

FCC TEST REPORT

for

PART 15, SUBPART B CLASS B

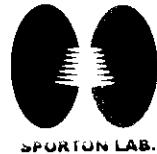
Equipment : Video Capture Card

MODEL NO. : CPC848

F C C I D : NRPCPC848

Filing Type : Original Grant

APPLICANT : **3Cam Technology, Inc.**4F, No. 98, Hsin-Tai-Wu Rd., Sec. 1, Hsin-Chih
Taipei Hsien, Taiwan, R.O.C.


- The test result refers exclusively to the test presented test model / sample.
- Without the written authorization of the test lab., the Test Report may not be copied.

SPORTON INTERNATIONAL INC.

6F, No. 106, Hsin Tai Wu Rd., Sec. 1, Hsi Chih, Taipei Hsien, Taiwan, R.O.C.

TABLE OF CONTENT

SECTION TITLE	PAGE
CERTIFICATE OF COMPLIANCE.....	3
1. GENERAL DESCRIPTION OF EQUIPMENT UNDER TEST.....	4
1.1. APPLICANT	4
1.2. MANUFACTURER	4
1.3. BASIC DESCRIPTION OF EQUIPMENT UNDER TEST	4
1.4. FEATURE OF EQUIPMENT UNDER TEST	4
2. TEST CONFIGURATION OF EQUIPMENT UNDER TEST.....	5
2.1. TEST MANNER	5
2.2. DESCRIPTION OF TEST SYSTEM	5
2.3. CONNECTION DIAGRAM OF TEST SYSTEM	7
3. TEST SOFTWARE.....	8
4. GENERAL INFORMATION OF TEST.....	9
4.1. TEST FACILITY	9
4.2. STANDARD FOR METHODS OF MEASUREMENT	9
4.3. TEST IN COMPLIANCE WITH.....	9
4.4. FREQUENCY RANGE INVESTIGATED	9
4.5. TEST DISTANCE	9
5. TEST OF CONDUCTED POWERLINE.....	10
5.1. MAJOR MEASURING INSTRUMENTS	10
5.2. TEST PROCEDURES	11
5.3. TYPICAL TEST SETUP LAYOUT OF CONDUCTED POWERLINE	12
5.4. TEST RESULT OF AC POWERLINE CONDUCTED EMISSION	13
5.5. PHOTOGRAPHS OF CONDUCTED POWERLINE TEST CONFIGURATION	16
6. TEST OF RADIATED EMISSION.....	20
6.1. MAJOR MEASURING INSTRUMENTS	20
6.2. TEST PROCEDURES	21
6.3. TYPICAL TEST SETUP LAYOUT OF RADIATED EMISSION	22
6.4. TEST RESULT OF RADIATED EMISSION	23
6.5. PHOTOGRAPHS OF RADIATED EMISSION TEST CONFIGURATION	26
7. ANTENNA FACTOR AND CABLE LOSS.....	28
8. LIST OF MEASURING INSTRUMENTS USED.....	29

CERTIFICATE NO. : F861201

CERTIFICATE OF COMPLIANCE

for

FCC PART 15, SUBPART B CLASS B

Equipment : Video Capture Card

MODEL NO. : CPC848

F C C I D : NRPCPC848

Filing Type : Original Grant

APPLICANT : **3Cam Technology, Inc.**4F, No. 98, Hsin-Tai-Wu Rd., Sec. 1, Hsin-Chih
Taipei Hsien, Taiwan, R.O.C.

I HEREBY CERTIFY THAT :

The measurement shown in this report were made in accordance with the procedures given in **ANSI C63.4 -1992** and the energy emitted by this equipment was **passed** both radiated and conducted emissions class B limits. Testing was carried out on Jun. 30 , 1998 at **SPORTON International Inc.** in LIN KOU.

Lenore Chang

President

SPORTON International Inc.

6F, No. 106, Hsin Tai Wu Rd., Sec. 1, Hsi Chih, Taipei Hsien, Taiwan, R.O.C.

1. GENERAL DESCRIPTION OF EQUIPMENT UNDER TEST**1.1. APPLICANT**

3Cam Technology, Inc.
4F, No. 98, Hsin-Tai-Wu Rd., Sec. 1, Hsin-Chih
Taipei Hsien, Taiwan, R.O.C.

1.2. MANUFACTURER

Same as 1.1

1.3. BASIC DESCRIPTION OF EQUIPMENT UNDER TEST

EQUIPMENT : Video Capture Card

MODEL NO. : CPC848

FCC ID: NRPCPC848

TRADE NAME : 3Cam Technology

CCD CABLE : Non-shielded

Output Power Cord: Shielded

S-Video cable: Shielded

AV-Video cable: Non-shielded

POWER SUPPLY TYPE : N/A

POWER CORD : N/A

1.4. FEATURE OF EQUIPMENT UNDER TEST

- Fully PCI Rev. 2.1 compliant
- Zero wait state PCI burst writes
- Supports image resolutions up to 768x576 (full PAL resolution).
- Image size scalable to icon using vertical & horizontal interpolation filtering.
- Supports NTSC, PAL/SECAM analog input.
- 2 composite and 1 S-video inputs.
- With 5Vdc or 12Vdc DC-jack output

2. TEST CONFIGURATION OF EQUIPMENT UNDER TEST

2.1. TEST MANNER

- a. The EUT has been associated with personal computer and peripherals pursuant to ANSI C63.4-1992 and configuration operated in a manner which tended to maximize its emission characteristics in a typical application.
- b. The DELL keyboard, SONY monitor, GENIUS mouse, 3Cam CCD, HITACHI DVD CD play, HP printer and ACEEX modem were connected to the F.I.C PC.
- c. The following display resolution were investigated during the compliance test:
 1. 640 x 480 31K, Capture mode.
 2. 640 x 480 31K, EMITEST.EXE with "H" pattern.
 3. 640 x 480 31K, AV + S VIDEO MODE
- d. Frequency range investigated: Conduction 450 KHz to 30 MHz, Radiation 30 MHz to 1000 MHz.

2.2. DESCRIPTION OF TEST SYSTEM

Support Device 1. --- PERSONAL COMPUTER (F.I.C)

FCC ID :N/A
Model No. :P2L97
Serial No. :SP1039
Data Cable :Shielded, 360 degree via metal backshells.
Power Supply Type :Switching
Power Cord :Shielded

Remark: This support device was tested to comply with FCC standards and authorized under a declaration of conformity.

Support Device 2. --- MODEM (ACEEX)

FCC ID :IFAXDM1414
Model No. :DM1414
Serial No. :SP0016
Data Cable :Shielded, 360 degree via metal backshells
Power Supply Type :Linear

Support Device 3. --- PRINTER (HP)

FCC ID :DSI6XU2225
Model No. :2225C
Serial No. :SP0003
Data Cable :Shielded, 360 degree via metal backshells
Power Supply Type :Linear

Support Device 4. --- MONITOR (SONY)

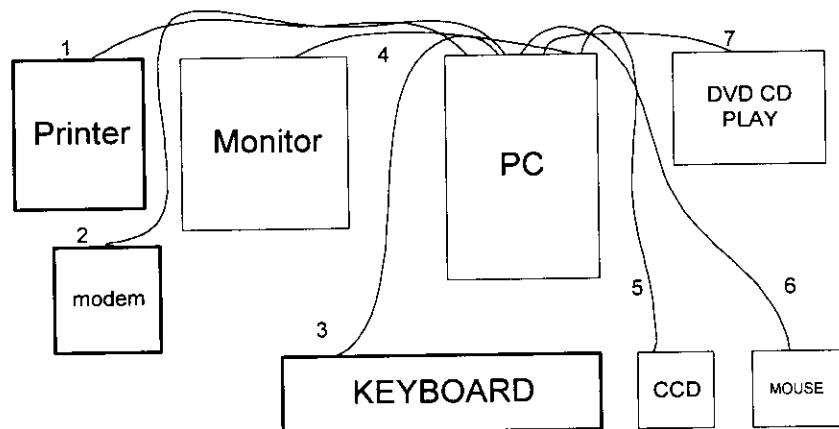
FCC ID :AK8GDM17SE2T
Model No. :GDM-17SE2T
Serial No. :SP1041
Data Cable :Shielded
Power Supply Type :Switching
Power Cord :Non-shielded

Support Device 5. --- KEYBOARD (DELL)

FCC ID :GYUM92SK
Model No. :AT101(DE8M)
Serial No. :SP1009
Data Cable :Shielded, 360 degree via metal backshells

Support Device 6. --- MOUSE (GENIUS)

FCC ID :FSUGKZA8
Model No. :Easy Track
Serial No. :SP1012
Data Cable :Non-shielded


Support Device 7. --- DVD CD PLAY (HITACHI)

FCC ID :N/A
Model No. :DV-K2
Serial No. :SP1015
Data Cable :S-Video Shielded, AV-Video Non-shielded

Support Device 8. --- CCD (3Cam)

FCC ID :N/A
Model No. :PK848
Serial No. :SP1048
Data Cable :Non-shielded

2.3. CONNECTION DIAGRAM OF TEST SYSTEM

1. The I/O cable is connected to the support device 3.
2. The I/O cable is connected to the support device 2.
3. The I/O cable is connected to the support device 5.
4. The I/O cable is connected to the support device 4.
5. The I/O cable is connected from the EUT to the support device 8.
6. The I/O cable is connected to the support device 6.
7. The I/O cable is connected from the EUT to the support device 7.

3. TEST SOFTWARE

(1) H PATTERN

An executive program, EMITEST.EXE under WIN 95, which generates a complete line of continuously repeating " H " pattern was used as the test software.

The program was executed as follows :

- a. Turn on the power of all equipment.
- b. The PC reads the test program from the floppy disk drive and runs it.
- c. The PC sends " H " messages to the monitor, and the monitor displays " H " patterns on the screen.
- d. The PC sends " H " messages to the printer, then the printer prints them on the paper.
- e. The PC sends " H " messages to the modem.
- f. The PC sends " H " messages to the internal Hard Disk, and the Hard Disk reads and writes the message.
- g. Repeat the steps from b to f.

(2) S + AV MODE & CCD MODE

The program "Videocap" was used as the test software this software can display the video signal on the monitor from DVD & CCD.

4. GENERAL INFORMATION OF TEST**4.1. TEST FACILITY**

This test was carried out by SPORTON INTERNATIONAL INC. in an openarea test site.

Openarea Test Site Location : No. 30-1, Lin 6, Diing-Fwu Tsuen, Lin-Kou-Hsiang,
Taipei Hsien, Taiwan, R.O.C.

TEL : 886-2-2601-1640

FAX : 886-2-2601-1695

4.2. STANDARD FOR METHODS OF MEASUREMENT

ANSI C63.4-1992

4.3 .TEST IN COMPLIANCE WITH

FCC PART 15, SUBPART B CLASS B

4.4. FREQUENCY RANGE INVESTIGATED

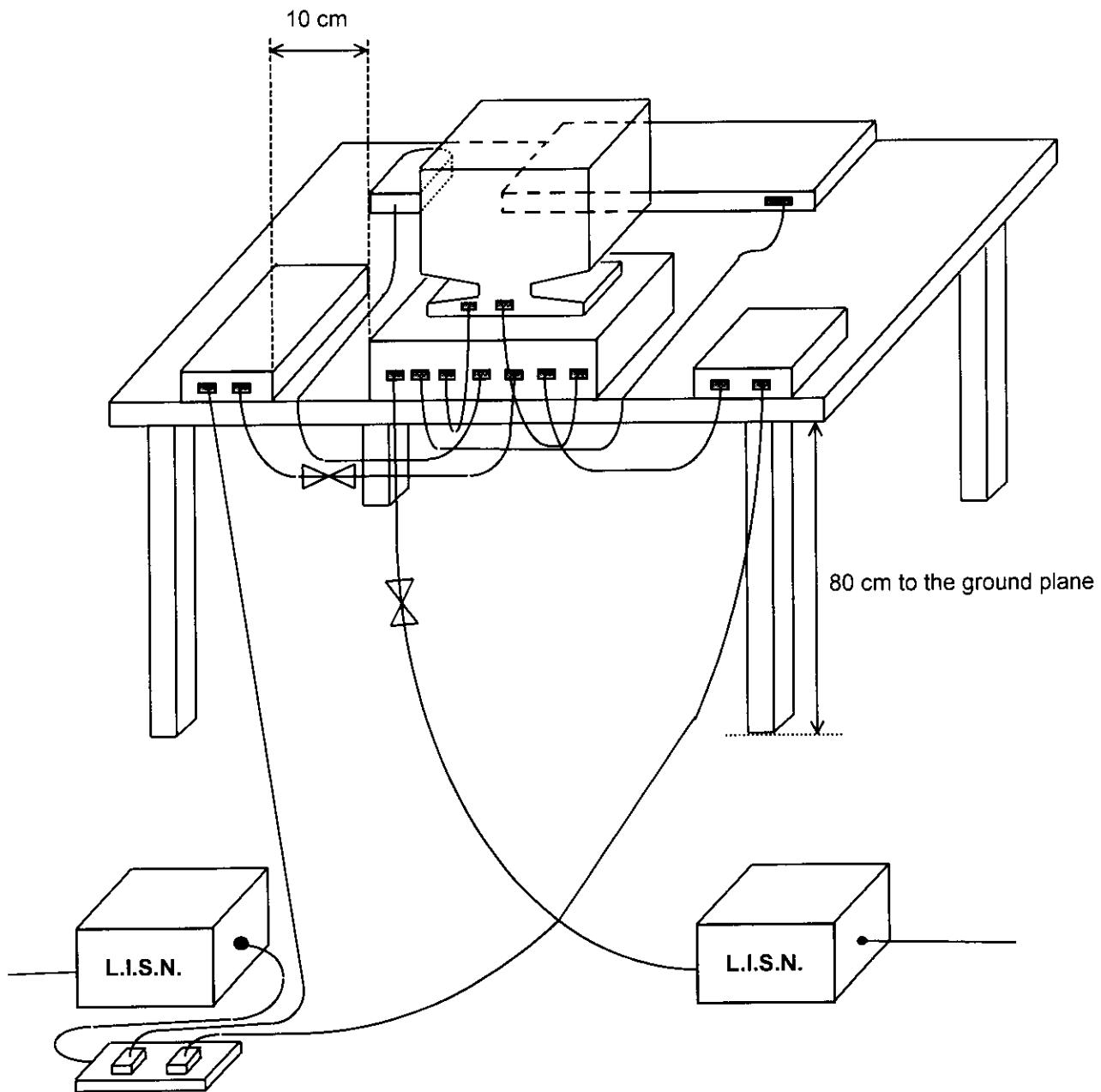
- a. Conduction : from 450 KHz to 30 MHz
- b. Radiation : from 30 MHz to 1000 MHz

4.5. TEST DISTANCE

The test distance of radiated emission from antenna to EUT is 3M.

5. TEST OF CONDUCTED POWERLINE

Conducted Emissions were measured from 450 KHz to 30 MHz with a bandwidth of 9 KHz on the 115 VAC power and return leads of the EUT according to the methods defined in ANSI C63.4-1992 Section 3.1. The EUT was placed on a nonmetallic stand in a shielded room 0.8 meters above the ground plane as shown in Figure 5-3. The interface cables and equipment positioning were varied within limits of reasonable applications to determine the position produced maximum conducted emissions.


5.1. MAJOR MEASURING INSTRUMENTS

• Test Receiver	
Attenuation	0 dB
Start Frequency	0.45 MHz
Stop Frequency	30 MHz
Step MHz	0.007 MHz
IF Bandwidth	9 KHz

5.2. TEST PROCEDURES

- a. The EUT was placed 0.4 meter from the conducting wall of the shielding room and was kept at least 80 centimeters from any other grounded conducting surface.
- b. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- c. All the support units are connect to the other LISN.
- d. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- e. The FCC states that a 50 ohm , 50 microhenry LISN should be used.
- f. Both sides of AC line were checked for maximum conducted interference.
- g. The frequency range from 450 KHz to 30 MHz was searched.
- h. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- i. If the emission level of the EUT in peak mode was 6 dB lower than the limit specified, then testing will be stopped and peak values of EUT will be reported otherwise the emissions which do not have 6 dB margin will be retested on by one using the quasi-peak method and reported.

5.3. TYPICAL TEST SETUP LAYOUT OF CONDUCTED POWERLINE

5.4. TEST RESULT OF AC POWERLINE CONDUCTED EMISSION

- Frequency Range of Test : from 0.45 MHz to 30 MHz
- Temperature : 23°C
- Relative Humidity : 59% RH
- Test mode: H PATTERN
- All emissions not reported here are more than 10 dB below the prescribed limit.
- Test Date : Jun. 12, 1998
- Test Site: Site 2

**The Conducted Emission test was passed at minimum margin
Neutral 13.86 MHz /40.00 dBuV.**

Frequency (MHz)	Line / Neutral	Meter Reading		Limits		Margin
		(dBuV)	(uV)	(dBuV)	(uV)	(dB)
9.81	N	39.90	98.86	48.00	251.19	-8.10
11.38	N	37.90	78.52	48.00	251.19	-10.10
13.86	N	40.00	100.00	48.00	251.19	-8.00
9.81	L	34.10	50.70	48.00	251.19	-13.90
11.47	L	38.20	81.28	48.00	251.19	-9.80
13.87	L	39.60	95.50	48.00	251.19	-8.40

Test Engineer :
BRUCE HUANG

5.4.1 TEST RESULT OF AC POWERLINE CONDUCTED EMISSION

- Frequency Range of Test : from 0.45 MHz to 30 MHz
- Temperature : 23°C
- Relative Humidity : 59% RH
- Test mode: AV+S VIDEO MODE
- All emissions not reported here are more than 10 dB below the prescribed limit.
- Test Date : Jun. 12, 1998
- Test Site: Site 2

The Conducted Emission test was passed at minimum margin

Neutral 13.86 MHz /40.00 dBuV.

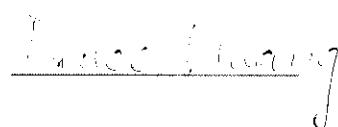
Frequency (MHz)	Line / Neutral	Meter Reading		Limits		Margin
		(dBuV)	(uV)	(dBuV)	(uV)	(dB)
9.81	L	34.10	50.70	48.00	251.19	-13.90
11.64	L	38.20	81.28	48.00	251.19	-9.80
13.87	L	39.60	95.50	48.00	251.19	-8.40
9.81	N	39.90	98.86	48.00	251.19	-8.10
11.38	N	37.90	78.52	48.00	251.19	-10.10
13.86	N	40.00	100.00	48.00	251.19	-8.00

Test Engineer :

BRUCE HUANG

5.4.2 TEST RESULT OF AC POWERLINE CONDUCTED EMISSION

- Frequency Range of Test : from 0.45 MHz to 30 MHz
- Temperature : 23°C
- Relative Humidity : 59% RH
- Test mode: CCD MODE
- All emissions not reported here are more than 10 dB below the prescribed limit.
- Test Date : Jun. 02, 1998
- Test Site: Site 1


The Conducted Emission test was passed at minimum margin

Line 23.41 MHz /12.40 dBuV.

Frequency (MHz)	Line / Neutral	Meter Reading		Limits		Margin
		(dBuV)	(uV)	(dBuV)	(uV)	(dB)
3.58	L	9.20	2.88	48.00	251.19	-38.80
5.91	L	10.50	3.35	48.00	251.19	-37.50
23.41	L	12.40	4.17	48.00	251.19	-35.60
3.58	N	8.80	2.75	48.00	251.19	-39.20
5.91	N	5.40	1.86	48.00	251.19	-42.60
23.41	N	9.40	2.95	48.00	251.19	-38.60

Test Engineer :

BRUCE HUANG

6. TEST OF RADIATED EMISSION

Radiated emissions from 30 MHz to 1000MHz were measured with a bandwidth of 120 KHz according to the methods defines in ANSI C63.4-1992. The EUT was placed on a nonmetallic stand in the open-field site, 0.8 meter above the ground plane, as shown in Figure 6-3. The interface cables and equipment positions were varied within limits of reasonable applications to determine the positions producing maximum radiated emissions.

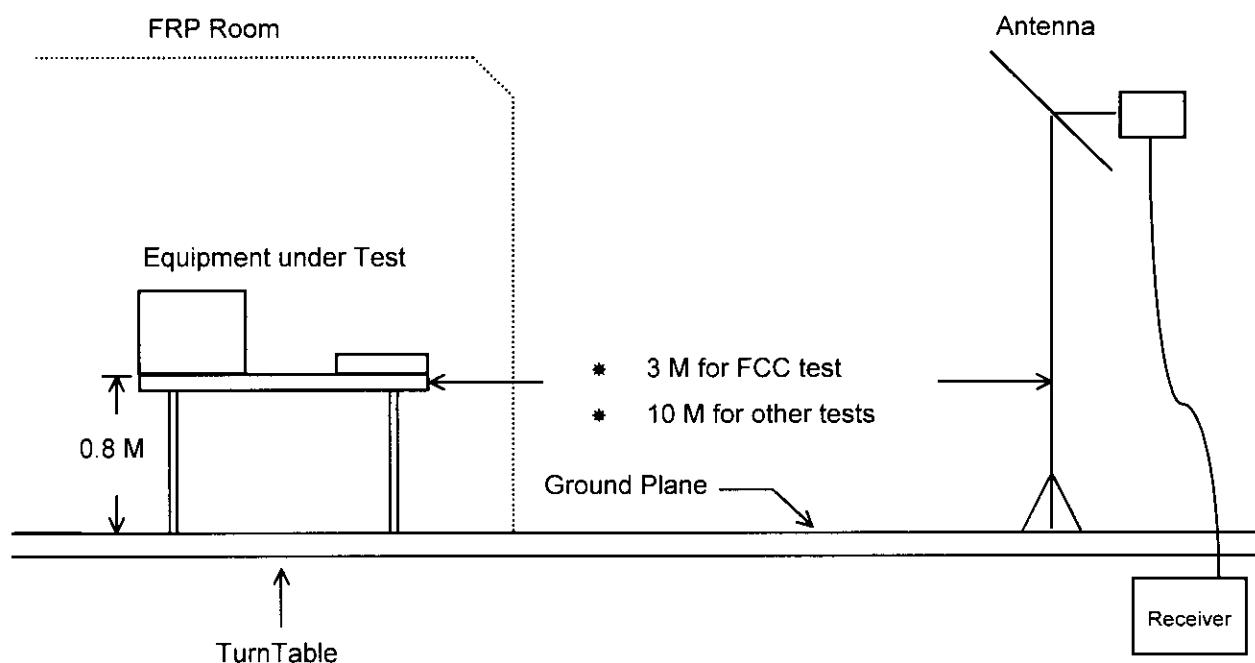
6.1. MAJOR MEASURING INSTRUMENTS

- RF Preselector

Attenuation	0 dB
RF Gain	20 dB
Signal Input	Input 2 (for 20 MHz to 2 GHz)

- Spectrum Analyzer

Attenuation	0 dB
Start Frequency	30 MHz
Stop Frequency	1000MHz
Resolution Bandwidth	1 MHz
Video Bandwidth	1 MHz
Signal Input	Input 1 (for 9KHz to 2.6 GHz)


- Quasi-Peak Adapter

Resolution Bandwidth	120 KHz
Frequency Band	30 MHz to 1 GHz
Quasi-Peak Detector	ON for Quasi-Peak Mode
OFF for Peak Mode	

6.2. TEST PROCEDURES

- a. The EUT was placed on a rotatable table top 0.8 meter above ground.
- b. The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- c. The table was rotated 360 degrees to determine the position of the highest radiation.
- d. The antenna is a half wave dipole and its height is varied between one meter and four meters above ground to find the maximum value of the field strength both horizontal polarization and vertical polarization of the antenna are set to make the measurement.
- e. For each suspected emission the EUT was arranged to its worst case and then tune the antenna tower (from 1 M to 4 M) and turn table (from 0 degree to 360 degrees) to find the maximum reading.
- f. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 6 dB lower than the limit specified, then testing will be stopped and peak values of EUT will be reported otherwise the emissions which do not have 6 dB margin will be repeated one by one using the quasi-peak method and reported.

6.3. TYPICAL TEST SETUP LAYOUT OF RADIATED EMISSION

6.4. TEST RESULT OF RADIATED EMISSION

- Equipment meets the technical specifications of 15.109
- Frequency Range of Test : from 30 MHz to 1000 MHz
- Test Distance : 3 M
- Temperature : 23°C
- Relative Humidity : 59% RH
- Test mode: H PATTERN
- Test Date : Jun. 30, 1998
- Emission level (dBuV/m) = 20 log Emission level (uV/m)
- Sample Calculation at 215.75MHz
Corrected Reading = $14.25 + 2.40 + 14.63 = 31.28$ (dBuV/m)

The Radiated Emission test was passed at minimum margin

Vertical 31.38 MHz /35.71 dBuV

Antenna Height 1 Meter , Turntable Degree 213°

Frequency (MHz)	Antenna Polarity	Cable Factor	Reading Loss	Limits		Emission	Level	Margin
31.56	H	-1.73	0.81	33.05	40.00	100	32.12	40.36
215.75	H	14.25	2.40	14.63	43.50	150	31.28	36.64
31.38	V	-1.79	0.81	36.69	40.00	100	35.71	61.02
36.06	V	-0.44	0.85	33.90	40.00	100	34.30	51.88
41.76	V	0.79	0.96	31.96	40.00	100	33.71	48.47
368.78	V	20.87	3.34	14.07	46.00	200	38.29	82.13

Test Engineer :
T. C. TSENG

T. C. Tseng

6.4.1 TEST RESULT OF RADIATED EMISSION

- Equipment meets the technical specifications of 15.109
- Frequency Range of Test : from 30 MHz to 1000 MHz
- Test Distance : 3 M
- Temperature : 27°C
- Relative Humidity : 60% RH
- Test mode: AV+ S VIDEO MODE
- Test Date :Jun. 30, 1998
- Emission level (dBuV/m) = 20 log Emission level (uV/m)
- Sample Calculation at 65.57MHz
Corrected Reading = 5.19+ 1.20+ 27.41 = 33.80(dBuV/m)

The Radiated Emission test was passed at minimum margin

Vertical 420.00 MHz / 41.31 dBuV

Antenna Height 1 Meter , Turntable Degree 215°

Frequency (MHz)	Antenna Polarity	Cable Factor	Reading Loss	Limits		Emission	Level	Margin
65.57	V	5.19	1.20	27.41	40.00	100	33.80	48.98
124.05	V	10.54	1.74	21.09	43.50	150	33.37	46.61
132.60	V	10.92	1.83	21.01	43.50	150	33.76	48.75
420.00	V	22.33	3.68	15.30	46.00	200	41.31	116.28
123.71	H	10.53	1.74	22.60	43.50	150	34.87	55.40
200.23	H	14.05	2.40	18.13	43.50	150	34.58	53.58

Test Engineer :

T. C. TSENG

T. C. Tseng

6.4.2 TEST RESULT OF RADIATED EMISSION

- Equipment meets the technical specifications of 15.109
- Frequency Range of Test : from 30 MHz to 1000 MHz
- Test Distance : 3 M
- Temperature : 27°C
- Relative Humidity : 60% RH
- Test mode: CCD MODE
- Test Date :Jun. 30, 1998
- Emission level (dBuV/m) = 20 log Emission level (uV/m)
- Sample Calculation at 225.32MHz

Corrected Reading = 14.52+ 2.43+ 14.00 = 30.95(dBuV/m)

The Radiated Emission test was passed at minimum margin

Horizontal 31.38 MHz / 33.71 dBuV

Antenna Height 4 Meter , Turntable Degree 186°

Frequency (MHz)	Antenna Polarity	Cable Factor	Reading Loss	Limits	Emission	Level	Margin		
31.38	H	-1.79	0.81	34.69	40.00	100	33.71	48.47	-6.29
225.32	H	14.52	2.43	14.00	46.00	200	30.95	35.28	-15.05
32.08	V	-1.58	0.81	34.47	40.00	100	33.70	48.42	-6.30
41.76	V	0.79	0.96	30.12	40.00	100	31.87	39.22	-8.13
218.94	V	14.30	2.40	16.03	46.00	200	32.73	43.30	-13.27
377.54	V	21.60	3.39	14.34	46.00	200	39.33	92.58	-6.67

Test Engineer :

T. C. TSENG

T. C. Tseng

7. ANTENNA FACTOR AND CABLE LOSS

Frequency (Mhz)	Antenna Factor (dB)	Cable Loss (dB)
30	-2.20	0.80
35	-0.70	0.82
40	0.51	0.94
45	1.30	1.00
50	2.39	1.00
55	3.14	1.11
60	4.40	1.20
65	5.14	1.20
70	5.59	1.20
75	6.11	1.30
80	7.10	1.40
85	7.53	1.40
90	8.22	1.40
95	8.80	1.40
100	9.36	1.50
110	10.11	1.60
120	10.41	1.70
130	10.74	1.80
140	11.42	1.91
150	11.91	2.01
160	12.25	2.01
170	12.22	2.21
180	13.02	2.30
190	13.50	2.30
200	14.05	2.40
220	14.31	2.40
240	15.11	2.50
260	17.11	2.61
280	17.50	2.70
300	17.99	3.11
320	18.10	3.10
340	19.13	3.20
360	20.14	3.30
380	21.81	3.40
400	22.29	3.60
450	22.40	3.80
500	22.31	4.10
550	23.42	4.40
600	24.01	4.60
650	25.11	5.00
700	26.00	5.30
750	26.51	5.51
800	27.10	5.70
850	27.51	5.90
900	27.90	6.20
950	30.01	6.30
1000	29.00	6.40

※Remark: For frequency above 1000 MHz, we used low cable loss BNC cable to test.

8. LIST OF MEASURING INSTRUMENTS USED

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Receiver RF section (site 1)	HP	85462A	3325A00108	9 KHz - 6.5 GHz	Oct. 22, 1997	Conduction
RF Filter section (site 1)	HP	85460A	3308A00104	9 KHz - 6.5 GHz	Oct. 22, 1997	Conduction
LISN (EUT) (site 1)	EMCO	3850/2	1035	50 ohm / 50 uH	Oct. 27, 1997	Conduction
LISN (Support Unit) (site 1)	KYORITSU	KNW-407	8-693-10	50 ohm / 50 uH	Oct. 04, 1997	Conduction
EMI Filter (site 1)	CORCOM	MRI-2030	N/A	480 VAC / 30 A	N/A	Conduction
EMC Receiver (site 2)	HP	8591EM	3710A01187	9 KHz - 18 GHz	Sep. 29, 1997	Conduction
LISN (EUT) (site 2)	Telemeter	NNB-2/16Z	98009	50 ohm / 50 uH	Jan. 29, 1998	Conduction
LISN (Support Unit) (site 2)	EMCO	3810/2NM	9703-1839	50 ohm / 50 uH	July 06, 1998	Conduction
Amplifier (Site 1)	HP	8447D	2944A08291	0.1MHz -1.3GHz	Nov. 12, 1997	Radiation
Spectrum (site 1)	Advantech	3261C	81720145	9KHz – 2.6GHz	Apr. 07, 1998	Radiation
Bilog Antenna (Site 1)	CHASE	CBL6111	1378	30MHz -1 GHz	Aug. 11, 1997	Radiation
Half-wave dipole antenna (site 1)	EMCO	3121C	9705-1285	28 M - 1GHz	May 19, 1998	Radiation
Turn Table (site 1)	EMCO	1060-1.211	9507-1805	0 ~ 360 degree	N/A	Radiation
Antenna Mast (site 1)	EMCO	1051-1.2	9502-1868	1 m - 4 m	N/A	Radiation

※ The column of Remark indicates that the instruments used for conduction ("C") or radiation ("R") test.

GENERAL MANAGER

W.L.Huang

W.L.Huang OCT 08, 1997

INC. LAB. IN NEI HWU.

THE MEASUREMENTS SHOWN IN THIS TEST REPORT WERE MADE IN ACCORDANCE WITH THE PROCEDURES GIVEN IN ANSI C63.4 - 1992 AND THE ENERGY EMITTED BY THIS EQUIPMENT WAS PASSED BOTH RADIATED AND CONDUCTED EMISSIONS CLASS B LIMITS. THE TESTING WAS COMPLETED ON SEP. 02, 1997 AT SPORTON INTERNATIONAL INC. LAB. IN NEI HWU.

CERTIFY THAT:

Model No.: P2L97
Equipment Under Test: PERSONAL COMPUTER
Applicant: FIRST INTERNATIONAL COMPUTER INC.
6F, Formosa Plastics Rear Building 201,
Tung Hwa N. Rd., Taipei, Taiwan, R.O.C.

47 CFR, Part 2 and Part 15 of the FCC Rules
according to
Authorized under Declaration of Conformity

CERTIFICATE OF COMPLIANCE

Certificate No:

SPORTON LAB.

D700701

