

Intertek Testing Services -Menlo Park

Casil Technology Taiwan Ltd., 900 MHz Cordless Telephone
FCC ID: NSJCTT-900AB

Date of Test: May 5 & 15, 1998

TEST REPORT

0.0 Summary of Test Results

Casil Technology Taiwan Ltd. - Model No.: CTT-900AB
FCC ID: NSJCTT-900AB

TEST	REFERENCE	RESULTS
Radiated Emission	15.249	Complies
Conducted Emission	15.207	Complies
Antenna Requirement	15.203	Complies

Test Engineer:

Ollie Moyrong Date: 5-27-98
Ollie Moyrong

EMC Site Mgr.:

David Chernomordik Date: 5/30/98
David Chernomordik

Intertek Testing Services -Menlo Park

Casil Technology Taiwan Ltd., 900 MHz Cordless Telephone
FCC ID: NSJCTT-900AB

Date of Test: May 5 & 15, 1998

1.0 General Description

1.1 Product Description

The Casil Technology Model CTT-900AB is a 900 MHz cordless telephone.

Intertek Testing Services -Menlo Park

Casil Technology Taiwan Ltd., 900 MHz Cordless Telephone
FCC ID: NSJCTT-900AB

Date of Test: May 5 & 15, 1998

1.2 Related Submittal(s) Grants

This is an Application for Certification of a low power transmitter. One transmitter is included in this Application. This specific report details the emission characteristics of transmitter.

1.3 Test Methodology

Both AC mains line-conducted and radiated emission measurements were performed according to the procedures in ANSI C63.4 (1992). All measurements were performed in Open Area Test Sites. Preliminary scans were performed in the Open Area Test Sites only to determine worst case modes. For each scan, the procedure for maximizing emissions in Appendices D and E were followed. All Radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "Justification Section" of this Application.

1.4 Test Facility

The open area test site and conducted measurement facility used to collect the radiated data is Site 1. This test facility and site measurement data have been fully placed on file with the FCC and NVLAP accredited.

Intertek Testing Services -Menlo Park

Casil Technology Taiwan Ltd., 900 MHz Cordless Telephone
FCC ID: NSJCTT-900AB

Date of Test: May 5 & 15, 1998

2.0 System Test Configuration

2.1 Justification

For emission testing, the equipment under test (EUT) was configured for testing in a typical fashion (as a customer would normally use it). During testing, all cables were manipulated to produce worst case emissions.

For the measurements, the EUT is attached to a cardboard box (if necessary) and placed on the wooden turntable. If the EUT attaches to peripherals, they are connected and operational (as typical as possible). The EUT is wired to transmit full power without modulation.

The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Detector function is in peak mode. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance.

All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance.

2.2 EUT Exercising Software

The EUT exercise program used during radiated and conducted testing was designed to exercise the various system components in a manner similar to a typical use.

For emissions testing, the units were setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing.

Intertek Testing Services -Menlo Park

Casil Technology Taiwan Ltd., 900 MHz Cordless Telephone
FCC ID: NSJCTT-900AB

Date of Test: May 5 & 15, 1998

2.3 System Test Configuration

2.3.1 Support Equipment

Not applicable, the equipment under test is a standalone device.

2.3.2 Block Diagram of Test Setup

Not applicable, the equipment under test is a standalone device.

Intertek Testing Services -Menlo Park

Casil Technology Taiwan Ltd., 900 MHz Cordless Telephone
FCC ID: NSJCTT-900AB

Date of Test: May 5 & 15, 1998

2.4 Equipment Modification

Any modifications installed previous to testing by Casil Technology Taiwan Ltd. will be incorporated in each production model sold/leased in the United States.

No modifications were made to the EUT by Intertek Testing Services.

2.5 Additions, deviations and exclusions from standards

No additions, deviations or exclusion have been made from standard.

Intertek Testing Services -Menlo Park

Casil Technology Taiwan Ltd., 900 MHz Cordless Telephone
FCC ID: NSJCTT-900AB

Date of Test: May 5 & 15, 1998

3.0 Emission Results

AC line conducted emission measurements were performed from 0.45 MHz to 30 MHz. Analyzer resolution is 10 kHz or greater.

Radiated emission measurements were performed from 30 MHz to 5000 MHz. Analyzer resolution is 100 kHz or greater for 30 MHz to 1000 MHz, 1 MHz for > 1000 MHz.

Data is included of the worst case configuration (the configuration which resulted in the highest emission levels). A sample calculation, configuration photographs and data tables of the emissions are included. All measurements were performed with peak detection unless otherwise specified.

Intertek Testing Services -Menlo Park

Casil Technology Taiwan Ltd., 900 MHz Cordless Telephone
FCC ID: NSJCTT-900AB

Date of Test: May 5 & 15, 1998

3.1 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CF - AG$$

where FS = Field Strength in dB(μ V/m)

RA = Receiver Amplitude (including preamplifier) in dB(μ V)

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB/m

AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows:-

$$FS = RR + LF$$

where FS = Field Strength in dB(μ V/m)

RR = RA - AG in dB(μ V)

LF = CF + AF in dB

Assume a receiver reading of 52.0 dB(μ V) is obtained. The antenna factor of 7.4 dB/m and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB(μ V/m). This value in dB μ V/m was converted to its corresponding level in μ V/m.

$$RA = 52.0 \text{ dB}(\mu\text{V})$$

$$AF = 7.4 \text{ dB/m}$$

$$RR = 23.0 \text{ dB}(\mu\text{V})$$

$$CF = 1.6 \text{ dB}$$

$$LF = 9.0 \text{ dB}$$

$$AG = 29.0 \text{ dB}$$

$$FS = RR + LF$$

$$FS = 23 + 9 = 32 \text{ dB}(\mu\text{V/m})$$

$$\text{Level in } \mu\text{V/m} = \text{Common Antilogarithm } \{[32 \text{ dB}(\mu\text{V/m})]/20\} = 39.8 \mu\text{V/m}$$

Intertek Testing Services -Menlo Park

Casil Technology Taiwan Ltd., 900 MHz Cordless Telephone
FCC ID: NSJCTT-900AB

Date of Test: May 5 & 15, 1998

3.3 Radiated Emission Data

The data on the following pages list the significant emission frequencies, the limit and the margin of compliance.

Results:	Passed by 2.8 dB at 916.925 MHz
-----------------	---------------------------------

Note: a) All emissions not reported are at least 20 dB below the limits

INTERTEK TESTING SERVICES

Company: Casil Technology
 EUT: 900 MHz Cordless Phone
 Model: CTT-900AB (Handset)
 Test Mode: Tx @ 927.975 MHz

Project #: J98011441
 Date of Test: 5/5/98
 Test Site #: 1
 Engineer: Ollie Moyrong C.14.

FCC 15.249 Radiated Emissions

Detector	Frequency	Antenna	Antenna	Reading	Antenna	Preamp	Correction	Cable	Corrected	Limit	Margin	
A/QP/P	(MHz)	(m)	Location	H=0/V=1	(dBuV)	Factor	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
QP	927.975	3.0	1	58.8	22.6	0.0	0.0	0.5	81.9	94.0	-12.1	
A	1855.95	3.0	1	31.4	24.2	-28.8	0.0	2.3	29.1	54.0	-24.9	
P	1855.95	3.0	1	41.8	24.2	-28.8	0.0	2.3	39.5	74.0	-34.5	
A	2783.93	3.0	1	31.2	29.1	-28.5	0.0	3.0	34.8	54.0	-19.2	
P	2783.93	3.0	1	42.8	29.1	-28.5	0.0	3.0	46.4	74.0	-27.6	
A	3711.90	3.0	1	31.7	31.9	-28.1	0.0	3.6	39.1	54.0	-14.9	
P	3711.90	3.0	1	41.5	31.9	-28.1	0.0	3.6	48.9	74.0	-25.1	
A	4639.88	1.0	1	31.9	32.8	-27.6	-9.5	4.1	31.7	54.0	-22.3	
P	4639.88	1.0	1	41.9	32.8	-27.6	-9.5	4.1	41.7	74.0	-32.3	
A	5567.85	1.0	1	30.7	34.6	-27.8	-9.5	4.6	32.6	54.0	-21.4	
P	5567.85	1.0	1	39.9	34.6	-27.8	-9.5	4.6	41.8	74.0	-32.2	
A	6495.83	1.0	1	33.6	35.1	-28.2	-9.5	5.0	36.0	54.0	-18.0	
P	6495.83	1.0	1	41.7	35.1	-28.2	-9.5	5.0	44.1	74.0	-29.9	
A	7423.80	1.0	1	32.8	36.1	-28.5	-9.5	5.8	36.7	54.0	-17.3	
P	7423.80	1.0	1	42.1	36.1	-28.5	-9.5	5.8	46.0	74.0	-28.0	
A	8351.78	1.0	1	33.1	37.3	-29.1	-9.5	6.0	37.8	54.0	-16.2	
P	8351.78	1.0	1	41.9	37.3	-29.1	-9.5	6.0	46.6	74.0	-27.4	
A	9279.75	1.0	1	33.6	37.8	-29.5	-9.5	6.3	38.7	54.0	-15.3	
P	9279.75	1.0	1	42.4	37.8	-29.5	-9.5	6.3	47.5	74.0	-26.5	

Note: Negative signs (-) in the Margin column signify levels below the limit.

INTERTEK TESTING SERVICES

Company: Casil Technology
 EUT: 900 MHz Cordless Phone
 Model: CTT-900AB (Handset)
 Test Mode: Tx @ 926.025 MHz

Project #: J98011441
 Date of Test: 5/5/98
 Test Site #: 1
 Engineer: Ollie Moyrong C.I.E.

FCC 15.249 Radiated Emissions

Detector	Frequency	Antenna	Antenna	Reading	Antenna	Preamp	Correction	Cable	Corrected	Limit	Margin
A/QP/P	(MHz)	Location	Polariz.	H=0/V=1 (dBuV)	Factor (dB/m)	(dB)	Factor (dB)	Loss (dB)	Reading (dBuV/m)	At 3 m (dBuV/m)	(dB)
QP	926.025	3.0	1	57.7	22.7	0.0	0.0	0.5	80.9	94.0	-13.1
A	1852.05	1.0	1	33.3	24.2	-28.8	-9.5	2.3	21.5	54.0	-32.5
P	1852.05	1.0	1	43.3	24.2	-28.8	-9.5	2.3	31.5	74.0	-42.5
A	2778.08	1.0	1	32.2	29.1	-28.5	-9.5	3.0	26.3	54.0	-27.7
P	2778.08	1.0	1	42.4	29.1	-28.5	-9.5	3.0	36.5	74.0	-37.5
A	3704.10	1.0	1	32.3	31.9	-28.1	-9.5	3.6	30.2	54.0	-23.8
P	3704.10	1.0	1	42.2	31.9	-28.1	-9.5	3.6	40.1	74.0	-33.9
A	4630.12	1.0	1	29.2	32.8	-27.6	-9.5	4.1	29.0	54.0	-25.0
P	4630.12	1.0	1	38.1	32.8	-27.6	-9.5	4.1	37.9	74.0	-36.1
A	5556.15	1.0	1	27.1	34.6	-27.8	-9.5	4.6	29.0	54.0	-25.0
P	5556.15	1.0	1	36.7	34.6	-27.8	-9.5	4.6	38.6	74.0	-35.4
A	6482.18	1.0	1	32.2	35.1	-28.2	-9.5	5.0	34.6	54.0	-19.4
P	6482.18	1.0	1	42.3	35.1	-28.2	-9.5	5.0	44.7	74.0	-29.3
A	7408.20	1.0	1	32.9	36.1	-28.5	-9.5	5.8	36.8	54.0	-17.2
P	7408.20	1.0	1	43.4	36.1	-28.5	-9.5	5.8	47.3	74.0	-26.7
A	8334.22	1.0	1	32.9	37.3	-29.1	-9.5	6.0	37.6	54.0	-16.4
P	8334.22	1.0	1	42.1	37.3	-29.1	-9.5	6.0	46.8	74.0	-27.2
A	9260.25	1.0	1	33.1	37.8	-29.5	-9.5	6.3	38.2	54.0	-15.8
P	9260.25	1.0	1	42.4	37.8	-29.5	-9.5	6.3	47.5	74.0	-26.5

Note: Negative signs (-) in the Margin column signify levels below the limit.

INTERTEK TESTING SERVICES

Company: Casil Technology
 EUT: 900 MHz Cordless Phone
 Model: CTT-900AB (Base unit)
 Test Mode: Tx @ 903.975 MHz

Project #: J98011441
 Date of Test: 5/5/98
 Test Site #: 1
 Engineer: Ollie Moyrong *O. M.*

FCC 15.249 Radiated Emissions

Detector	Frequency	Antenna	Antenna	Reading	Antenna	Preamp	Correction	Cable	Corrected	Limit	Margin
A/QP/P	(MHz)	(m)	Polariz.	H=0/V=1 (dBuV)	Factor (dB/m)	(dB)	(dB)	(dB)	Reading (dBuV/m)	At 3 m dBuV/m	(dB)
QP	903.975	3.0	1	60.7	22.6	0.0	0.0	0.5	83.8	94.0	-10.2
A	1807.96	3.0	1	39.7	24.2	-28.8	0.0	2.3	37.4	54.0	-16.6
P	1807.96	3.0	1	46.2	24.2	-28.8	0.0	2.3	43.9	74.0	-30.1
A	2711.93	3.0	1	41.0	29.1	-28.5	0.0	3.0	44.6	54.0	-9.4
P	2711.93	3.0	1	45.8	29.1	-28.5	0.0	3.0	49.4	74.0	-24.6
A	3615.91	3.0	1	34.6	31.9	-28.1	0.0	3.6	42.0	54.0	-12.0
P	3615.91	3.0	1	41.6	31.9	-28.1	0.0	3.6	49.0	74.0	-25.0
A	4519.88	1.0	1	33.0	32.8	-27.6	-9.5	4.1	32.8	54.0	-21.2
P	4519.88	1.0	1	41.2	32.8	-27.6	-9.5	4.1	41.0	74.0	-33.0
A	5423.86	1.0	1	31.4	34.6	-27.8	-9.5	4.6	33.3	54.0	-20.7
P	5423.86	1.0	1	41.3	34.6	-27.8	-9.5	4.6	43.2	74.0	-30.8
A	6327.84	1.0	1	36.2	35.1	-28.2	-9.5	5.0	38.6	54.0	-15.4
P	6327.84	1.0	1	46.7	35.1	-28.2	-9.5	5.0	49.1	74.0	-24.9
A	7231.90	1.0	1	37.1	36.1	-28.5	-9.5	5.8	41.0	54.0	-13.0
P	7231.90	1.0	1	47.4	36.1	-28.5	-9.5	5.8	51.3	74.0	-22.7
A	8135.89	1.0	1	37.3	37.3	-29.1	-9.5	6.0	42.0	54.0	-12.0
P	8135.89	1.0	1	47.3	37.3	-29.1	-9.5	6.0	52.0	74.0	-22.0
A	9039.79	1.0	1	38.0	37.8	-29.5	-9.5	6.3	43.1	54.0	-10.9
P	9039.79	1.0	1	47.5	37.8	-29.5	-9.5	6.3	52.6	74.0	-21.4

Note: Negative signs (-) in the Margin column signify levels below the limit.

INTERTEK TESTING SERVICES

Company: Casil Technology
 EUT: 900 MHz Cordless Phone
 Model: CTT-900AB (Base unit)
 Test Mode: Tx @ 902.025 MHz

Project #: J98011441
 Date of Test: 5/5/98
 Test Site #: 1
 Engineer: Ollie Moyrong *T. M.*

FCC 15.249 Radiated Emissions

Detector	Frequency	Antenna	Antenna	Reading	Antenna	Preamp	Correction	Cable	Corrected	Limit	Margin
A/QP/P	(MHz)	Location	Polariz.	H=0/V=1 (dBuV)	(dB/m)	(dB)	(dB)	(dB)	Reading (dBuV/m)	At 3 m	(dB)
QP	902.025	3.0	1	64.9	22.7	0.0	0.0	0.5	88.1	94.0	-5.9
A	1804.05	3.0	1	37.7	24.2	-28.8	0.0	2.3	35.4	54.0	-18.6
P	1804.05	3.0	1	45.1	24.2	-28.8	0.0	2.3	42.8	74.0	-31.2
A	2706.08	3.0	1	38.8	29.1	-28.5	0.0	3.0	42.4	54.0	-11.6
P	2706.08	3.0	1	45.8	29.1	-28.5	0.0	3.0	49.4	74.0	-24.6
A	3608.10	3.0	1	32.9	31.9	-28.1	0.0	3.6	40.3	54.0	-13.7
P	3608.10	3.0	1	41.9	31.9	-28.1	0.0	3.6	49.3	74.0	-24.7
A	4510.13	1.0	1	31.4	32.8	-27.6	-9.5	4.1	31.2	54.0	-22.8
P	4510.13	1.0	1	41.2	32.8	-27.6	-9.5	4.1	41.0	74.0	-33.0
A	5412.15	1.0	1	31.2	34.6	-27.8	-9.5	4.6	33.1	54.0	-20.9
P	5412.15	1.0	1	41.6	34.6	-27.8	-9.5	4.6	43.5	74.0	-30.5
A	6314.18	1.0	1	36.8	35.1	-28.2	-9.5	5.0	39.2	54.0	-14.8
P	6314.18	1.0	1	46.5	35.1	-28.2	-9.5	5.0	48.9	74.0	-25.1
A	7216.20	1.0	1	38.0	36.1	-28.5	-9.5	5.8	41.9	54.0	-12.1
P	7216.20	1.0	1	47.9	36.1	-28.5	-9.5	5.8	51.8	74.0	-22.2
A	8118.23	1.0	1	36.9	37.3	-29.1	-9.5	6.0	41.6	54.0	-12.4
P	8118.23	1.0	1	47.7	37.3	-29.1	-9.5	6.0	52.4	74.0	-21.6
A	9020.25	1.0	1	37.0	37.8	-29.5	-9.5	6.3	42.1	54.0	-11.9
P	9020.25	1.0	1	47.9	37.8	-29.5	-9.5	6.3	53.0	74.0	-21.0

Note: Negative signs (-) in the Margin column signify levels below the limit.

INTERTEK TESTING SERVICES

Company: Casil Technology
 EUT: 900 MHz Cordless Phone
 Model: CTT-900AB (Base unit and Handset)
 Test Mode: Tx @ Middle Channels

Project #: J98011441
 Date of Test: 5/5/98
 Test Site #: 1
 Engineer: Ollie Moyrong *O.M.*

FCC 15.109 Class B Radiated Emissions

Base Unit

Frequency (MHz)	Antenna Location (m)	Antenna Polariz. (H=0/V=1)	Reading (dBuV)	Antenna Factor (dB/m)	Preamp (dB)	Correction Factor (dB)	Cable Loss (dB)	Corrected Reading (dBuV/m)	Limit At 3 m (dBuV/m)	Margin (dB)
916.275	3.0	1	42.5	22.6	-28.0	0.0	6.1	43.2	46.0	-2.8 *

Hand Set

Frequency (MHz)	Antenna Location (m)	Antenna Polariz. (H=0/V=1)	Reading (dBuV)	Antenna Factor (dB/m)	Preamp (dB)	Correction Factor (dB)	Cable Loss (dB)	Corrected Reading (dBuV/m)	Limit At 3 m (dBuV/m)	Margin (dB)
913.675	3.0	1	38.4	22.6	-27.9	0.0	6.1	39.2	46.0	-6.8 *

Note: Negative signs (-) in the Margin column signify levels below the limit.

Readings followed by a ** are quasi-peak measurements.

Frequency range of investigation is 30 - 1000 MHz.

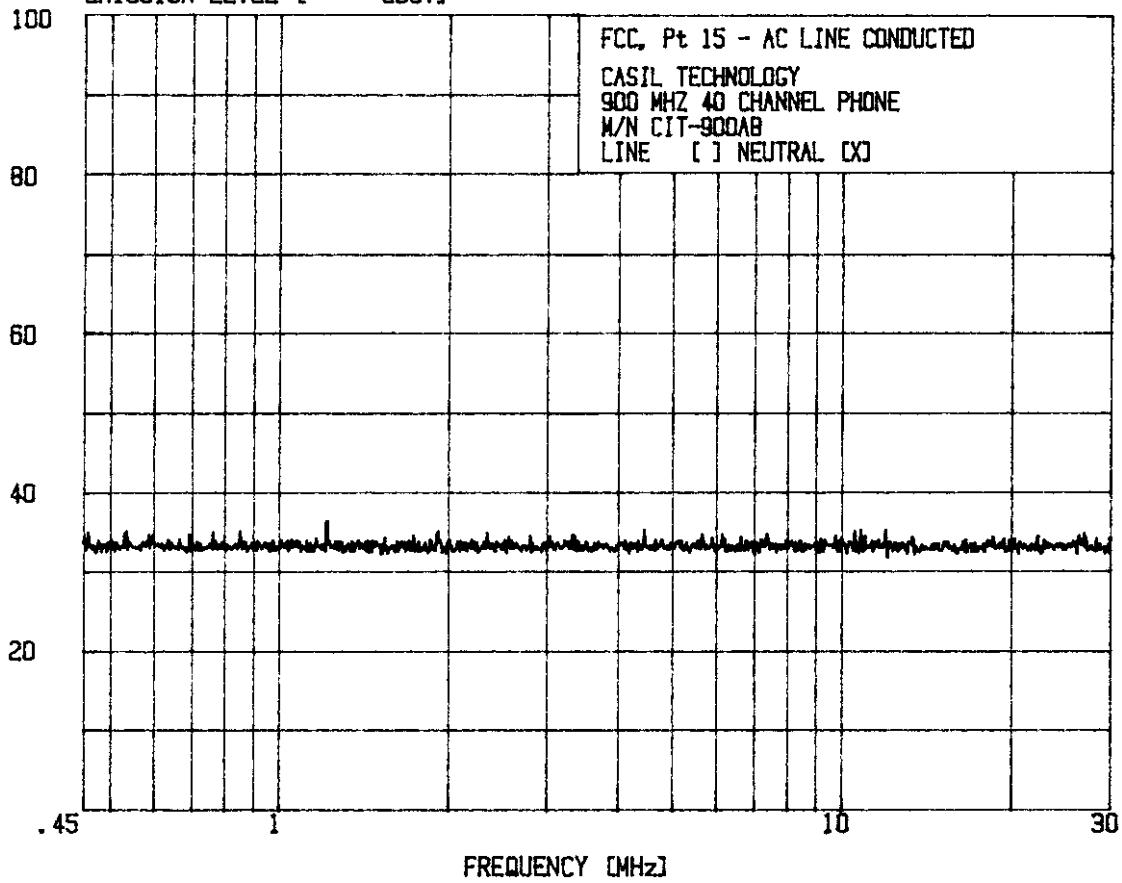
Intertek Testing Services -Menlo Park

Casil Technology Taiwan Ltd., 900 MHz Cordless Telephone

Date of Test: May 5 & 15, 1998

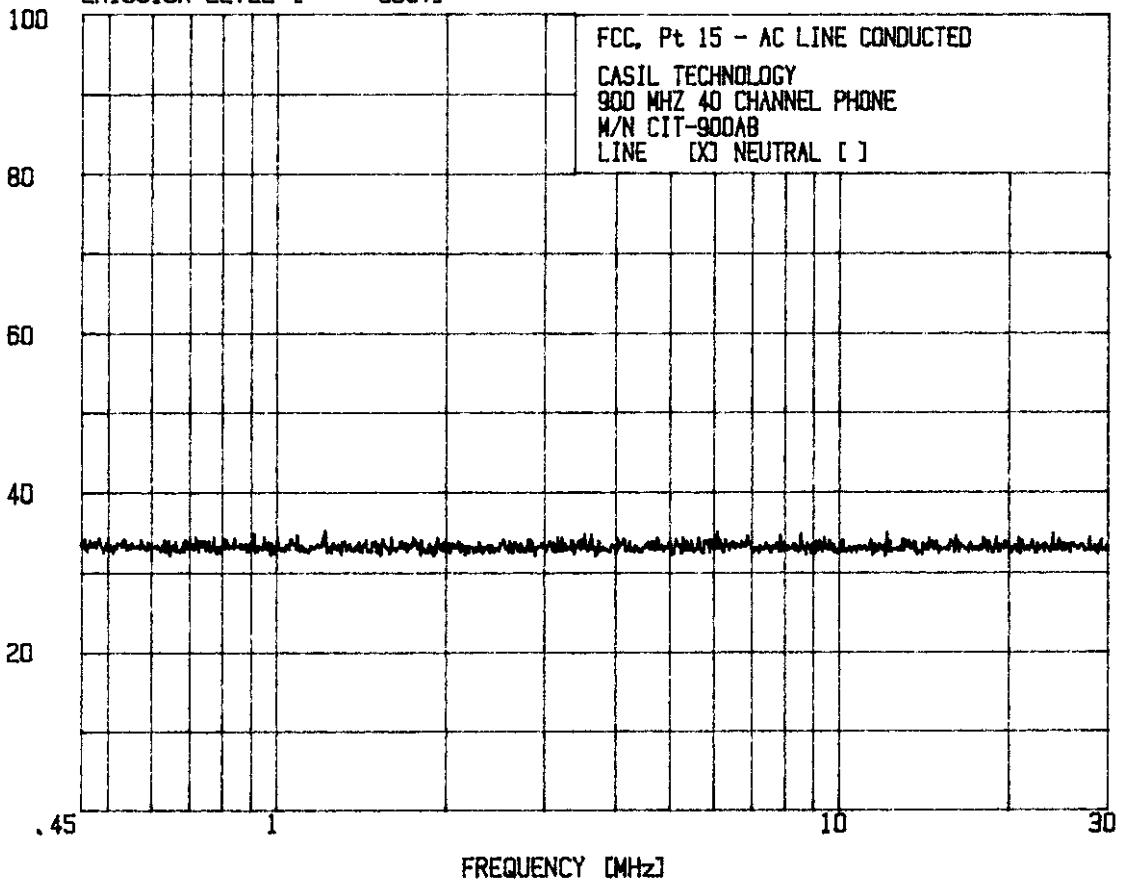
FCC ID: NSJCTT-900AB

3.5 Conducted Emission Data


The data on the following pages list the significant emission frequencies, the limit and the margin of compliance.

Results: Passed by 11.6 dB at 1.221 MHz

Note: a) A complete scan from 0.45 - 30 MHz was made.


ITS, MENLO PARK, CA, USA
EMISSION LEVEL [dBuV]

15 May 1998 14:30:40

ITS, MENLO PARK, CA, USA
EMISSION LEVEL [dBuV]

15 May 1998 14:37:48

¹⁰ See, for example, the discussion of the 1992 Constitutional Convention in the *Constitutional Convention of 1992* (1993).

• [View the full article](#) [View the full article](#) [View the full article](#)

CULTURE AND CULTURAL POLICY

THE JOURNAL OF CLIMATE

1. *What is the relationship between the two variables?*

THE 1990S: A NEW ERA IN THE STUDY OF THE SOCIETY

CHAPTER 10: THE FUTURE OF THE U.S. ECONOMY

11. *Leucosia* (Leucosia) *leucostoma* (Fabricius) (Fig. 11)

10. *W. E. H. Oldham, 1903* (1903) *Proc. Roy. Soc. (London)* **70**, 121.

17. *Leucosia* *leucostoma* *leucostoma* *leucostoma* *leucostoma* *leucostoma* *leucostoma*

¹¹ See, for example, the discussion of the 1992 Constitutional Convention in the *Journal of African Law* (1993) 37(1).

Table 1. The effect of the addition of Fe^{2+} on the reduction of Fe^{3+} by Fe^{2+} in the presence of Fe^{3+} and Fe^{2+} in the presence of Fe^{3+} and Fe^{2+}

19. *Leucosia* *leucosia* (Linné) *Leucosia* *leucosia* (Linné) *Leucosia* *leucosia* (Linné)

1. *What is the relationship between the two variables?*

新北市立图书馆 2013 年度决算报告书

卷之三十一

卷之三

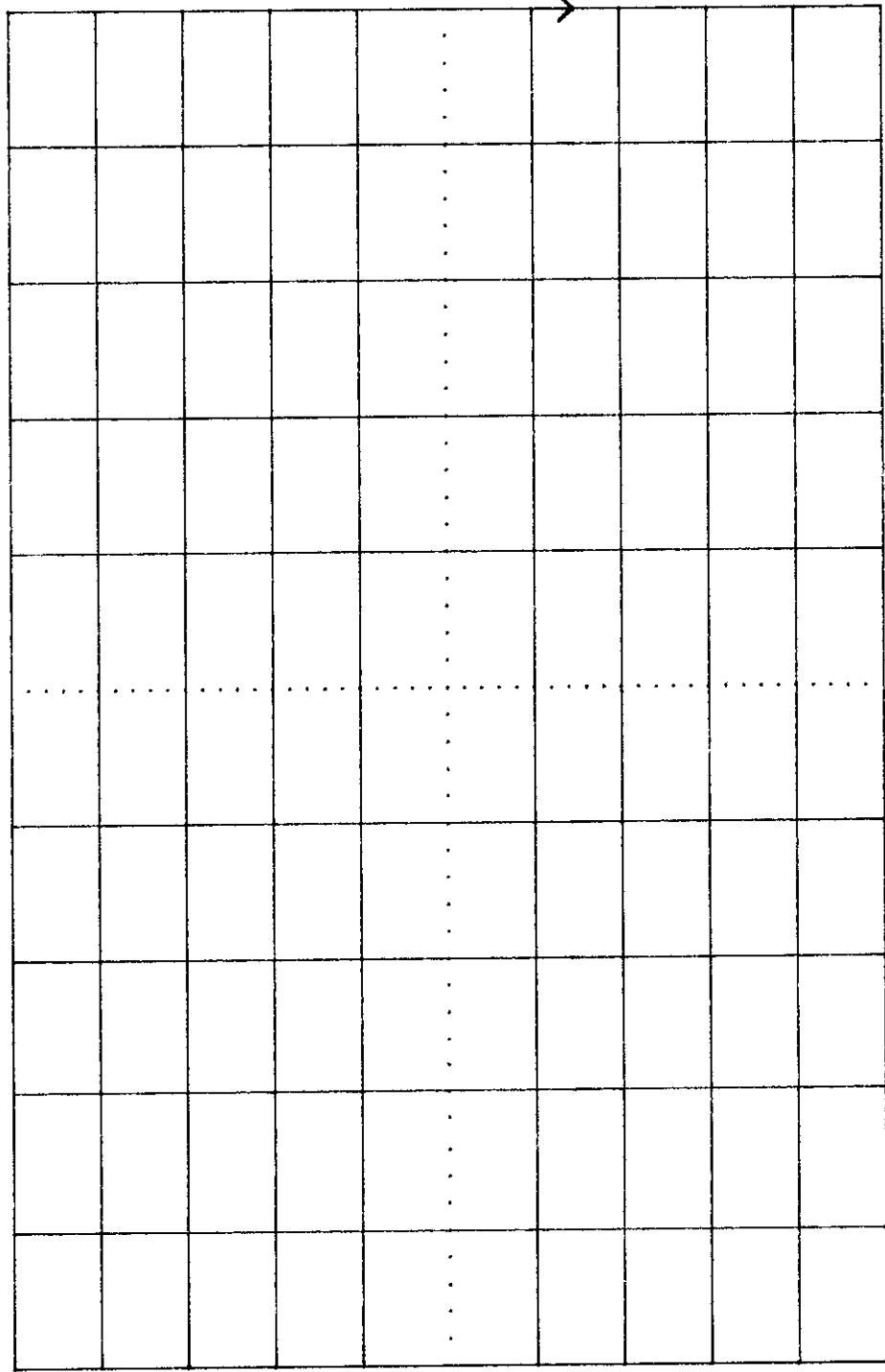
1. *What is the relationship between the two variables?*

Intertek Testing Services -Menlo Park

Casil Technology Taiwan Ltd., 900 MHz Cordless Telephone
FCC ID: NSJCTT-900AB

Date of Test: May 5 & 15, 1998

4.0 Out of Band Emission Plot


The following plots show the relative spurious emission level of the transmitter.

Plot #	Description
1	Base TX Low Channel, 902 MHz - 928 MHz
2	Base TX Low Channel, 902 MHz - 902.2 MHz
3	Base TX Low Channel, 902 Mhzx - 902.2 MHz
4	Base TX Low Channel, 928 MHz- 2 GHz
5	Base TX Low Channel, 2 Ghz - 10 GHz
6	Base TX High Channel, 902 MHz - 928 MHz
7	Base TX High Channel, 928 MHz - 2 GHz
8	Base TX High Channel, 2 Ghz - 10 GHz
9	Handset TX Low Channel, 902 MHz - 928 MHz
10	Handset TX Low Channel, 928 MHz - 2 GHz
11	Handset TX Low Channel, 2 GHz - 10 GHz
12	Handset TX High Channel, 902 MHz - 928 MHz
13	Handset TX High Channel, 927.8 MHz - 928 MHz
14	Handset TX High Channel, 927.8 MHz - 928 MHz
15	Handset TX High Channel, 928 MHz - 2 GHz
16	Handset TX High Channel, 2 Ghz - 10 GHz

Mkr 928. 00MHz

Ref Lv1 -23. 0dBm 10dB / Atten 10dB

-87. 90dBm

902. 00MHz

ResBW 100kHz VidBW 10kHz

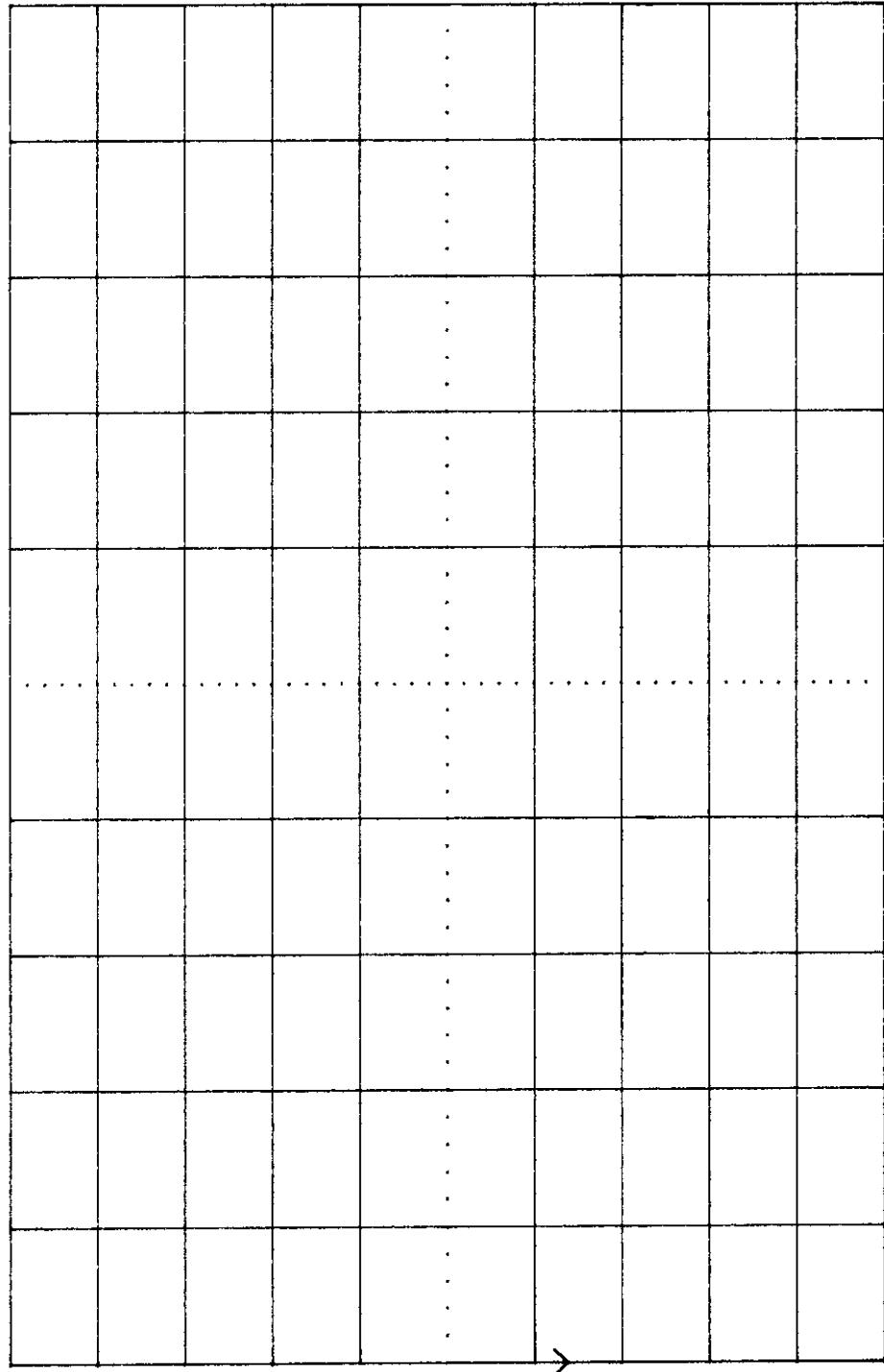
928. 00MHz

SWP 51ms

LEVEL SPAN Mkr 928. 00MHz

Plot # 1

Mkr 902.023.0MHz -23.80dBm
Ref Lvl -23.0dBm 10dB/ Atten 10dB

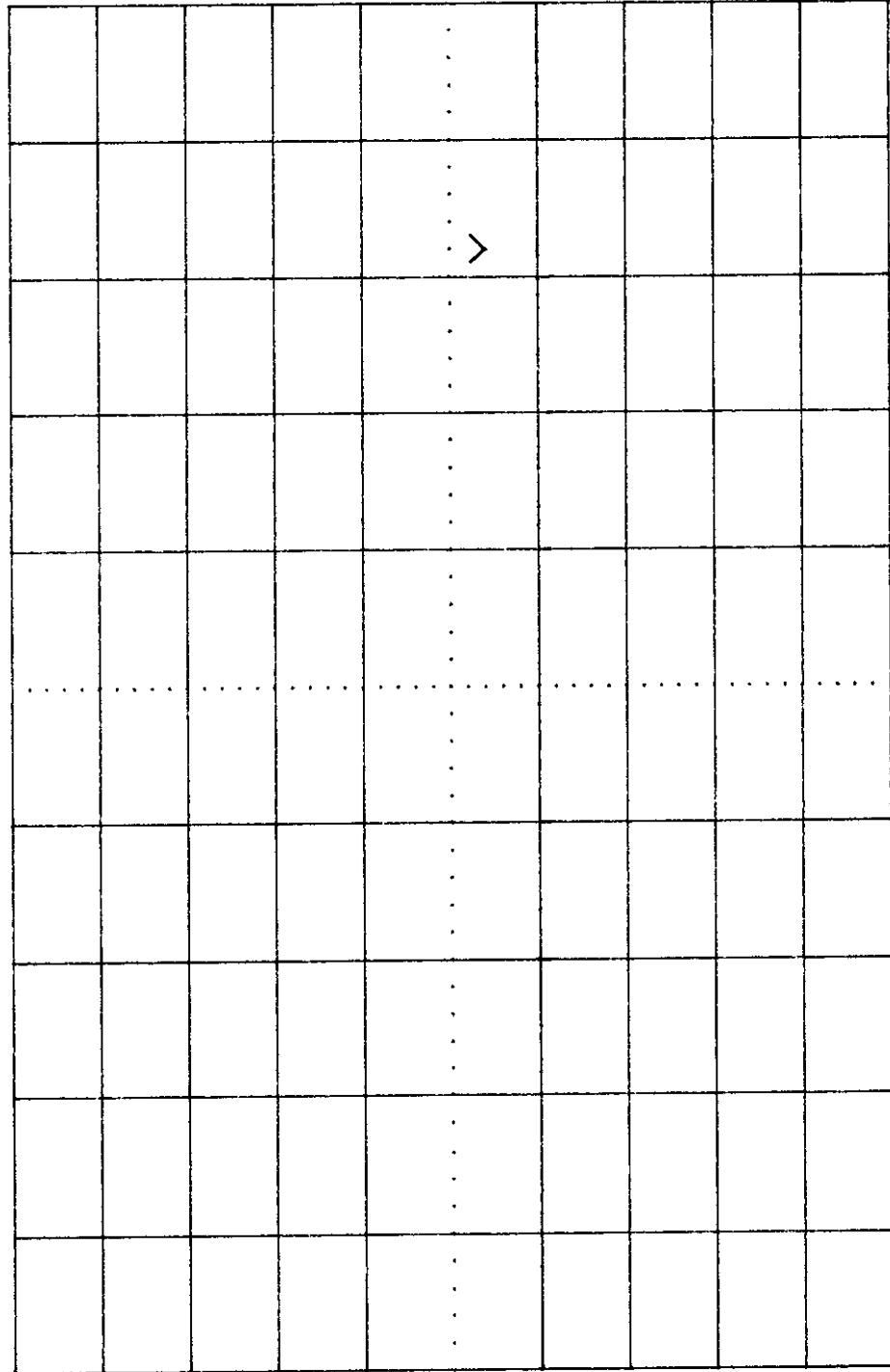

902.000 MHz ResBW 10kHz V idBW 10kHz to 902.200 MHz SWP 50ms

LEVEL	SPAN	Ref Lv1	-23.0 dBm
-------	------	---------	-----------

Plot #2

Mkr 902.000 0MHz
Ref Lv1 -23.0dBm

-87.00dBm
10dB/
Atten 10dB



902.000 0MHz
ResBW 10kHz ViDBW 10kHz SWP 50ms
LEVEL SPAN Mkr 902.000 0MHz

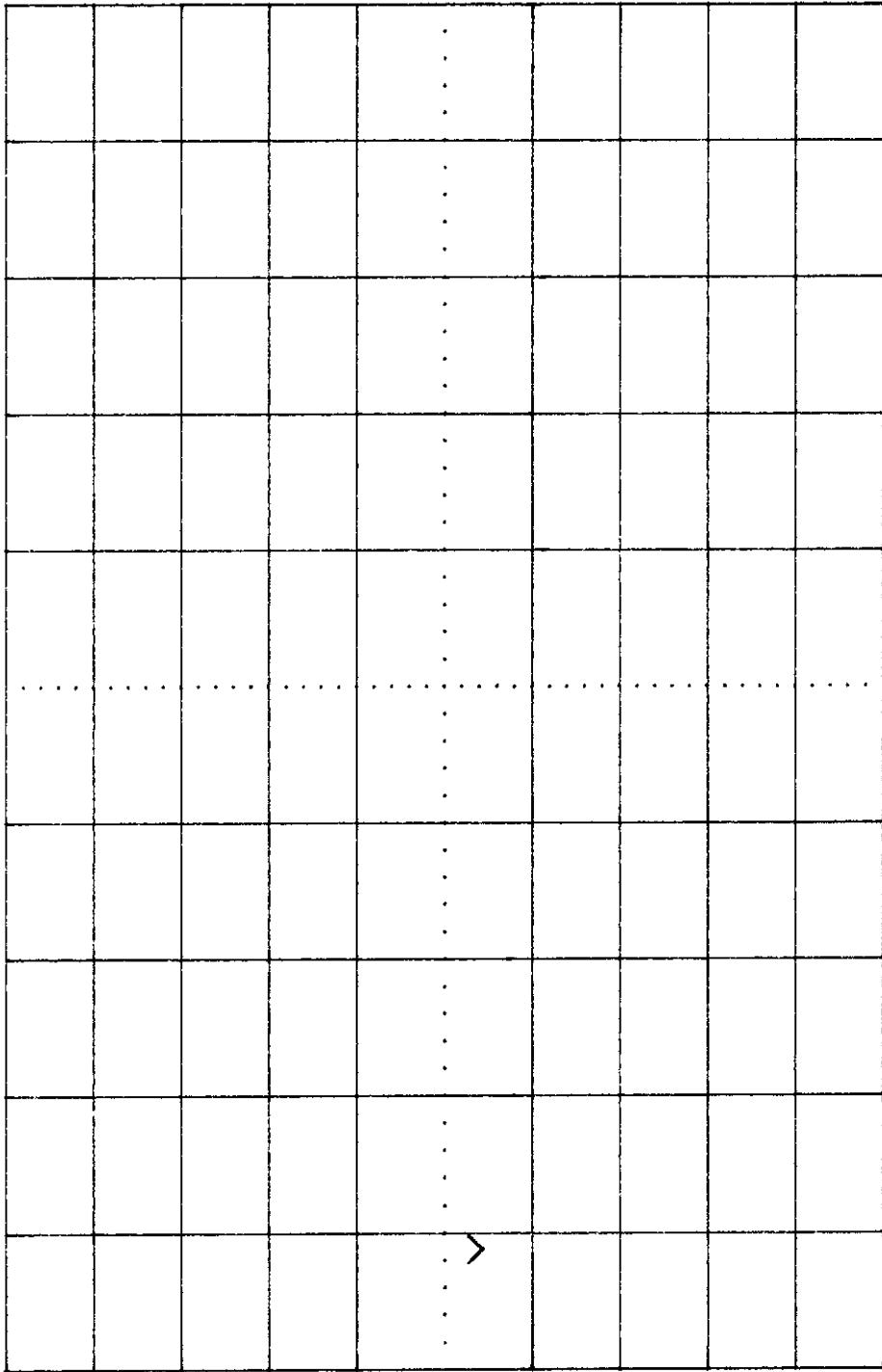
Mkr 1. 807GHz

Ref Lv1 -23. 0dBm 10dB/ Atten 10dB

-77. 30dBm

928MHz

ResBW 100kHz VidBW 10kHz SWP 2. 1s

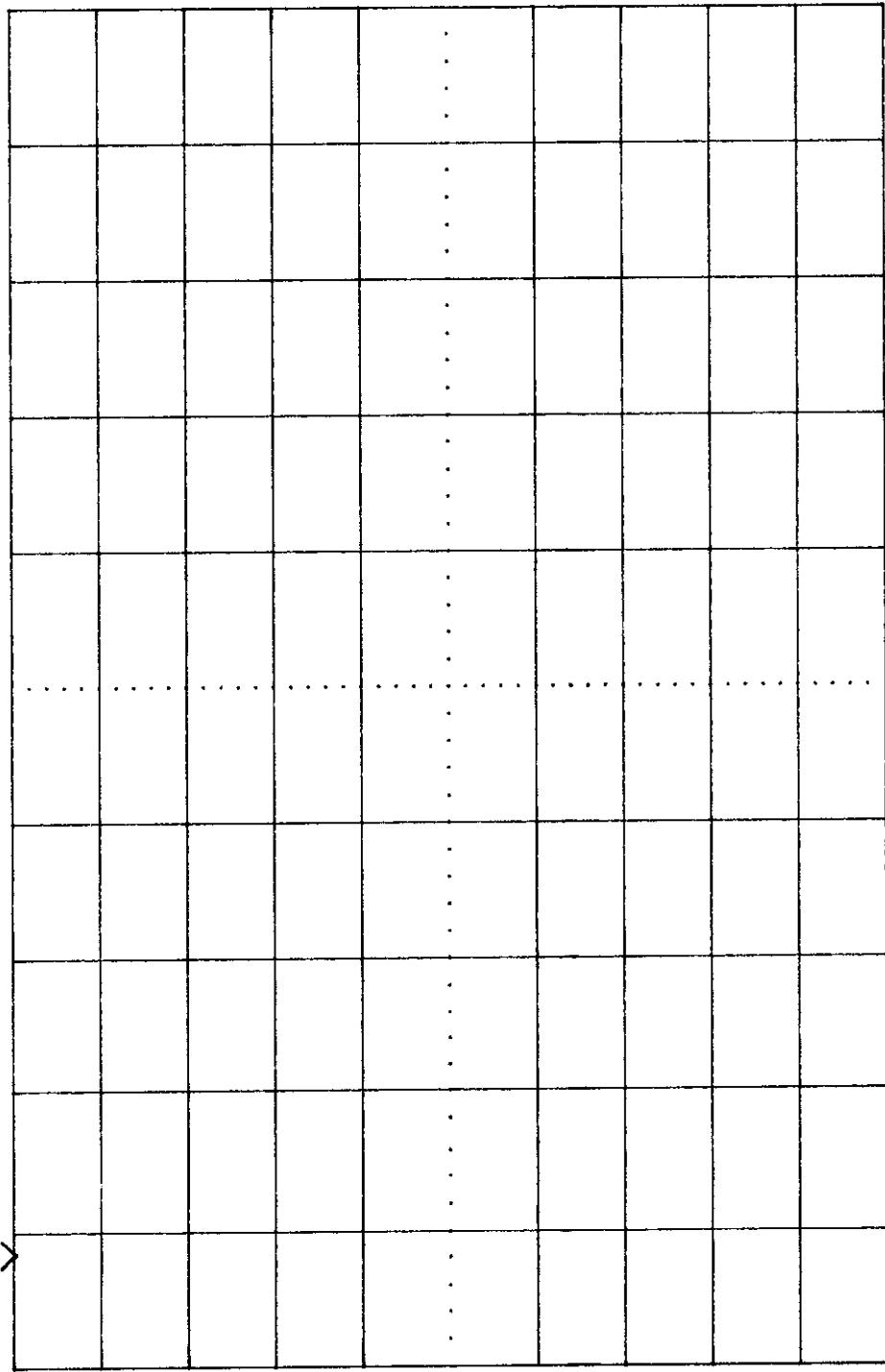

to

2. 000GHz

LEVEL SPAN Stop 2. 000GHz

Plot #4

Mkr 2.704GHz
Ref Lv1 -23.0dBm 10dB/
Atten 10dB



2.000GHz to
ResBW 100kHz VidBW 10kHz SWP 16S
 LEVEL SPAN Stop 10.000GHz

Mkr 904. 16MHz

Ref Lv1 -23. 0dBm

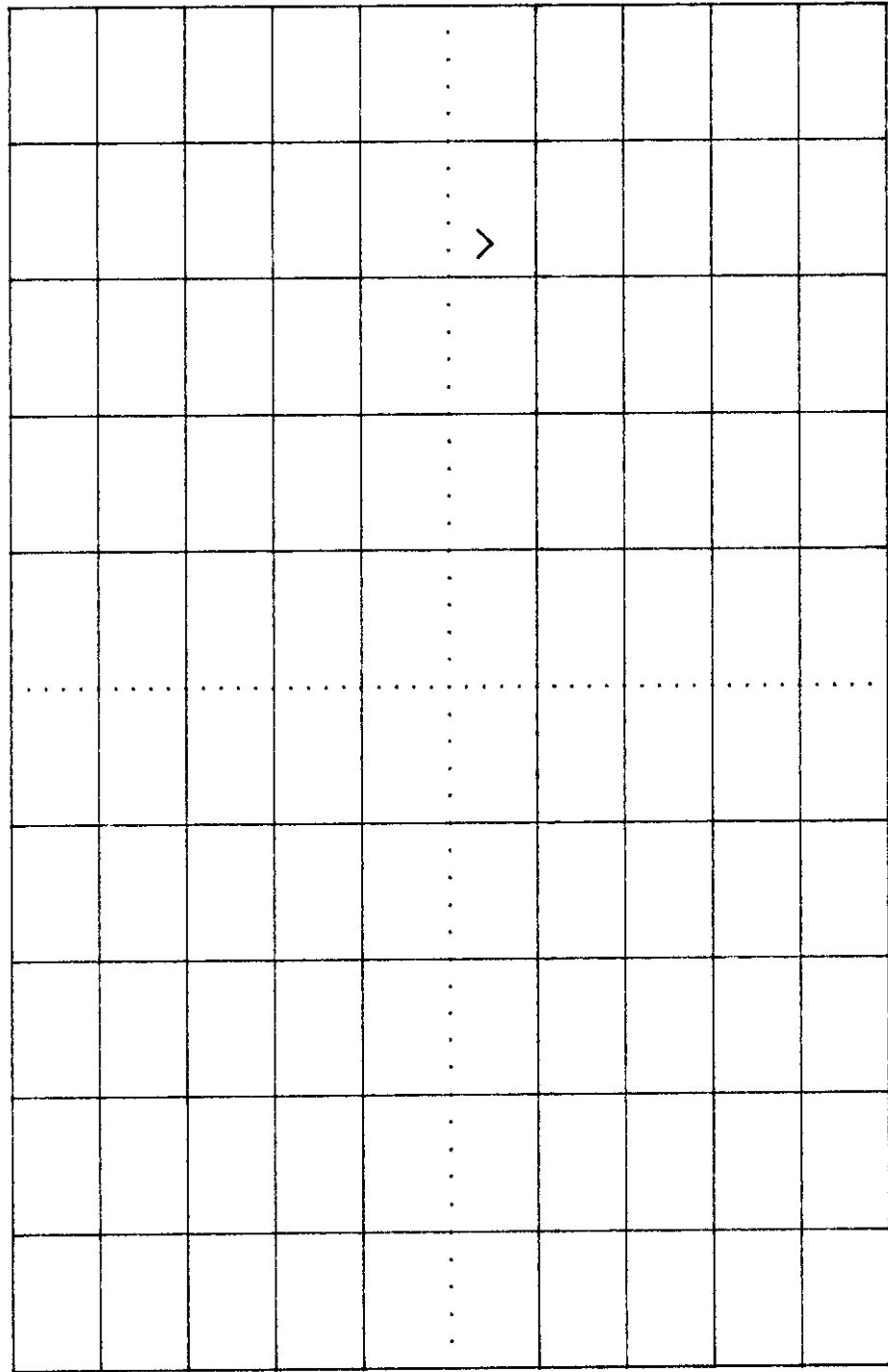
-23. 40dBm

902. 00MHz

ResBW 100kHz

928. 00MHz

SWP 51ms


LEVEL SPAN ResBW 100kHz

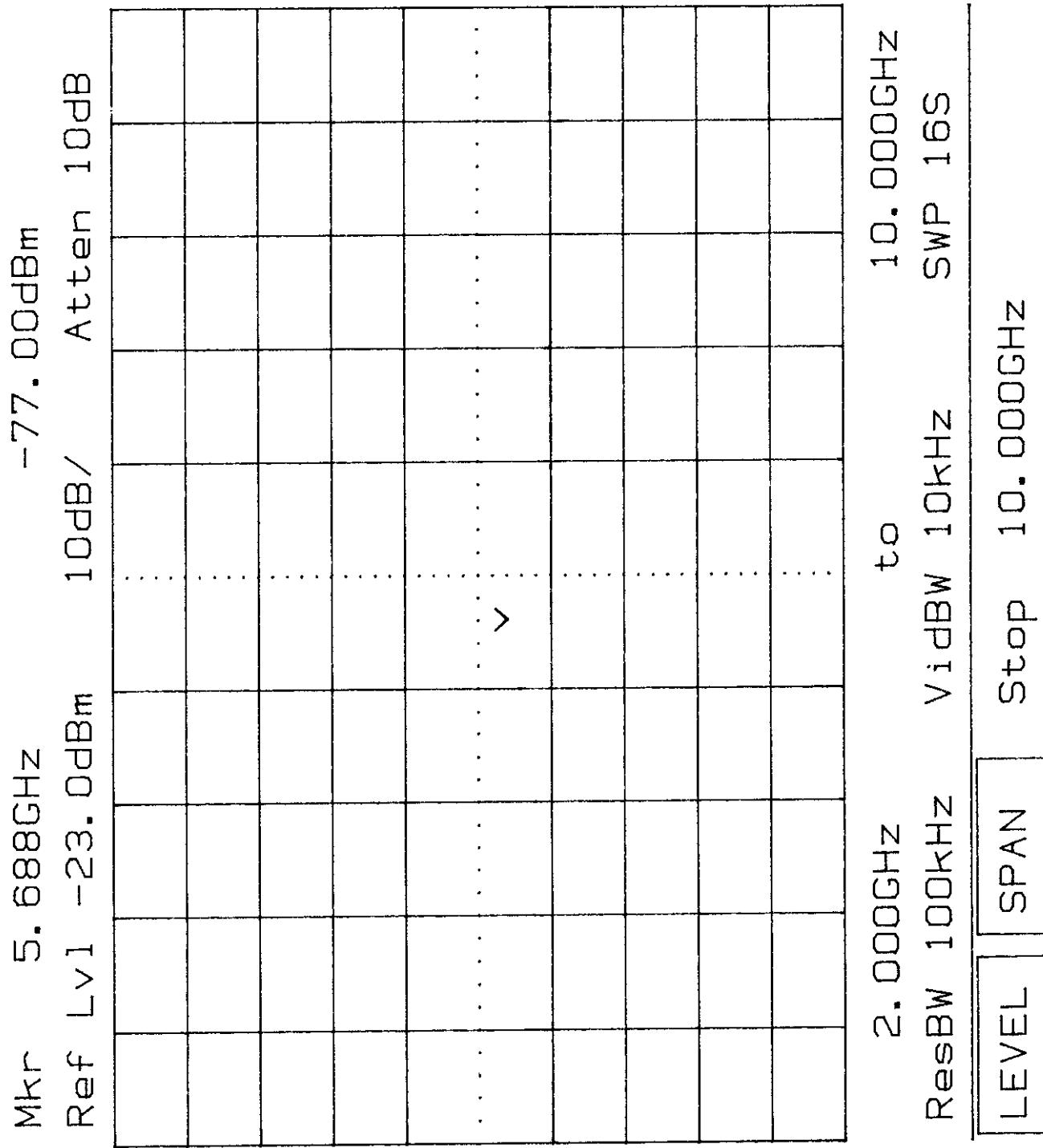
Plot #6

Mkr 1. 811GHz

Ref Lv1 -23. 0dBm 10dB/ Atten 10dB

-78. 20dBm

928MHz

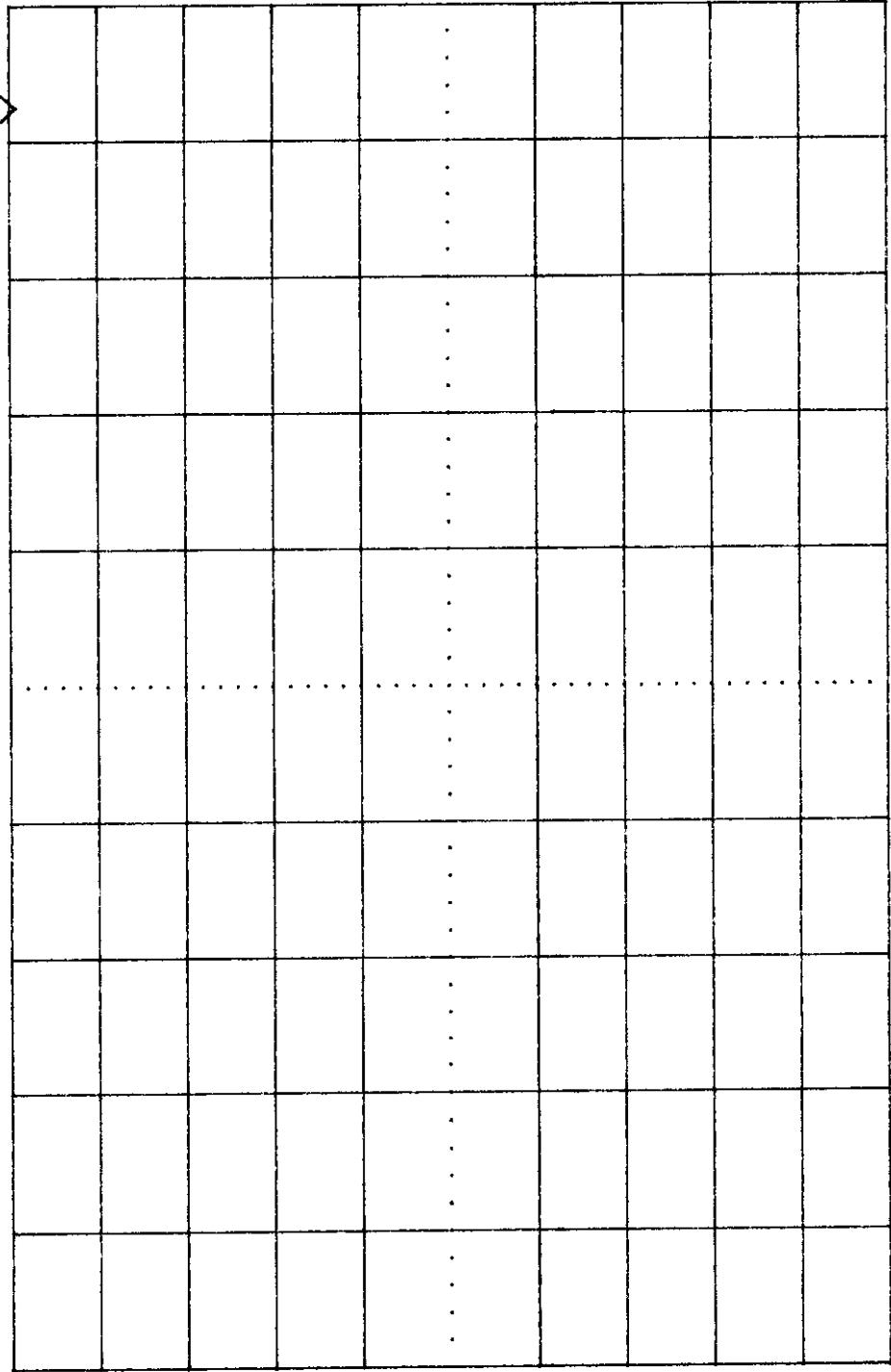

ResBW 100kHz VidBW 10kHz SWP 2. 1S

to

2. 000GHz

LEVEL SPAN Stop 2. 000GHz

Plot #7



Mkr 926.02MHz

-27.00dBm

Ref Lv1 -26.0dBm

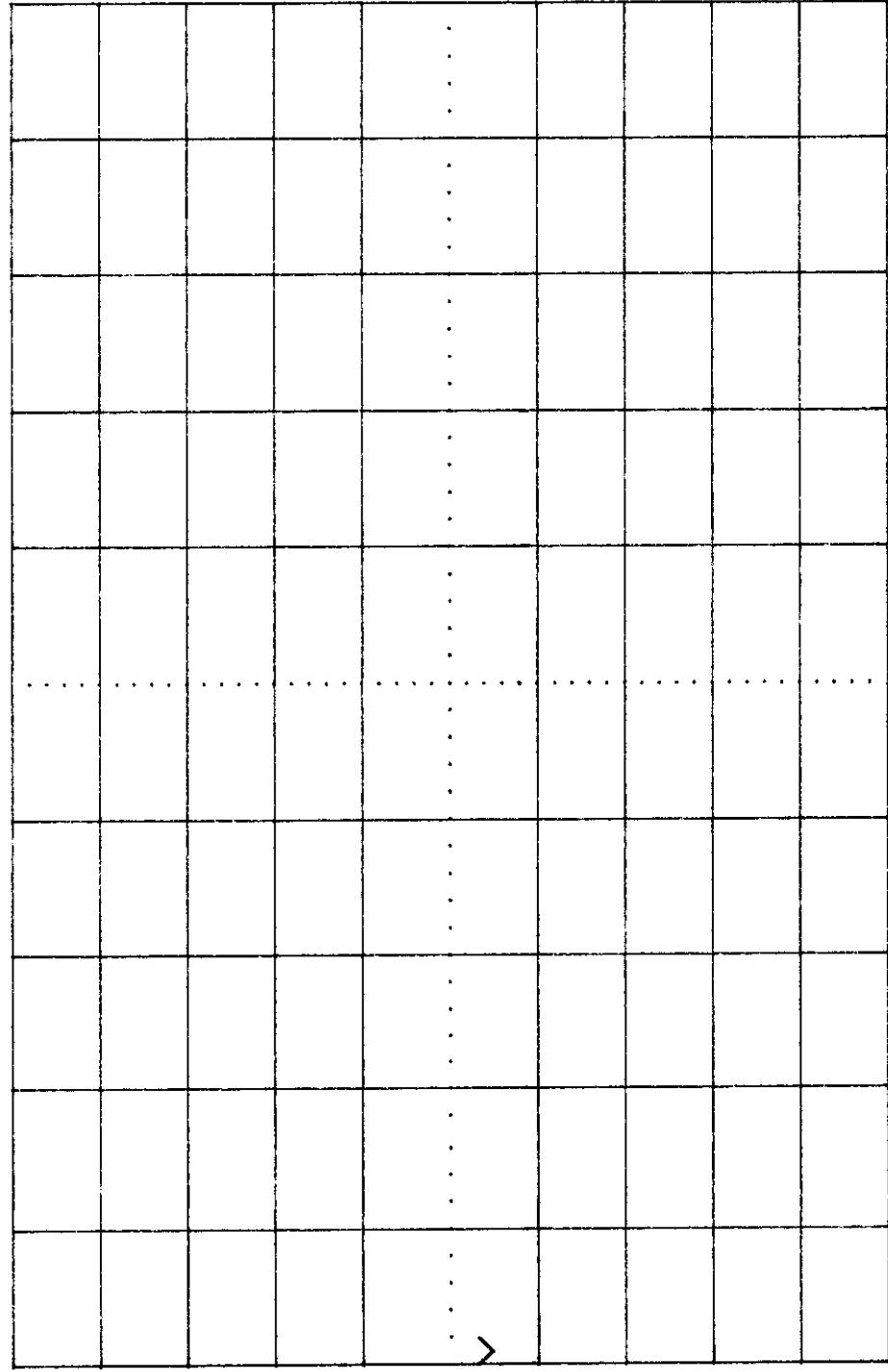
10dB / Atten 10dB

902.00MHz

to

ResBW 100kHz

VidBW 10kHz SWP 51ms


LEVEL SPAN

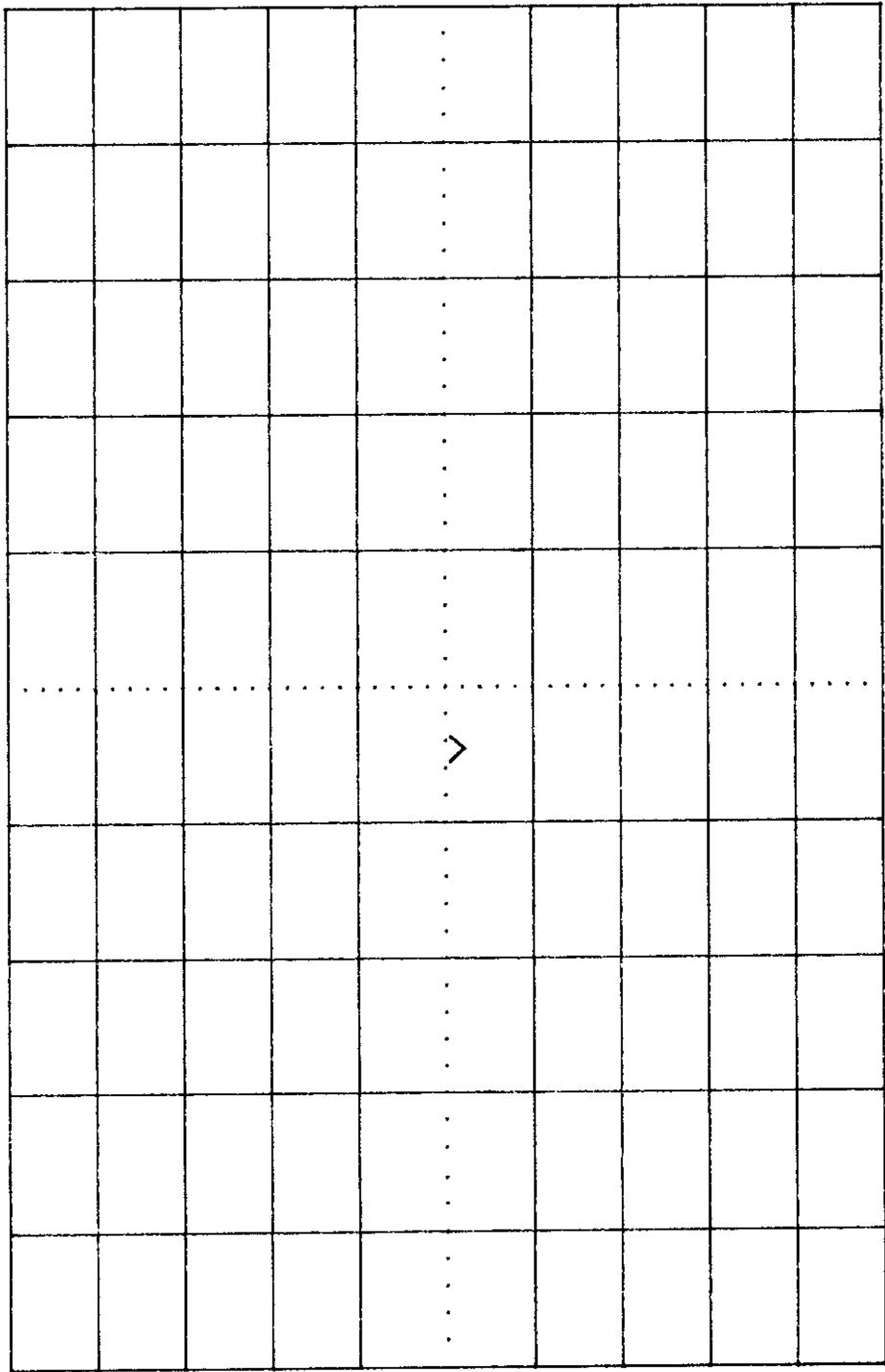
Ref Lv1 -26.0dBm

Mkr 939MHz

Ref Lv1 -26. 0dBm 10dB/ Atten 10dB

-81. 10dBm

928MHz

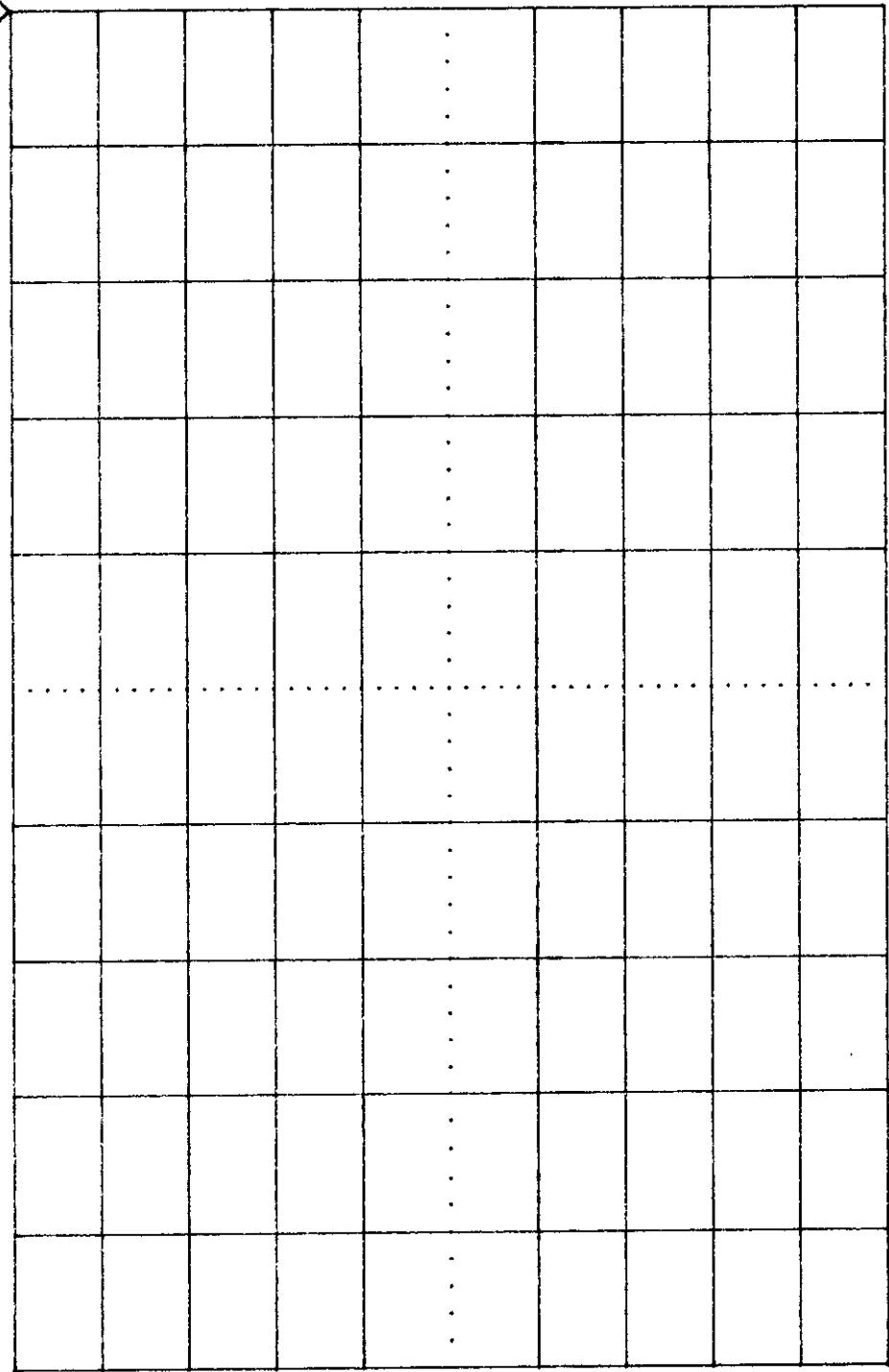

ResBW 100kHz V idBW 10kHz SWP 2. 15

to 2. 000GHz

LEVEL SPAN Mkr 939MHz

Plot #10

Mkr 5.632GHz
Ref Lv1 -26.0dBm 10dB/
Atten 10dB


2.000GHz to 10.000GHz
ResBW 100kHz VidBW 10kHz SWP 16S
 LEVEL SPAN Stop 10.000GHz

Mkr 928. 00MHz

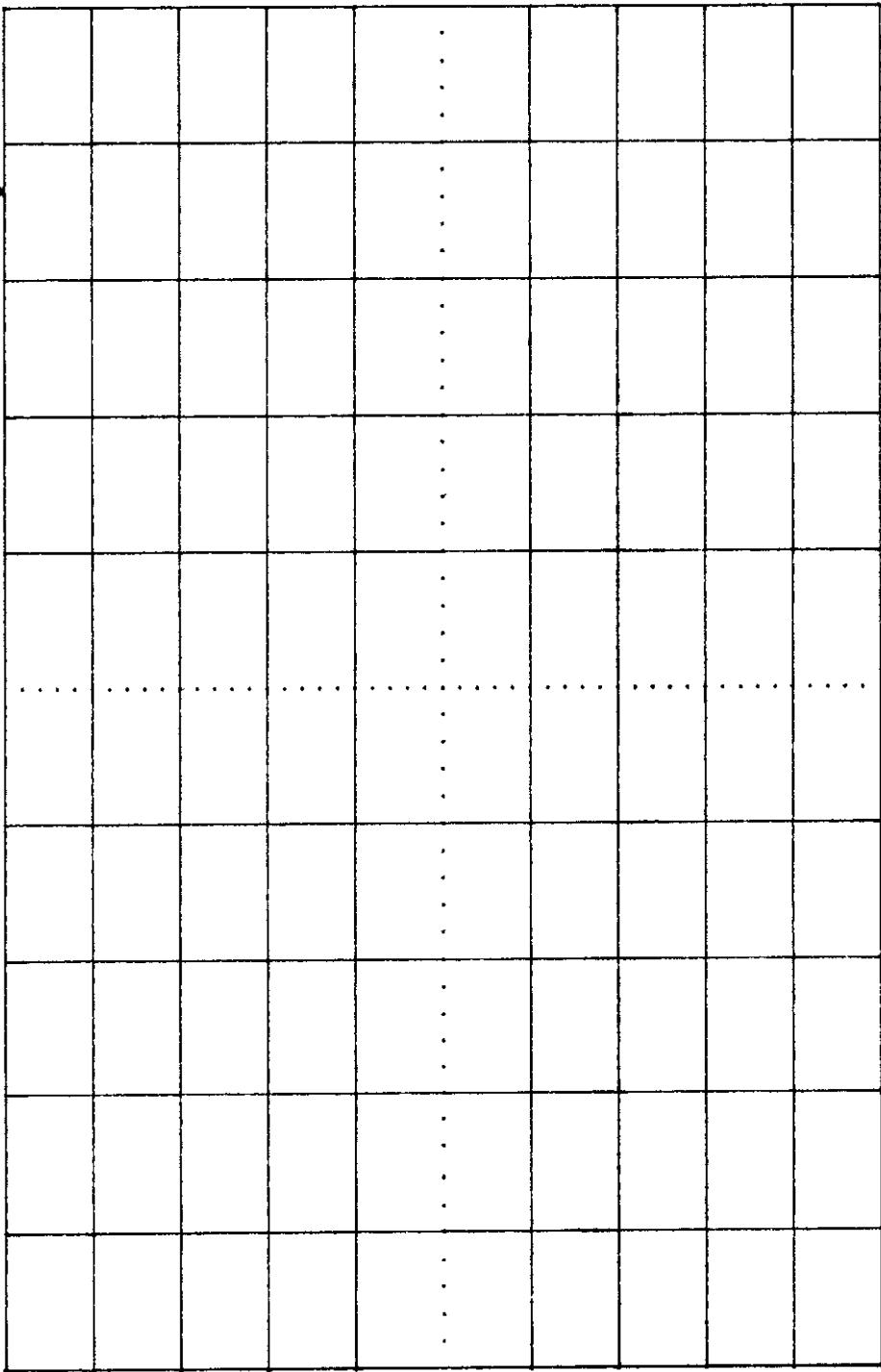
Ref Lv1 -26. 0dBm

-26. 10dBm

10dB /

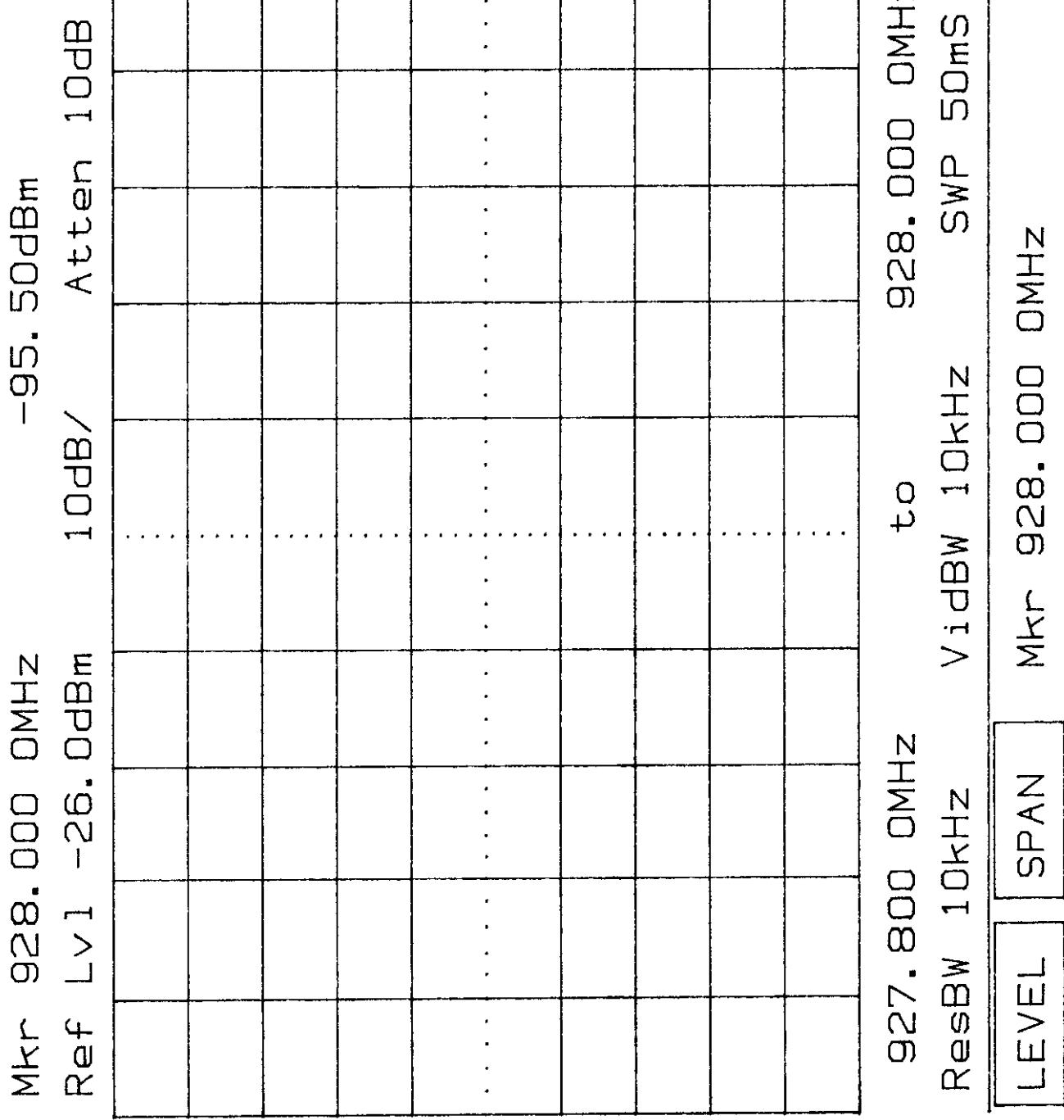
902. 00MHz

ResBW 100kHz V idBW 10kHz

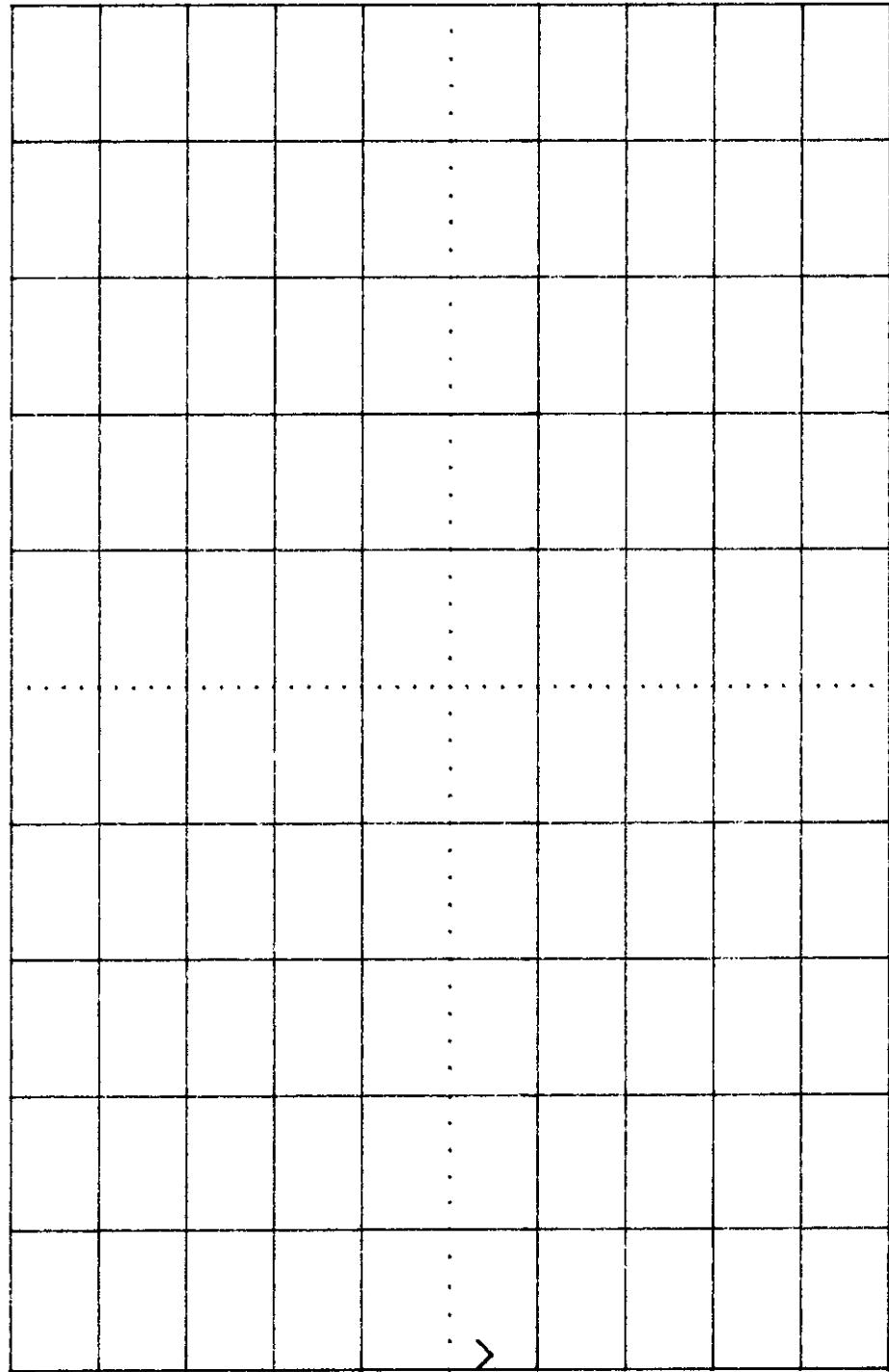

928. 00MHz

SWP 51mS

LEVEL SPAN


Mkr 928. 00MHz

Mkr 927.973 2MHz
Ref Lv1 -26.0dBm 10dBm Atten 10dB

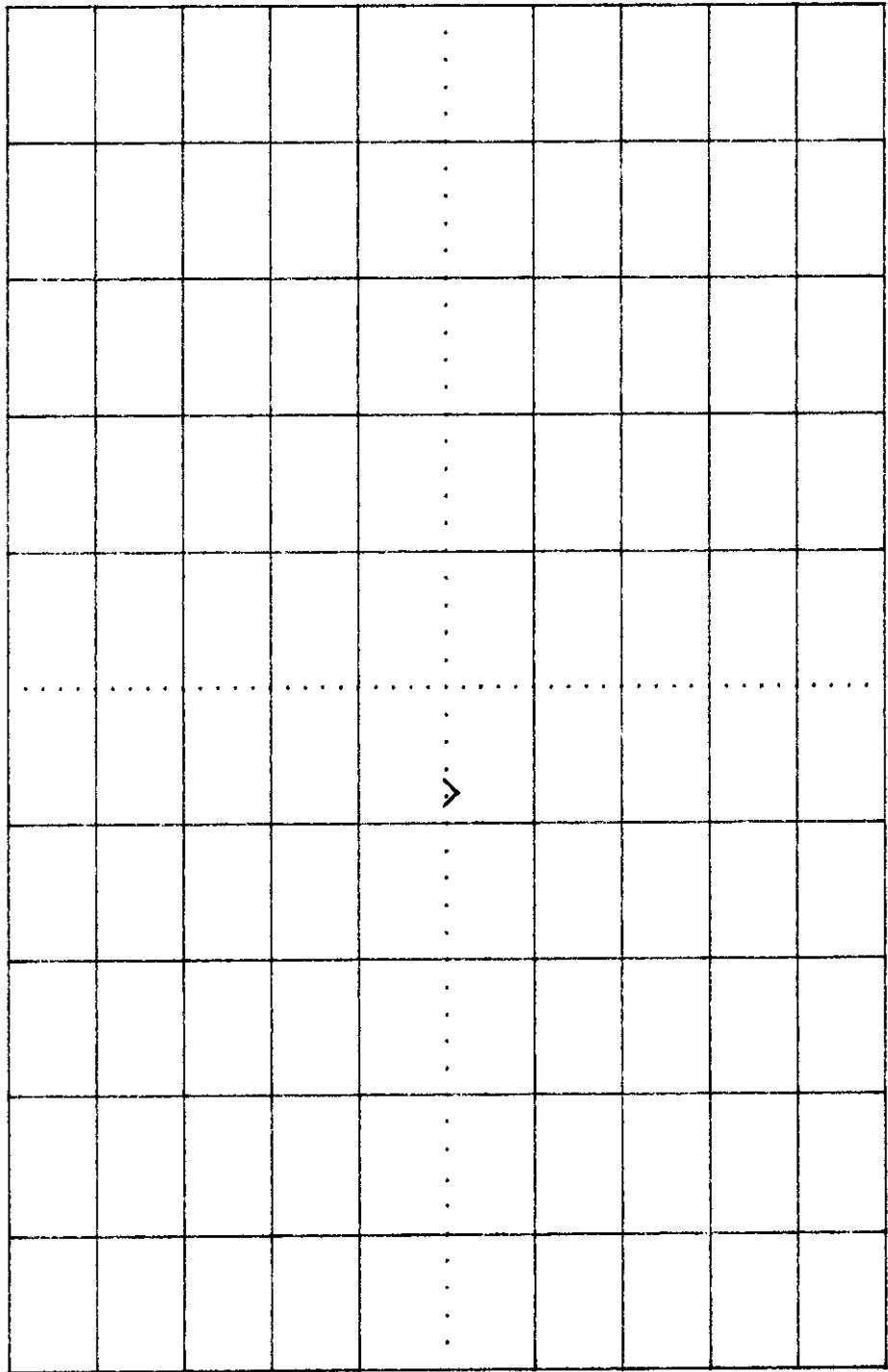

927.800 0MHz to 928.000 0MHz
ResBW 10kHz VidBW 10kHz SWP 50ms

LEVEL SPAN ResBW 10kHz

Mkr 940MHz

Ref Lvl -26. 0dBm 10dB / Atten 10dB

928MHz


ResBW 100kHz VidBW 10kHz SWP 2. 1s

to

2. 000GHz

LEVEL SPAN Mkr 940MHz

Mkr	5. 384GHz	-77. 50dBm
Ref	Lv1 -26. 0dBm	10dB/ Atten 10dB

2. 000GHz BasBW 100kHz V idBW 10kHz to 10. 000GHz SWP 16S

LEVEL SPAN Stop 10.000GHz

Intertek Testing Services -Menlo Park

Casil Technology Taiwan Ltd., 900 MHz Cordless Telephone
FCC ID: NSJCTT-900AB

Date of Test: May 5 & 15, 1998

5.0 Antenna Requirement

<input checked="" type="checkbox"/>	The transmitter uses a permanently connected antenna.
	The antenna is affixed to the EUT using a unique connector which allows for replacement of a broken antenna, but does NOT use a standard antenna jack or electrical connector.
	The EUT requires professional installation. Please refer to the attached documentation for details).

Intertek Testing Services -Menlo Park

Casil Technology Taiwan Ltd., 900 MHz Cordless Telephone
FCC ID: NSJCTT-900AB

Date of Test: May 5 & 15, 1998

6.0 Equipment Photographs

Photographs of the EUT are attached.