EMC TEST REPORT

For

Microwave Oven

Model Number: WP700D-N20, WP700D-S20 FCC ID: NRTSZJENSMWO20L1

Report Number: WT088002719

Test Laboratory : Shenzhen Academy of Metrology and

Quality Inspection EMC Laboratory

Guangdong EMC Compliance Test Center

Site Location : Bldg. of Metrology &Quality Inspection,

Longzhu Road, Shenzhen, Guangdong,

China

Tel : 0086-755-26941637, 26941529, 26941531

Fax : 0086-755-26941545 Email : emc@smq.com.cn

TABLE OF CONTENTS

TEST	REPORT DECLARATION3	,
1.	TEST RESULTS SUMMARY4	ļ
2.	GENERAL INFORMATION5	į
	2.1. Report information	
	2.2. Laboratory Accreditation and Relationship to Customer	
	2.3. Measurement Uncertainty	
3.	PRODUCT DESCRIPTION6	
	3.1. EUT Description6)
	3.2. Related Submittal(s) / Grant (s)6	
	3.3. Block Diagram of EUT Configuration6	
	3.4. Operating Condition of EUT6)
	3.5. Support Equipment6	
	3.6. Test Conditions	,
	3.7. Modifications6	,
4.	TEST EQUIPMENT USED	,
	4.1. Test Equipment Used to Measure Conducted Disturbance	,
	4.2. Test Equipment Used to Measure Radiated Disturbance	,
5.	CONDUCTED DISTURBANCE TEST8	,
	5.1. Test Standard and Limit	į
	5.2. Test Procedure	,
	5.3. Test Arrangement	,
	5.4. Test Data	,
6.	RF POWER OUTPUT MEASUREMENT AND RESULT10	i
7.	RADIATED DISTURBANCE TEST11	
	7.1. Test Standard and Limit	
	7.2. Test Procedure	
	7.3. Test Arrangement	
	7.4. Test Data	
8.	OPERATING FREQUENCY TEST14	ļ
	8.1. Test Standard	
	8.2. Test Procedure	
	8.3. Test Data	
9.	TABLE LIST	,
APPE	NDIX I TEST CURVES16	
	NDIX II TEST PICTURE23	

TEST REPORT DECLARATION

Applicant : Shenzhen Jens Electric Co., Ltd.

Block 71, Changxing Industrial Zone, Gongming Town, Baoan,

Shenzhen, China.

Manufacturer : Shenzhen Jens Electric Co., Ltd.

Block 71, Changxing Industrial Zone, Gongming Town, Baoan,

Shenzhen, China.

EUT Description : Microwave oven

Model Number : WP700D-N20, WP700D-S20

FCC ID : NRTSZJENSMWO20L1

Test Standards:

FCC Part 18 18.301, 18.305, 18.307

The EUT described above is tested by Shenzhen Academy of Metrology and Quality Inspection EMC Laboratory to determine the maximum emissions from the EUT. Shenzhen Academy of Metrology and Quality Inspection EMC Laboratory is assumed full responsibility for the accuracy of the test results. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4 (2003), FCC MP-5 and the energy emitted by the sample EUT tested as described in this report is in compliance with FCC Rules Part 18.301, 18.305, 18.307.

The test report is valid for above tested sample only and shall not be reproduced in part without written approval of the laboratory.

Report No.: WT088002719 Page 3/37

1. TEST RESULTS SUMMARY

Table 1 Test Results Summary

Test Items	FCC Rules	Test Results
Conducted Disturbance	18.307	Pass
Radiated disturbance	18.305	Pass
Operating Frequency	18.301	Pass

Report No.: WT088002719 Page 4/37

2. GENERAL INFORMATION

2.1. Report information

- 2.1.1. This report is not a certificate of quality; it only applies to the sample of the specific product/equipment given at the time of its testing. The results are not used to indicate or imply that they are application to the similar items. In addition, such results must not be used to indicate or imply that SMQ approves recommends or endorses the manufacture, supplier or use of such product/equipment, or that SMQ in any way guarantees the later performance of the product/equipment.
- 2.1.2. The sample/s mentioned in this report is/are supplied by Applicant, SMQ therefore assumes no responsibility for the accuracy of information on the brand name, model number, origin of manufacture or any information supplied.
- 2.1.3.Additional copies of the report are available to the Applicant at an additional fee. No third part can obtain a copy of this report through SMQ, unless the applicant has authorized SMQ in writing to do so.

2.2. Laboratory Accreditation and Relationship to Customer

The testing report were performed by the Shenzhen Academy of Metrology and quality Inspection EMC Laboratory (Guangdong EMC compliance testing center), in their facilities located at Bldg. of Metrology & Quality Inspection, Longzhu Road, Nanshan District, Shenzhen, Guangdong, China. At the time of testing, Laboratory is accredited by the following organizations:

China National Accreditation Committee for Laboratories (CNAL) accredits the Laboratory for conformance to FCC standards, EMC international standards and EN standards. The Registration Number is L0579.

The Laboratory is listed in the United States of American Federal Communications Commission (FCC), and the registration number are 97379(open area test site) and 274801(semi anechoic chamber).

The Laboratory is listed in Voluntary Control Council for Interference by Information Technology Equipment (VCCI), and the registration number are R-1974(open area test site), R-1966(semi anechoic chamber), C-2117(mains ports conducted interference measurement) and T-180(telecommunication ports conducted interference measurement).

The Laboratory is registered to perform emission tests with Industry Canada (IC), and the registration number is IC4174.

TUV Rhineland accredits the Laboratory for conformance to IEC and EN standards, the registration number is E2024086Z02.

2.3. Measurement Uncertainty

Available upon request.

Report No.: WT088002719 Page 5/37

3. PRODUCT DESCRIPTION

3.1. EUT Description

Description : Microwave oven

Applicant : WP700D-N20, WP700D-S20 Model Number : Shenzhen Jens Electric Co., Ltd.

Input : AC120V/60Hz

Rated Microwave Power : 700W

Magnetron : JENS JM002

Remark: The sameness and differences between WP700D-N20 and WP700D-S20 are as follows:

- 1, Above two models belong to the same series products, most relevant parameter, such as microwave input power, output power, cavity capacity, interlock switch, and all safety component, are exactly the same.
- 2, Above two products are all digital controlled.
- 3, The difference between both models:

The model name, control board and oven door's appearance.

3.2. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: NRTSZJENSMWOC20L1 filing to comply with Section 18.301, 18.305, 18.307 of the FCC Part 18, Subpart C Rules.

3.3. Block Diagram of EUT Configuration

Power Supply

EUT

3.4. Operating Condition of EUT

Test mode 1: P10 (Full power microwave output)

3.5. Support Equipment

N/A

3.6. Test Conditions

Temperature: 23-24℃ Relative Humidity: 33-43%

3.7. Modifications

No modification was made.

Report No.: WT088002719 Page 6/37

4. TEST EQUIPMENT USED

4.1. Test Equipment Used to Measure Conducted Disturbance

Table 2 Conducted Disturbance Test Equipment

No.	Equipment	Manufacturer	Model No.	Last Cal.	Cal. Interval
SB2603	EMI Test Receiver	Rohde & Schwarz	ESCS30	Jan.24, 2008	1 Year
SB4357	AMN	Rohde & Schwarz	ESH2-Z5	Jan.24, 2008	1 Year

4.2. Test Equipment Used to Measure Radiated Disturbance

Table 3 Radiated Disturbance Test Equipment

No.	Equipment	nent Manufacturer		Last Cal.	Cal. Interval
SB3436	EMI Test Receiver Rohde & Schwarz		ESI26	Jan.24, 2008	1 Year
SB3440	Bilog Antenna	Chase	CBL6112B	Jan.24, 2008	1 Year
SB3435 Horn Antenna		Rohde & Schwarz	HF906	Jan.24, 2008	1 Year

Report No.: WT088002719 Page 7/37

5. CONDUCTED DISTURBANCE TEST

5.1. Test Standard and Limit

5.1.1.Test Standard

FCC Part 18

5.1.2.Test Limit

Table 4 Conducted Disturbance Test Limit (Part 18 consumer device)

Fraguenay	Limit (dBµV)			
Frequency	Quasi-peak Level	Average Level		
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *		
500kHz~5MHz	56	46		
5MHz~30MHz	60	50		

^{*} Decreasing linearly with logarithm of the frequency

5.2. Test Procedure

The EUT was set up according to the guideline of ANSI C63.4: 2003 & FCC MP-5 for conducted emissions. The EUT is put on a table of non-conducting material that is 40cm high. The vertical conducting wall of shielding is located 80cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI test receiver (R&S Test Receiver ESCS30) is used to test the emissions form both sides of AC line. The bandwidth of EMI test receiver is set at 9kHz.

5.3. Test Arrangement

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application. The detailed information refers to test picture.

5.4. Test Data

The emissions don't show in below are too low against the limits, the test curves are shown in the APPENDIX I

Report No.: WT088002719 Page 8/37

Table 5 Conducted Disturbance Test Data

Model No.: WP700D-N20

Test Mode: 1

		Line			Neutral				
Frequency	Quasi	-Peak	Aver	age	Енодионах	Quasi-	Peak	Average	
(MHz)	Reading (dBµV)	Limit (dBµV)	Reading (dBµV)	Limit (dBµV)	Frequency (MHz)	Reading (dBµV)	Limit (dBµV)	Reading (dBµV)	Limit (dBµV)
0.150	49.5	66	21.6	56	0.165	48.7	65.2	21.5	55.2
0.210	46.1	63.2	21.8	53.2	0.230	46.3	62.4	19.8	52.4
0.250	49.6	61.7	21.1	51.7	0.270	43.2	61.1	18.6	51.1
0.265	47.5	61.3	21.4	51.3	0.340	39.6	59.2	15.2	49.2
0.435	40.8	57.1	14.6	47.1	0.522	34.6	56	10.6	46
0.510	42.7	56	15.2	46	0.575	35.1	56	10.0	46

Table 6 Conducted Disturbance Test Data

Model No.: WP700D-S20

Test Mode: 1

		Line			Neutral				
Frequency	Quasi	-Peak	Avei	age	Енодионах	Quasi-	Peak	Average	
(MHz)	Reading (dBµV)	Limit (dBµV)	Reading (dBµV)	Limit (dBµV)	Frequency (MHz)	Reading (dBµV)	Limit (dBµV)	Reading (dBµV)	Limit (dBµV)
0.160	40.5	65.4	17.2	55.4	0.165	34.5	65.2	12.1	55.2
0.195	37.3	63.8	14.0	53.8	0.225	33.4	62.6	12.3	52.6
0.245	35.8	61.9	12.9	51.9	0.320	31.4	59.7	10.8	49.7
0.460	37.1	56.7	12.3	46.7	0.370	28.6	58.5	9.6	48.5
0.495	37.4	56.1	11.8	46.1	0.505	33.0	56	8.2	46
0.505	36.8	56	11.7	46	0.545	32.1	56	8.9	46

Report No.: WT088002719 Page 9/37

6. RF POWER OUTPUT MEASUREMENT AND RESULT

The Calorimetric Method was used to determine maximum output power. A 1000 ml water load was placed in the center of the oven. A thermometer was used to measure temperature rise.

Power(W) =
$$\frac{(4.2 Joules / Cal) * (VolumeInml) * (TemperatureRise)}{TimeinSeconds}$$

Model No.: WP700D-N20 Magnetron type: JENS JM002

Quantity of Water(ml)	Starting Temperature(°C)	Final Temperature(($^{\circ}$ C)	Elasped Time(Second)
1000	20.7	34.5	120

$$Power(W) = \frac{(4.2) * (1000) * (13.8)}{120}$$

Power(W)=483

Model No.: WP700D-S20 Magnetron type: JENS JM002

Quantity of Water(ml)	Starting Temperature(°C)	Final Temperature(($^{\circ}$ C)	Elasped Time(Second)
1000	20.6	33.5	120

$$Power(W) = \frac{(4.2)*(1000)*(12.9)}{120}$$

Power(W)=452

Report No.: WT088002719 Page 10/37

7. RADIATED DISTURBANCE TEST

7.1. Test Standard and Limit

7.1.1.Test Standard

FCC Part 18

7.1.2.Test Limit

Table 7 Radiated Disturbance Test Limit

Operating Frequency	RF Power generated by equipment(watts)	Field strength limit $(\mu V/m)$	Distance (m)
Any ISM Frequency	Below 500	25	300
	500 or more	25×SQRT(power/500)	300

^{*}For the EUT of this test report, the measured RF power is below 500W, and at test distance of 3 meters, the test limit is provided as $68.0 dB \mu V/m$ according to the table above.

7.2. Test Procedure

The EUT was set up according to the guideline of ANSI C63.4: 2003 & FCC MP-5 for radiated emissions. The EUT is placed on a turntable, which is 0.8 meter above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can move up and down between 1 to 4 meters to find out the maximum emission level. Broadband antenna is used as a receiving antenna. Both horizontal and vertical polarization of the antenna is set on test.

7.3. Test Arrangement

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application. The detailed information refers to test picture.

7.4. Test Data

Emissions don't show below are too low against the limits, the test curves are shown in the APPENDIX I

Report No.: WT088002719 Page 11/37

Table 8 Radiated Disturbance Test Data

Model No.: WP700D-N20

Test Mode: 1

Frequency MHz	Emission Level dB(\(\mu \) V/m)	Cable loss	Antenna factor	Reading dB μ V	Polarization	Limits dB (μ V/m)
51.046	17.9	1.2	7.5	9.2	Vertical	68.0
490.06	36.9	3.7	17.6	15.6	Vertical	68.0
718.943	42.1	4.5	19.8	17.8	Vertical	68.0
1724.148	64.4	-32.2	28.5	36.4	Vertical	68.0
2020.801	32.7	-32.2	28.5	36.6	Vertical	68.0
2164.088	32.9	-31.0	33.3	46.7	Vertical	68.0
4875.681	49.0	-32.3	27.2	69.5	Vertical	68.0
236.494	20.3	2.7	12.0	5.7	Horizontal	68.0
306.224	16.6	2.9	13.8	-0.1	Horizontal	68.0
517.386	23.0	3.8	17.6	1.6	Horizontal	68.0
1984.208	31.5	-32.3	27.2	36.6	Horizontal	68.0
2169.959	32.2	-32.2	28.5	35.9	Horizontal	68.0
4880.511	63.9	-31.0	33.3	61.6	Horizontal	68.0
9759.388	56.2	-28.2	37.5	46.9	Horizontal	68.0

Report No.: WT088002719 Page 12/37

Table 9 Radiated Disturbance Test Data

Model No.: WP700D-S20

Test Mode: 1

Frequency MHz	Emission Level dB(\(\mu \) V/m)	Cable loss	Antenna factor	Reading dB μ V	Polarization	Limits dB (μ V/m)
47.661	22.5	1.2	9.4	11.9	Vertical	68.0
181.462	17.2	2.2	9.8	5.2	Vertical	68.0
179.276	22.7	2.2	10.1	10.4	Vertical	68.0
518.637	26.4	3.8	17.6	5.0	Vertical	68.0
2023.847	26.1	-32.2	28.5	29.8	Vertical	68.0
2177.264	27.8	-32.2	28.5	31.5	Vertical	68.0
4885.070	62.3	-31.0	33.3	60.0	Vertical	68.0
7319.438	49.1	-28.3	36.4	41.0	Horizontal	68.0
178.360	19.0	2.2	10.1	6.7	Horizontal	68.0
449.950	24.3	3.4	16.9	4.0	Horizontal	68.0
779.671	28.3	4.7	20.2	3.4	Horizontal	68.0
2200.255	26.1	-32.2	28.5	29.8	Horizontal	68.0
2341.188	27.6	-32.2	28.5	31.3	Horizontal	68.0
4880.460	57.1	-31.0	33.3	54.8	Horizontal	68.0
7334.268	25.6	-28.3	36.4	17.5	Horizontal	68.0

Remark: For test above1GHz, Average detector with 1MHz RBW is used.

Report No.: WT088002719 Page 13/37

8. OPERATING FREQUENCY TEST

8.1. Test Standard

8.1.1.Test Standard

FCC Part 18

8.2. Test Procedure

The EUT was set up according to the FCC MP-5 and FCC Part 18 for Operating frequency measurement.

1) Variation in Operating Frequency with Time

The operating frequency was measured using a spectrum analyzer. Starting with the EUT at room temperature, a 1000ml water load was placed in the center of the oven and the oven was operated at maximum output power. The fundamental operating frequency was monitored until the water load was reduced to 20 percent of the original load.

2) Variation in Operating Frequency with Line Voltage

The EUT was operated/ warmed by at least 10minutes of use with a 1000ml water load at room temperature at the beginning of the test. Then the operating frequency was monitored as the input voltage was varied between 80 and 125 percent of the nominal rating.

8.3. Test Data

Table 10 Variation in Operating Frequency with Time (WP700D-N20)

Minimum Frequency (MHz)	Maximum Frequency (MHz)
2406.6	2464.7

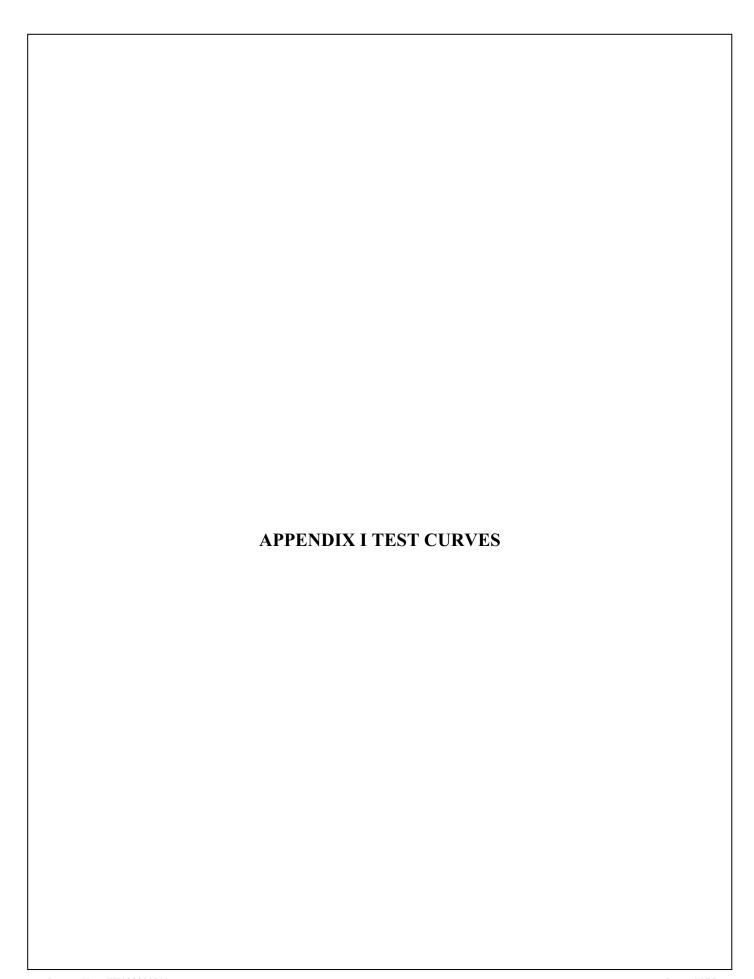
Table 11 Variation in Operating Frequency with Line Voltage (WP700D-N20)

Table 11 Valiation in Operating 110 quency With Elife Voltage (W1 700E 1720)	
Minimum Frequency (MHz)	Maximum Frequency (MHz)
2400.4	2465.1
Note: Line voltage varied from 96Vac to 150Vac	

Table 12 Variation in Operating Frequency with Time (WP700D-S20)

Minimum Frequency (MHz)	Maximum Frequency (MHz)
2407.3	2466.9

Table 13 Variation in Operating Frequency with Line Voltage (WP700D-S20)


	ine y writing a contract (with the second
Minimum Frequency (MHz)	Maximum Frequency (MHz)
2400.6	2467.3
Note: Line voltage varied from 96Vac to 150Vac	

Report No.: WT088002719 Page 14/37

9. TABLE LIST

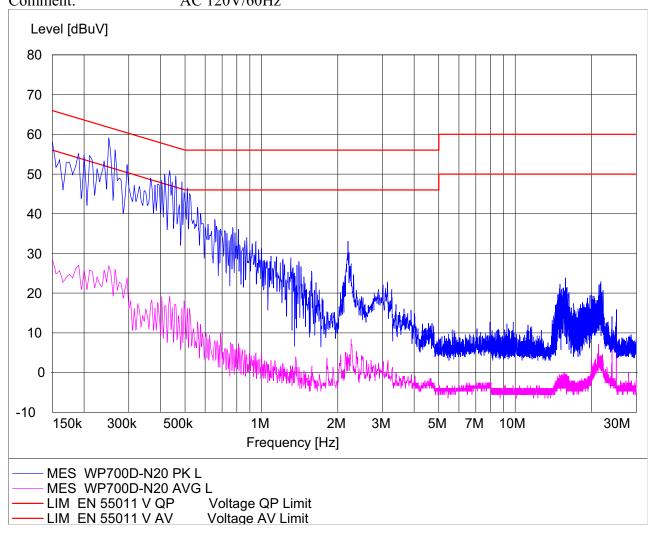
Table 1 Test Results Summary	4
Table 2 Conducted Disturbance Test Equipment	7
Table 3 Radiated Disturbance Test Equipment	7
Table 4 Conducted Disturbance Test Limit (Part 18 consumer device)	8
Table 5 Conducted Disturbance Test Data	9
Table 6 Conducted Disturbance Test Data	9
Table 7 Radiated Disturbance Test Limit	11
Table 8 Radiated Disturbance Test Data	12
Table 9 Radiated Disturbance Test Data	13
Table 10 Variation in Operating Frequency with Time (WP700D-N20)	14
Table 11 Variation in Operating Frequency with Line Voltage (WP700D-N20)	14
Table 12 Variation in Operating Frequency with Time (WP700D-S20)	14
Table 13 Variation in Operating Frequency with Line Voltage (WP700D-S20)	14

Report No.: WT088002719 Page 15/37

Report No.: WT088002719 Page 16/37

EUT: WP700D-N20

Manufacturer:


Operating Condition: P10 (Full power microwave output)

Test Site: SMQ EMC Lab.

Operator:

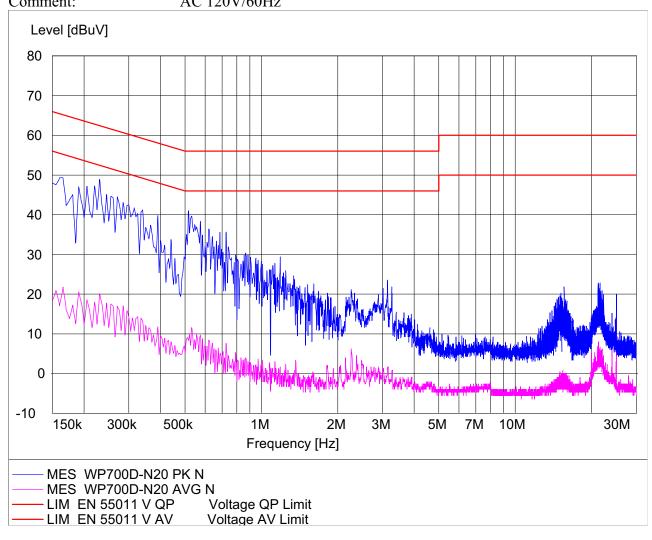
Test Specification: L

Comment: AC 120V/60Hz

Report No.: WT088002719 Page 17/37

EUT: WP700D-N20

Manufacturer:


Operating Condition: P10 (Full power microwave output)

Test Site: SMQ EMC Lab.

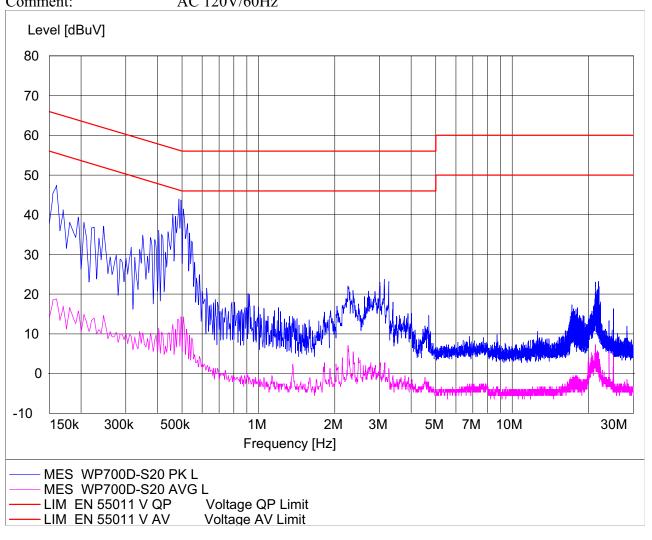
Operator:

Test Specification: N

Comment: AC 120V/60Hz

Report No.: WT088002719 Page 18/37 EUT: WP700D-S20

Manufacturer:


Operating Condition: P10 (Full power microwave output)

Test Site: SMQ EMC Lab.

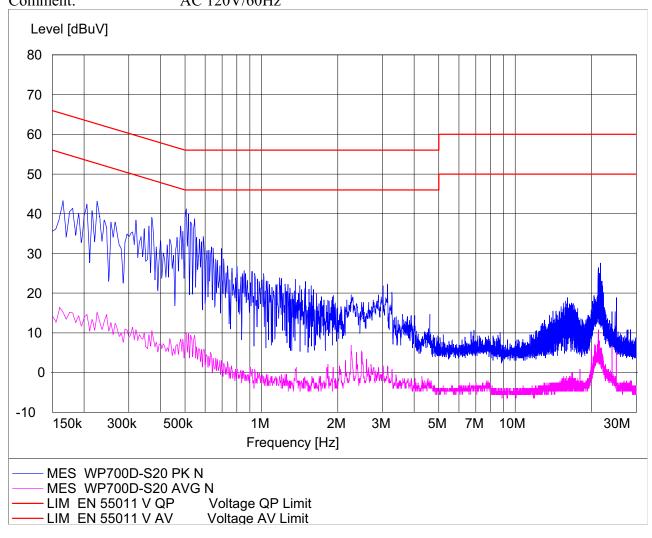
Operator:

Test Specification: L

Comment: AC 120V/60Hz

Report No.: WT088002719 Page 19/37 EUT: WP700D-S20

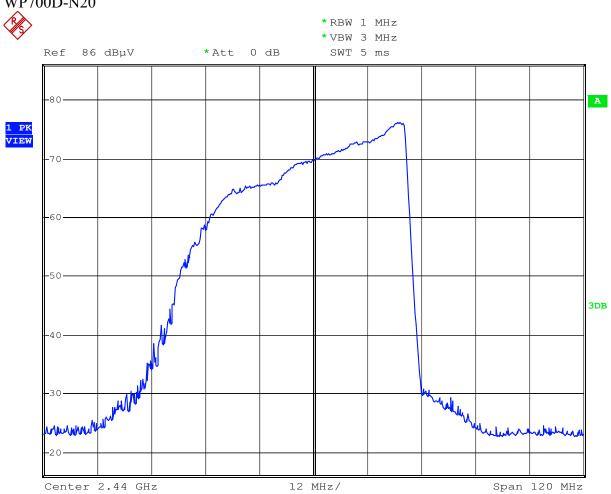
Manufacturer:


Operating Condition: P10 (Full power microwave output)

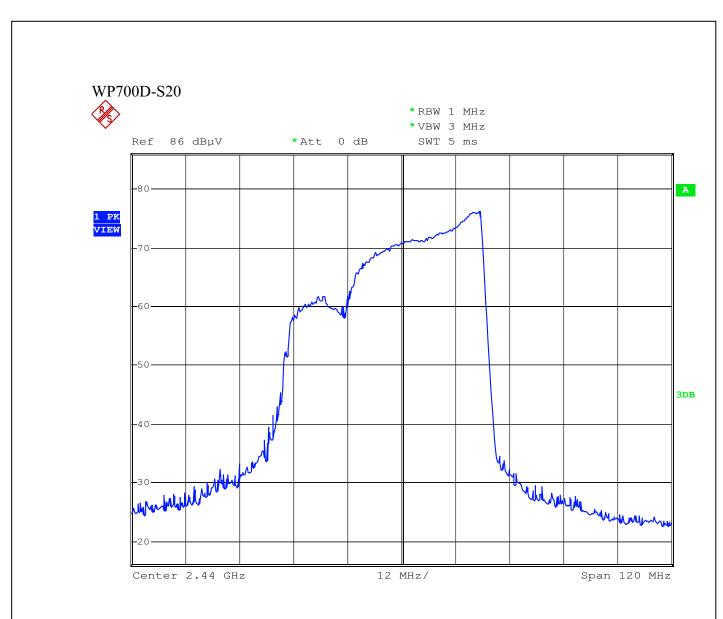
Test Site: SMQ EMC Lab.

Operator:

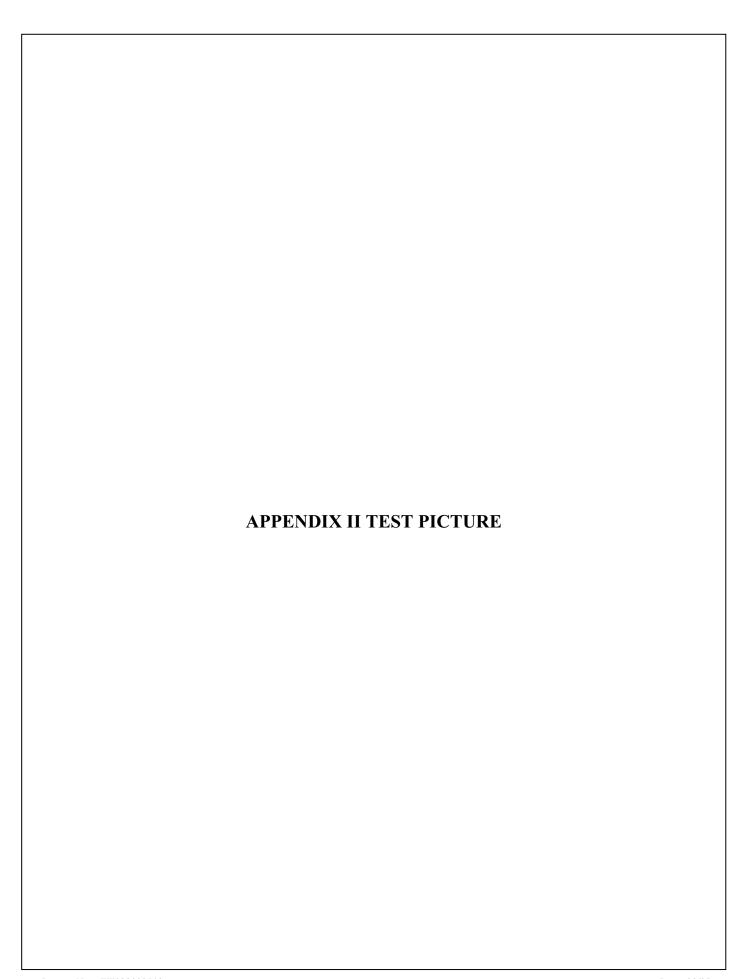
Test Specification: N


Comment: AC 120V/60Hz

Report No.: WT088002719 Page 20/37


Operating Frequency

WP700D-N20


Date: 16.DEC.2008 09:03:35

Report No.: WT088002719 Page 21/37

Date: 16.DEC.2008 08:47:10

Report No.: WT088002719 Page 22/37

Report No.: WT088002719 Page 23/37

Photo 1 Conducted Disturbance Test (WP700D-N20)

Photo 2 Conducted Disturbance Test (WP700D-N20)

Report No.: WT088002719 Page 24/37

Photo 3 Conducted Disturbance Test (WP700D-S20)

Photo 4 Conducted Disturbance Test (WP700D-S20)

Report No.: WT088002719 Page 25/37

Photo 2 Radiated disturbances (below 1GHz) (WP700D-N20)

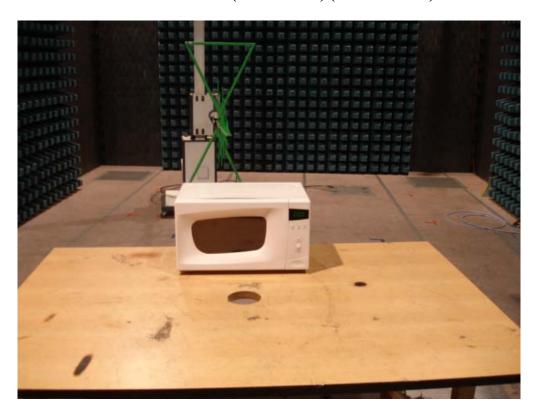
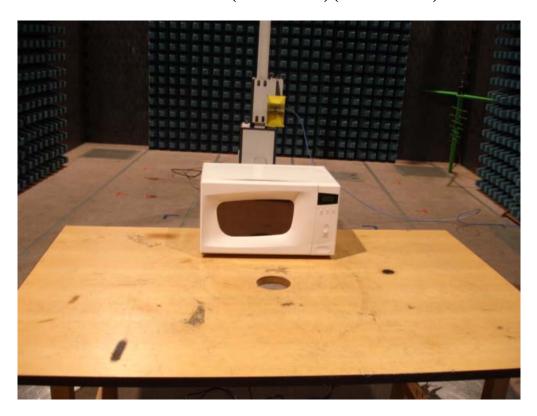



Photo 3 Radiated disturbances (Above 1GHz) (WP700D-N20)

Report No.: WT088002719 Page 26/37

Photo 2 Radiated disturbances (below 1GHz) (WP700D-S20)

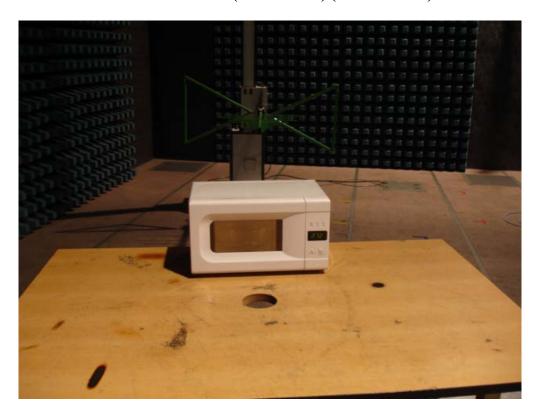
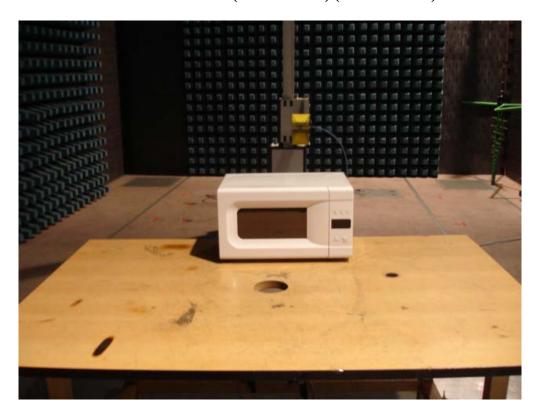



Photo 3 Radiated disturbances (Above 1GHz) (WP700D-S20)

Report No.: WT088002719 Page 27/37

Photo 4 Appearance of EUT (WP700D-N20)

Photo 5 Appearance of EUT (WP700D-N20)

Report No.: WT088002719 Page 28/37

Photo 6 Inside of EUT (WP700D-N20)

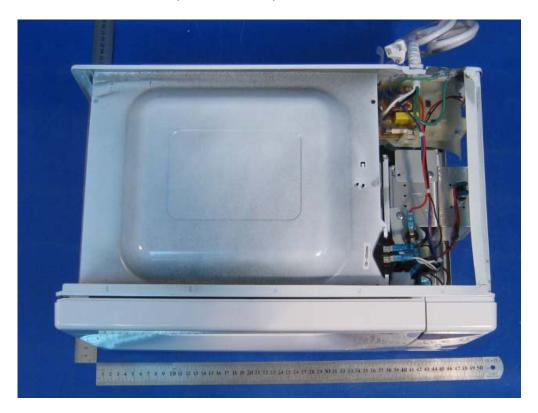


Photo 7 Inside of EUT (WP700D-N20)

Report No.: WT088002719 Page 29/37

Photo 8 Inside of EUT (WP700D-N20)

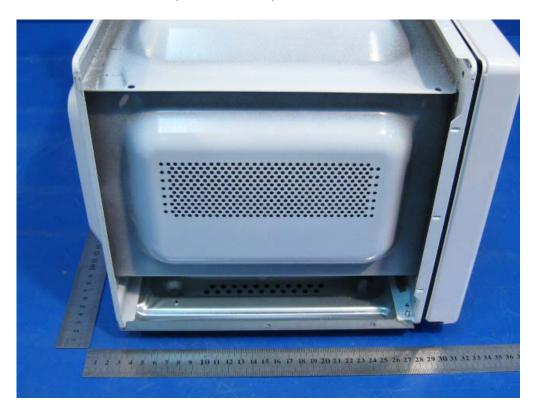


Photo 9 Inside of EUT (WP700D-N20)

Report No.: WT088002719 Page 30/37

Photo 10 Inside of EUT (WP700D-N20)

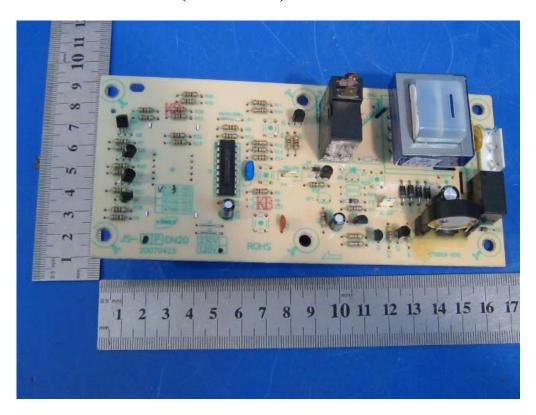
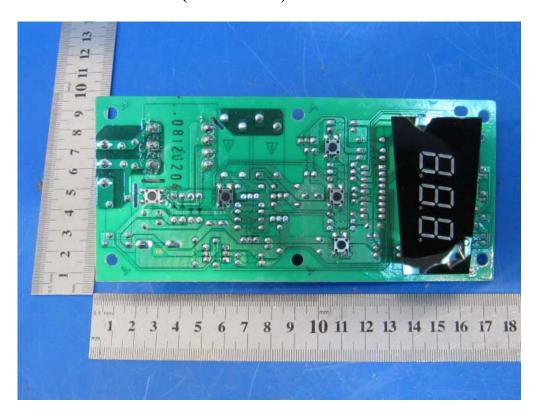



Photo 11 Inside of EUT (WP700D-N20)

Report No.: WT088002719 Page 31/37

Photo 12 Inside of EUT (WP700D-N20)

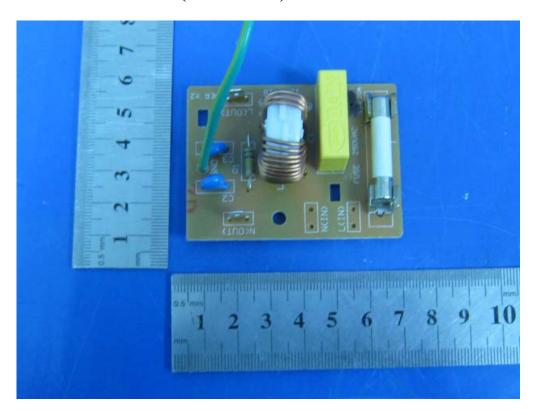
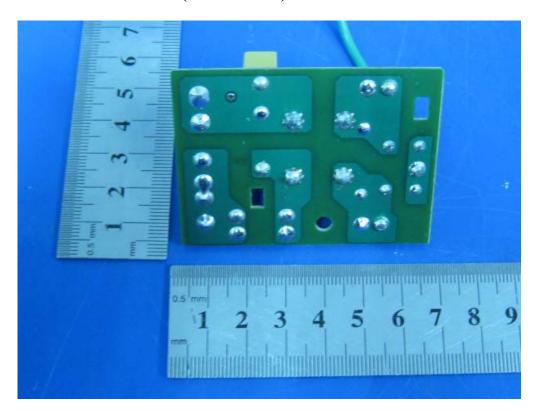



Photo 12 Inside of EUT (WP700D-N20)

Report No.: WT088002719 Page 32/37

Photo 4 Appearance of EUT (WP700D-S20)

Photo 5 Appearance of EUT (WP700D-S20)

Report No.: WT088002719 Page 33/37

Photo 6 Inside of EUT (WP700D-S20)

Photo 7 Inside of EUT (WP700D-S20)

Report No.: WT088002719 Page 34/37

Photo 8 Inside of EUT (WP700D-S20)

Photo 9 Inside of EUT (WP700D-S20)

Report No.: WT088002719 Page 35/37

Photo 10 Inside of EUT (WP700D-S20)

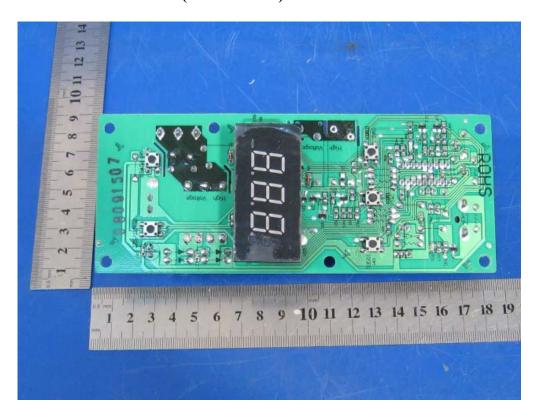



Photo 11 Inside of EUT (WP700D-S20)

Report No.: WT088002719 Page 36/37

Photo 12 Inside of EUT (WP700D-S20)

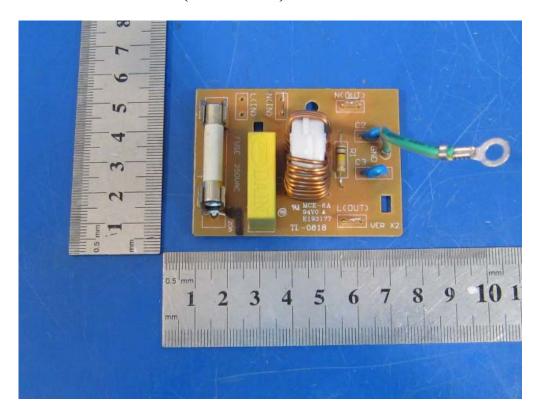


Photo 12 Inside of EUT (WP700D-S20)

Report No.: WT088002719 Page 37/37