processing Gain

Data regarding processing gain has been provided on the following page(s) from Home Wireless Networks, Inc.

This information has been provided in a separate file.

2.13 Power Line Conducted Emissions for Transmitter FCC Section 15.207

The conducted voltage measurements have been carried out in accordance with FCC Section 15.207, with a spectrum analyzer connected to a LISN and the EUT placed into a continuous mode of transmit. The results are given in Table 8.

TABLE 8. POWER LINE CONDUCTED EMISSIONS DATA (TRANSMITTER) CLASS B

Test Date: October 27, 1998

UST Project: 98-588

Customer: Home Wireless Networks, Inc.

Product: 95-0002-XXX

FREQUENCY (MHz)	TEST (dE PHASE			LOSS Bm) NEUTRAL	CABLE FACTOR (dB)		SULTS (uV) NEUTRAL	FCC LIMITS (uV)	BELO	RGIN W LIMIT dB) NEUTRAL
0.47	-74.0	-74.0	0.1	0.1	0.1	45.5	45.7	250.0	14.8	14.8
9.80	-91.0	-90.0	0.0	0.0	0.5	6.7	7.5	250.0	31.4	30.4
11.70	-89.0	-83.0	0.0	0.0	0.5	8.4	16.7	250.0	29.5	23.5
13.70	-87.0	-77.0	0.1	0.1	0.5	10.8	33.8	250.0	27.3	17.4
15.50	-74.0	-70.0	0.1	0.1	0.6	48.1	76.3	250.0	14.3	10.3
17.80	-79.0	-66.0	0.1	0.1	0.6	27.2	121.6	250.0	19.3	6.3
21.60	-77.0	-68.0	0.1	0.1	0.7	34.7	97.7	250.0	17.2	8.2

SAMPLE CALCULATIONS:

RESULTS uV =

Antilog ((-74.0 + 0.1 + 0.1 + 107)/20) = 45.5 CONVERSION FROM dBm TO dBuV = 107 dB

Test Results	(in R)			
Reviewd By: _		Name:	Tim R. Johnson	

2.14 Radiated Emissions for Digital Device & Receiver (47 CFR 15.109a)

Radiated emissions were evaluated from 30 to 5000 MHz while the EUT was placed into a Receive mode of operation. Measurements were made with the analyzer's bandwidth set to 120 kHz for measurements made less than 1 GHz and 1 MHz for measurements made greater then or equal to 1 GHz. The results of measurements under 1 GHz are shown in Table 9a. Measurements made over 1 GHz results are shown in Table 9b.

TABLE 9a. RADIATED EMISSIONS DATA (DIGITAL DEVICE & RECEIVER)

CLASS B

Test Date: October 29, 1998

UST Project: 98-588

Customer: Home Wireless Networks, Inc.

Product: 95-0002-XXX

Frequency (MHz)	Test Data (dBm) @3m	Ant. Factor + Cable Atten.	Results (uV/m)	FCC Limits (uV/m) @3m	Margin Below FCC Limit (dB)
114.7	-86.0	13.5	52.9	150.0	9.0
131.0	-88.0	14.6	48.1	150.0	9.9
163.8	-84.0*	15.6	85.3	150.0	4.9
180.2	-87.0*	16.7	68.6	150.0	6.8
523.0	-96.8*	23.9	51.0	200.0	11.9
573.0	-94.0	24.6	75.6	200.0	8.5

^{*=} Quasi Peak Measurement

SAMPLE CALCULATIONS:

RESULTS uV/m @ 3m = Antilog ((-86.0 + 13.5 + 107)/20) = 52.9 CONVERSION FROM dBm TO dBuV = 107 dB

	7 1			
Test Results	(in A)			
Reviewed By: _	0	Name:	Tim R. Johnson	

TABLE 9b RADIATED EMISSIONS DATA (DIGITAL DEVICE & RECEIVER) CLASS B

Test Date: October 29, 1998

UST Project: 98-588

Customer: Home Wireless Networks, Inc.

Model: 95-0002-XXX

Peak Measurements >1GHz

FREQ. (GHz)	TEST DATA (dBm) @ 3m	AMP GAIN (dB)	ANT. FACTOR (dB)	CABLE LOSS (dB)	RESULTS (uV/m) @ 3m	FCC LIMITS (uV/m) @ 3m
1.20	-55.9	35.8	27.0	2.4	171.8	500.0
3.37	-66.0**	34.5	32.3	4.3	143.1	500.0

^{*} Since Peak measurements met with the average limits, average measurements were deemed unnecessary.

SAMPLE CALCULATIONS:

Results uV/m @3m = Antilog ((-55.9 - 35.8 + 27.0 + 2.4 + 107)(20) = 171.8 Conversion from dB to dBuV = 107 dB

- ~1	
Tested Results / /	
Reviewed By:	Name: Tim R. Johnson

^{**} Measurement was made at 1.8m in order to obtain a better dynamic range. The reading has been adjusted by 20 log (1.8/3.0) = -4.4 dB

2.15 Power Line Conducted Emissions for Digital Device and Receiver FCC Section 15.107

The conducted voltage measurements have been carried out in accordance with FCC Section 15.107, with a spectrum analyzer connected to a LISN and the EUT placed into a continuous mode of transmit. The results are given in Table 10.

TABLE 10. POWER LINE CONDUCTED EMISSIONS DATA (DIGITAL DEVICE & RECEIVER) CLASS B

Test Date: October 27, 1998

UST Project: 98-588

Customer: Home Wireless Networks, Inc.

Product: 95-0002-XXX

FREQUENCY (MHz)	TEST (dB PHASE			LOSS Bm) NEUTRAL	CABLE FACTOR (dB)		SULTS (uV) NEUTRAL	FCC LIMITS (uV)	BELO	.RGIN W LIMIT dB) NEUTRAL
0.47	-74.0	-74.0	0.1	0.1	0.1	45.5	45.7	250.0	14.8	14.8
9.80	-91.0	-90.0	0.0	0.0	0.5	6.7	7.5	250.0	31.4	30.4
11.70	-89.0	-83.0	0.0	0.0	0.5	8.4	16.7	250.0	29.5	23.5
13.70	-87.0	-77.0	0.1	0.1	0.5	10.8	33.8	250.0	27.3	17.4
15.50	-74.0	-70.0	0.1	0.1	0.6	48.1	76.3	250.0	14.3	10.3
17.80	-79.0	-66.0	0.1	0.1	0.6	27.2	121.6	250.0	19.3	6.3
21.60	-77.0	-68.0	0.1	0.1	0.7	34.7	97.7	250.0	17.2	8.2

SAMPLE CALCULATIONS:

RESULTS uV = Antilog ((-74.0 + 0.1 + 0.1 + 107)/20) = 45.5 CONVERSION FROM dBm TO dBuV = 107 dB

Test Results
Reviewed By: Name: Tim R. Johnson

SECTION 3 LABELING INFORMATION

This information has been provided in a separate file

SECTION 4 BLOCK DIAGRAM(S) / SCHEMATIC(S)

This information has been provided in separate files

SECTION 5 PHOTOGRAPHS

PHOTOS OF THE TESTED EUT

The following photos are attached:

- Photo 1. EUT, Front View
- Photo 2. EUT, Rear View
- Photo 3. EUT, Internal View Showing Antenna (Cover Opened)
- Photo 4. EUT, Top View of Transceiver Board (Shield Installed)
- Photo 5. EUT, Top View of Transceiver Board (Shield Removed)
- Photo 6. EUT, Bottom View of Transceiver Board
- Photo 7. EUT, Top View of Main Board (Shield Installed)
- Photo 8. EUT, Top View of Main Board (Shield Removed)
- Photo 9. EUT, Bottom View of Main Board

These have been provided in separate files

SECTION 6 USER'S MANUAL

This information has been provided in a separate file