

Keytron Electronics & Technologies Ltd.

FCC requirements § 2.1033 (b)

TECHNICAL REPORT

KEYTRON
ELECTRONICS & TECHNOLOGIES LTD.

FCC requirements § 2.1033 (b)(1)

**The applicant and the manufacturer is the same company
Keytron Electronics & Technologies Ltd.**

Address	Science Park-Kiryat Weizmann, 3
P.O.B.	2111
City	Rehovot
Zip code	76120
State	Israel
Telephone number	011-972-8940 5068
Telefax number	011-972-8940 4768
Responsible person	Mr. Yaakov Krupka, President

FCC ID: NRFET9744

FCC requirements § 2.1033 (b)(6)

TEST MEASUREMENT REPORT

Contains 31 pages and follows this page.

HERMON LABORATORIES

Test Report: KEYRX.12648
Date: March, 1998
Total 31 pages
FCC ID: NFER9744

ELECTROMAGNETIC EMISSIONS TEST REPORT
ACCORDING TO FCC PART 15, SUBPART B

FOR
KEYTRON ELECTRONICS & TECHNOLOGIES Ltd.

EQUIPMENT UNDER TEST
EXERCITOR™ 21 RECEIVER

Prepared by: C. Cherniavsky
Mrs. M. Cherniavsky, Certif. Engineer
Hermon Labs

Approved by: A. Usoskin
Mr. A. Usoskin, QA Manager
Hermon Labs

Approved by: E. Usoskin
Dr. E. Usoskin, C.E.O.
Hermon Labs

Approved by: Y. Krupka
Mr. Y. Krupka, President
Keytron Electronics & Technologies Ltd.

Hermon Laboratories Ltd.
P.O.Box 23
Binyamina 30550, Israel
Tel.+972-6628-8001
Fax.+972-6628-8277
Email:hermon@Netvision.net.il

HERMON LABORATORIES

Test Report: KEYRX.12648
Date: March, 1998
FCC ID: NRFER9744

***This test report must not be reproduced
in any form except in full with the approval
of Hermon Laboratories Ltd.***

HERMON LABORATORIES

Test Report: KEYRX.12648
Date: March, 1998
FCC ID: NRFER9744

Description of equipment under test

Test items	Superregenerative receiver, FCC ID:NRFER9744
Manufacturer	Keytron Electronics & Technologies Ltd.
Brand Mark	Keytron Electronics & Technologies Ltd.
Type (Model)	Exercitor™ 21
S/N	9743-108

Applicant information

Applicant's representative	Mr. Yaakov Krupka, President
Responsible person	Mr. Yaakov Krupka, President
Company	Keytron Electronics & Technologies Ltd.
Address	Science Park, Kiryat Weizmann
P.O. Box	2111
Postal code	76120
City	Rehovot
Country	Israel
Telephone number	011-972-8940 5068
Telefax number	011-972-8940 4768

Test performance

Project Number	12648
Test facility and its location	Hermon Laboratories, Binyamina, Israel
Test started	March 4, 1998
Test completed	March 4, 1998
Purpose of test	The EUT certification in accordance with CFR 47, part 2, §2.1033
Test specification(s)	FCC part 15, subpart B, class B

HERMON LABORATORIES

Test Report: KEYRX.12648
Date: March, 1998
FCC ID: NRFER9744

Table of Contents

1 GENERAL INFORMATION.....	5
1.1 ABBREVIATIONS AND ACRONYMS	5
1.2 SPECIFICATION REFERENCES	6
1.3 EUT DESCRIPTION	6
1.4 STATEMENT OF MANUFACTURER	8
2 TEST FACILITY DESCRIPTION	9
2.1 GENERAL.....	9
2.2 EQUIPMENT CALIBRATION.....	9
2.2.1 <i>Uncertainty in Hermon Labs Measurements</i>	10
2.3 LABORATORY PERSONNEL	10
2.4 STATEMENT OF QUALIFICATION	11
3 CONDUCTED EMISSION MEASUREMENTS.....	12
3.1 CONDUCTED EMISSION MEASUREMENTS, GENERAL.....	12
3.2 CONDUCTED EMISSION MEASUREMENTS, TEST PROCEDURE.....	12
4 RADIATED EMISSION MEASUREMENTS.....	19
4.1 RADIATED EMISSION MEASUREMENTS, TEST PROCEDURE	19
4 SUMMARY AND SIGNATURES	27
APPENDIX A - TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS.....	28
APPENDIX B-TEST EQUIPMENT CORRECTION FACTORS.....	29

HERMON LABORATORIES

Test Report: KEYRX.12648
Date: March, 1998
FCC ID: NFER9744

1 General Information

1.1 Abbreviations and Acronyms

The following abbreviations and acronyms are applicable to this test report:

AVR	average
BW	bandwidth
cm	centimeter
dB	decibel
dB(µV)	decibel referred to one microvolt
dB(µV/m)	decibel referred to one microvolt per meter
DC	Direct Current
EMC	Electromagnetic Compatibility
EUT	Equipment Under Test
GHz	Gigahertz
H	Height
HL	Hermon Laboratories
HP	Hewlett Packard
Hz	Hertz
IF	Intermediate frequency
kHz	kilohertz
kV	kilovolt
L	Length
m	meter
mm	Millimeter
MHz	Megahertz
msec	millisecond
NA	Not Applicable
NARTE	National Association of Radio and Telecommunications Engineers, Inc.
Ω	Ohm
QP	Quasi-Peak (Detector)
RBW	Resolution Bandwidth
RF	Radio Frequency
RE	Radiated Emission
V	volt
V/m	volt per meter

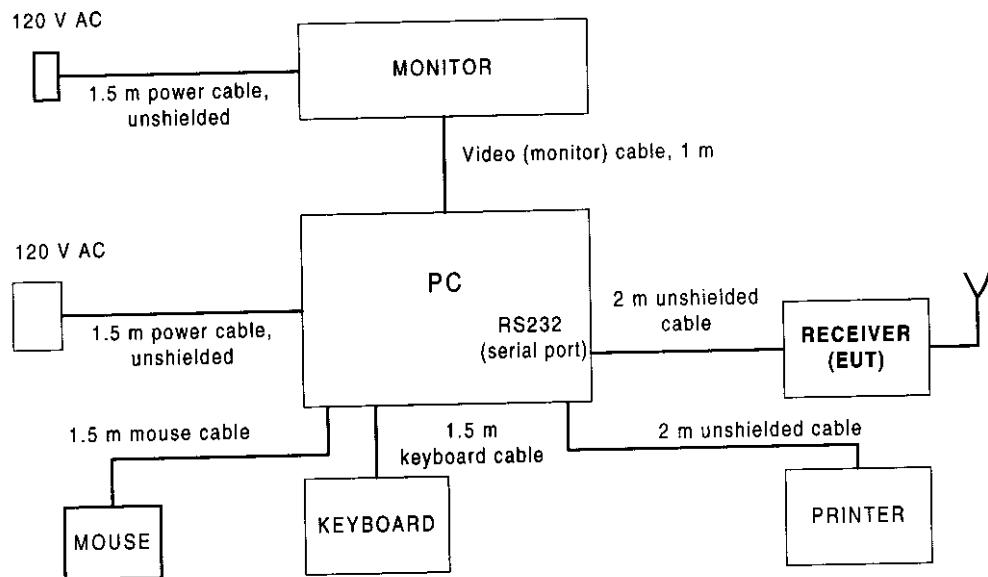
HERMON LABORATORIES

Test Report: KEYRX.12648
Date: March, 1998
FCC ID: NRFER9744

1.2 Specification References

CFR 47 part 15:1997	Radio Frequency Devices
ANSI C63.2:06/1987	American National Standard for Instrumentation- Electromagnetic Noise and Field Strength, 10 kHz to 40 GHz-Specifications.
ANSI C63.4:1992	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low- Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.

1.3 EUT Description


The Exercitor™ 21 receiver is a part of Exercitor™ 21 computerized exercising system. The Exercitor™ 21 comprised the PC software on CD-ROM, an ergonomically-designed lightweight belt (to wear around the chest) with transmitter and a telemetry receiver connected directly to the PC serial port. The receiver, FCC ID:NRFER9744, is the RX2020 SMT Hybrid ASH receiver operating at 916.5 MHz frequency and powered by 5 V DC from PC serial port. The EUT test configuration is shown in Figure 1.1. Throughout the testing the EUT was connected to the Siemens Nixdorf PC, model Scenic Pro M5, FCC ID:HSSCENICM502.

HERMON LABORATORIES

Test Report: KEYRX.12648
Date: March, 1998
FCC ID: NRFER9744

Figure 1.1
EUT Test Configuration

HERMON LABORATORIES

Test Report: KEYRX.12648
Date: March, 1998
FCC ID: NRFER9744

1.4 Statement of Manufacturer

I, Yaakov Krupka, President of Keytron Electronics & Technologies Ltd., declare that the Exercitor™ 21 receiver, FCC ID:NRFER9744 was tested on March 4, 1998 by Hermon Laboratories and which this test report applies to, is identical of the equipment that will be marketed.

The term identical means identical within the variations that can be expected to arise as a result of quantity production technique.

Yaakov Krupka, President
Keytron Electronics & Technologies Ltd.

Signature: M. Krupka KEYTRON
Date: 6 - APR - 98

HERMON LABORATORIES

Test Report: KEYRX.12648
Date: March, 1998
FCC ID: NRFER9744

2 Test Facility Description

2.1 General

Tests were performed at Hermon Laboratories, which is a fully independent, private EMC, Safety and Telecommunication testing facility. Hermon Laboratories is listed by the Federal Communications Commission (USA) for all parts of Code of Federal Regulations 47 (CFR 47), recognized by VDE (Germany) for witness test, certified by VCCI (Japan), Registration No. C-266, R-263, accredited by Netherlands Metrology Institute according to EN 45001 for all European Telecommunications (Network and Wireless) standards, including Safety, recognized by TUV Sudwest (Germany) for Safety testing, and Accredited by AMTAC (UK) for safety of Medical Devices. The laboratory is accredited by American Association for Laboratory Accreditation (USA) according to ISO GUIDE 25/EN 45001 for EMC, Telecommunications and Product Safety of Information Technology Equipment (Certificate No. 839.01).

Address: PO Box 23, Binyamina 30550, Israel.
Telephone: +972-6-628-8001
Fax: +972-6-628-8277

Person for contact: Mr. Alex Usoskin, Testing and QA Manager.

2.2 Equipment Calibration

The test equipment has been calibrated according to its recommended procedures and is within the manufacturer's published limit of error. The standards and instruments used in the calibration system conform to the present requirements of MIL-STD-45662A. The laboratory standards are calibrated by the third party (traceable to NIST, USA) on a regular basis according to equipment manufacturer requirements.

HERMON LABORATORIES

Test Report: KEYRX.12648
Date: March, 1998
FCC ID: NRFER9744

2.2.1 Uncertainty in Hermon Labs Measurements

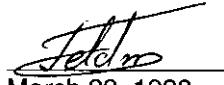
Radiated Emissions (95% Confidence)	<p>Biconical Antenna:</p> <p>3m measuring distance : + 4.06 dB Expanded uncertainty : - 3.98 dB Expanded uncertainty : + 2.032 dB Combined standard uncertainty : - 1.99 dB Combined standard uncertainty</p> <p>10m measuring distance : + 3.98 dB Expanded uncertainty : - 4.08 dB Expanded uncertainty : + 1.99 dB Combined standard uncertainty : - 2.04 dB Combined standard uncertainty</p> <p>Log periodic Antenna:</p> <p>3m measuring distance : + 4.74 dB Expanded uncertainty : - 3.26 dB Expanded uncertainty : + 2.37 dB Combined standard uncertainty : - 1.63 dB Combined standard uncertainty</p> <p>10m measuring distance : + 3.06 dB Expanded uncertainty : - 3.00 dB Expanded uncertainty</p>
--	---

2.3 Laboratory Personnel

The three people of Hermon Laboratories that have participated in measurements and documentation preparation are: Dr. Edward Usoskin - Laboratory C.E.O., Mr. Michael Feldman, test technician, and Mrs. Marina Cherniavsky - certification engineer.

Dr. E. Usoskin is an EMC Specialist and M. Cherniavsky is a Telecommunication Engineer certified by the National Association of Radio and Telecommunications Engineers (NARTE, USA.).

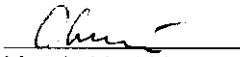
The Hermon Laboratories' personnel that participated in this project have more than 90 years combined experience time in EMC measurements and electronic products design.


HERMON LABORATORIES

Test Report: KEYRX.12648
Date: March, 1998
FCC ID: NRFER9744

2.4 Statement of Qualification

The test measurement data supplied in this test measurement report having been received by me, is hereby duly certified. The following is a statement of my qualifications. I am a technician, have obtained 28 years experience in electronics and measurements. I have been with Hermon Laboratories since 1995.


Name: Mr. Michael Feldman
Position: test technician

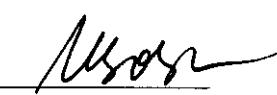
Signature:
Date: March 29, 1998

I hereby certify that this test measurement report was prepared by me and is hereby duly certified. The following is a statement of my qualifications.

I am an engineer, graduated from University in 1971, with an MScEE degree, have obtained 25 years experience in electronic products design and development and have been with Hermon Laboratories since 1991. Also, I am a Telecommunication Class II engineer certified by the National Association of Radio and Telecommunications Engineers, Inc. (USA.), the certificate no. is E2-03410.

Name: Mrs. Marina Cherniavsky
Position: certif. engineer

Signature:
Date: March 29, 1998


I hereby certify that this test measurement report was prepared under my direction and that to the best of my knowledge and belief, the facts set in the report and accompanying technical data are true and correct.

The following is a statement of my qualifications.

I have a Ph.D. degree in electronics, have obtained more than 41 years of experience in EMC measurements and electronic product design and have been with Hermon Laboratories since 1986.

Also, I am an EMC engineer certified by the National Association of Radio and Telecommunications Engineers, Inc. (USA). The certificate no. is EMC-000623-NE, Senior Member.

Name: Dr. Edward Usoskin
Position: C.E.O.

Signature:
Date: March 29, 1998

HERMON LABORATORIES

Test Report: KEYRX.12648
Date: March, 1998
FCC ID: NFER9744

3 Conducted Emission Measurements

3.1 Conducted Emission Measurements, General

Conducted emission measurements specification limits are given in Table 3.1 below

Table 3.1. Limits for mains terminal radio interference voltage

Frequency, MHz	Class B equipment limit, dB(μ V)
0.45 - 30	48

3.2 Conducted Emission Measurements, Test Procedure

The EUT was tested in full configuration as shown in Figure 1.1. The EUT was set up as shown in Figure 3.1 and photographs 3.1 and 3.2.

The frequency range from 450 kHz to 30 MHz was investigated.

The measurements were performed on the 120 V AC 60 Hz power lines (both neutral and phase) by means of the LISN, connected to the spectrum analyzer. The monitor was powered via the second LISN. The unused 50 Ω connectors of the LISN were resistively powered via the second LISN. The unused 50 Ω connectors of the LISN were resistively terminated in 50 Ω when not connected to the measuring instrument. The position of the EUT cables was varied to determine maximum emission level. Quasi peak detector (resolution bandwidth = 9 kHz) was used.

The test results were recorded in Table 3.2 and shown in plots 3.1 and 3.2.

Reference numbers of test equipment used

HL 0026	HL 0163	HL 0185	HL 0447	HL 0466
---------	---------	---------	---------	---------

Full description is in Appendix A.

HERMON LABORATORIES

Test Report: KEYRX.12648
Date: March, 1998
FCC ID: NRFER9744

Table 3.2 Conducted emission measurements on EUT power lines

Frequency range : 450 kHz - 30 MHz

Detector : quasi peak

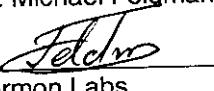
TEST SPECIFICATION:	<u>FCC part 15 subpart B Class B</u>		
COMPANY:	Keytron Electronics & Technologies Ltd.		
EUT:	Excitor™ 21 receiver		
DATE:	March 4, 1998		
RELATIVE HUMIDITY:	47%		
AMBIENT TEMPERATURE:	18°C		

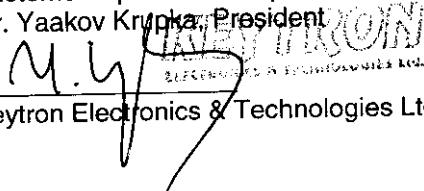
Frequency MHz	Line ID	Measured Conducted Emissions dB (μ V)	Spec. Limit dB (μ V)	Spec. Limit Margins dB	Pass/ Fail
0.4799	Ph/N	39.0	48	9.0	Pass
0.5999	Ph/N	33.7	48	14.3	Pass
0.8396	Ph/N	34.8	48	13.2	Pass
1.4381	Ph/N	30.7	48	17.3	Pass
5.8827	Ph/N	36.5	48	11.5	Pass

Test parameters:

Detector type = QP (quasi peak).
Resolution bandwidth = 9 kHz.

Table calculations and abbreviations:


Conducted emission = EMI meter reading ($\text{dB}\mu\text{V}$) + Cable Loss (dB) + LISN correction factor (dB). (For LISN correction factor refer to Appendix B).

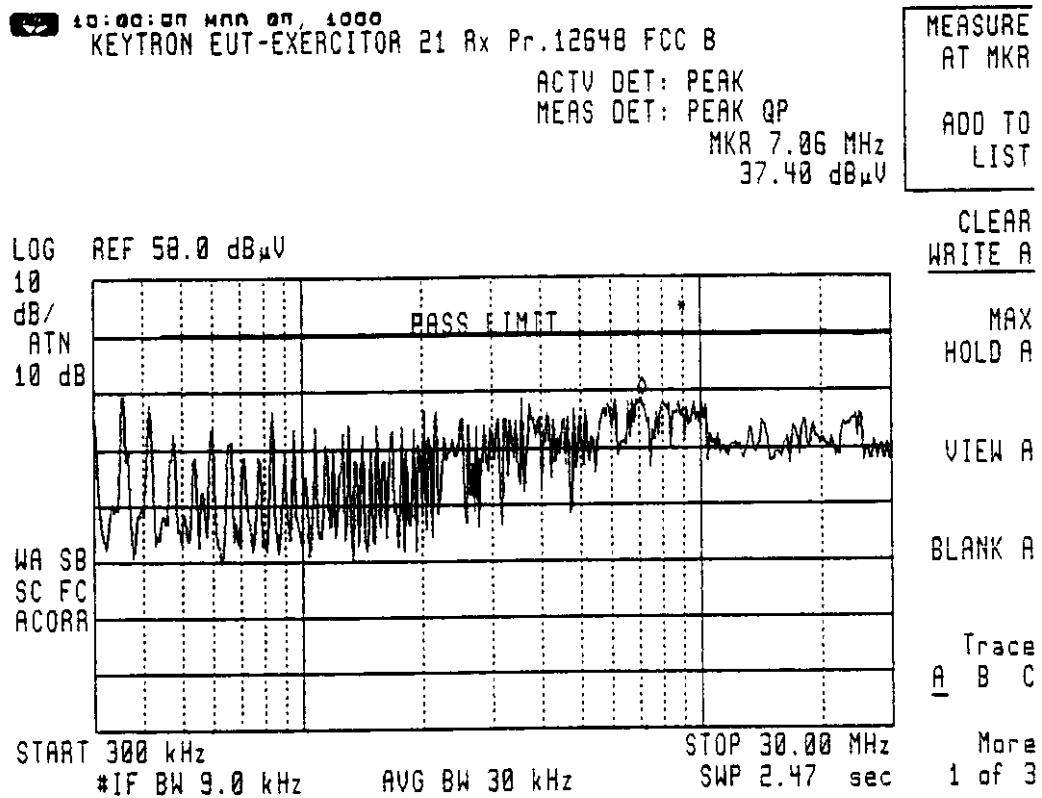

Spec. limit = specification limit.

Spec. margin = dB below (negative if above) specification limit.

Line ID = Line Identification (Ph - phase, N - neutral).

Test performed by:
Mr. Michael Feldman, test technician

Feldman
Hermon Labs


Customer representative person:
Mr. Yaakov Krypka, President

Keytron Electronics & Technologies Ltd.

H
HERMON LABORATORIES

Test Report: KEYRX.12648
Date: March, 1998
FCC ID: NRFER9744

Plot 3.1

Test specification: FCC part 15 subpart B class B
Conducted emission measurements on power line
Frequency range: 450 kHz-30 MHz
Line: phase
Detector: PEAK
Limit: quasi peak
EUT: Exercitor™ 21

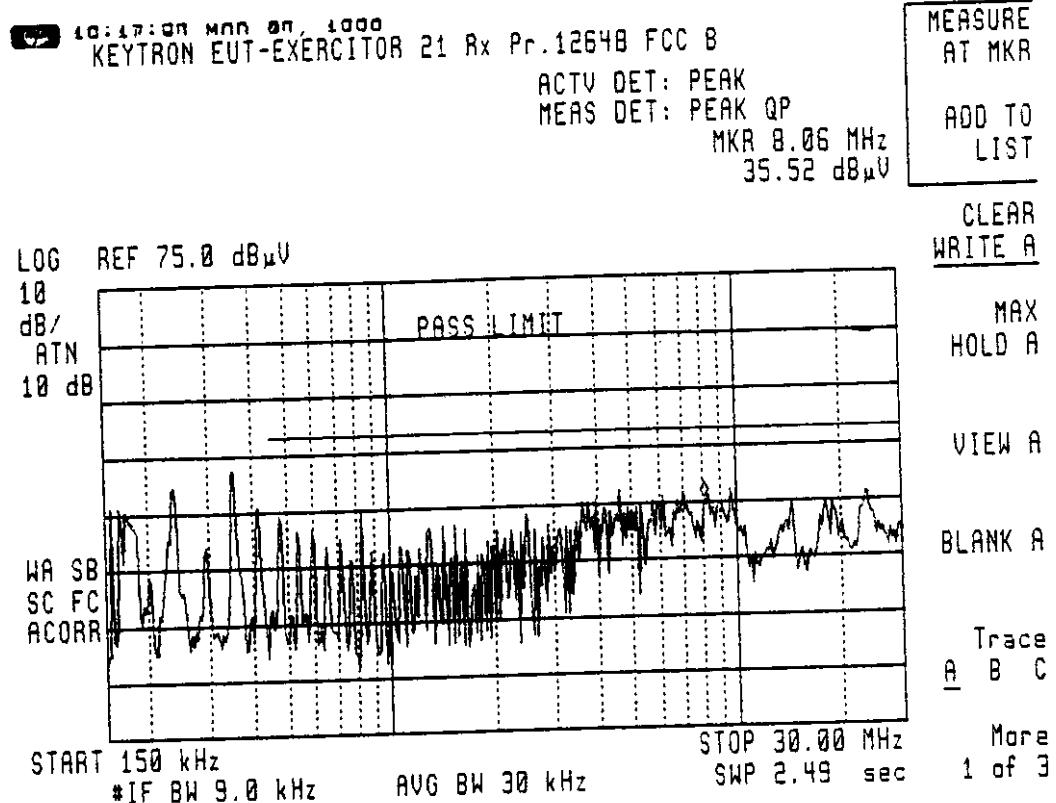
John

HERMON LABORATORIES

Test Report: KEYRX.12648
Date: March, 1998
FCC ID: NRFER9744

Plot 3.2

Test specification: FCC part 15 subpart B class B
Conducted emission measurements on power line

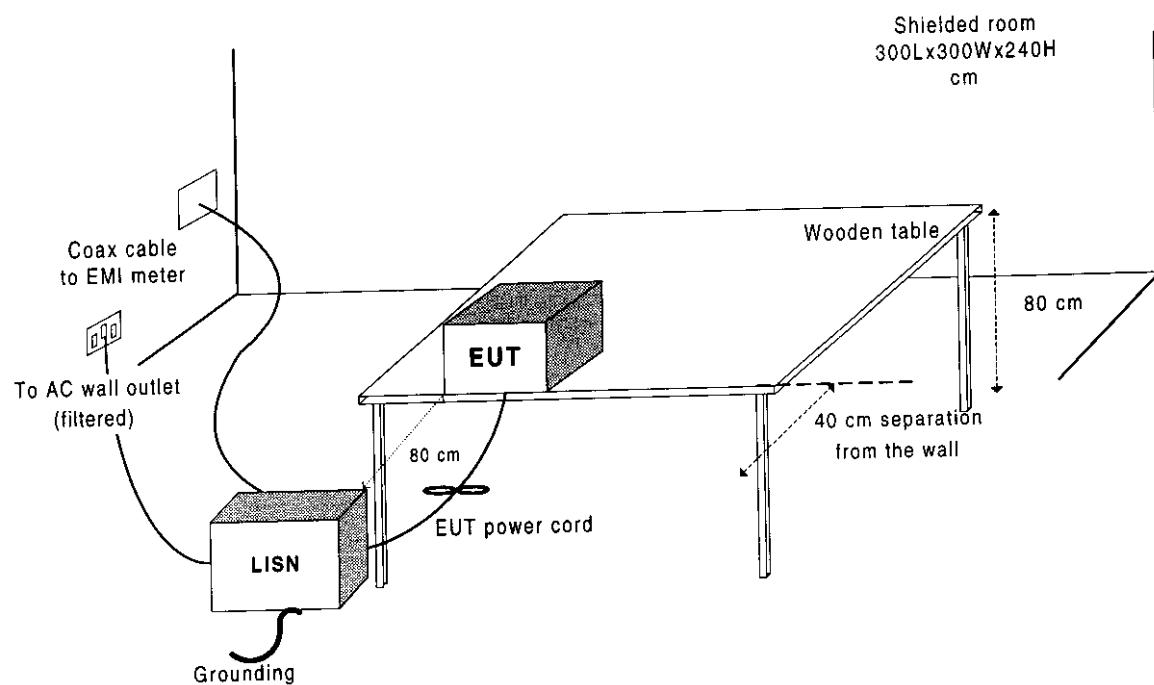

Frequency range: 450 kHz-30 MHz

Line: neutral

Detector: PEAK

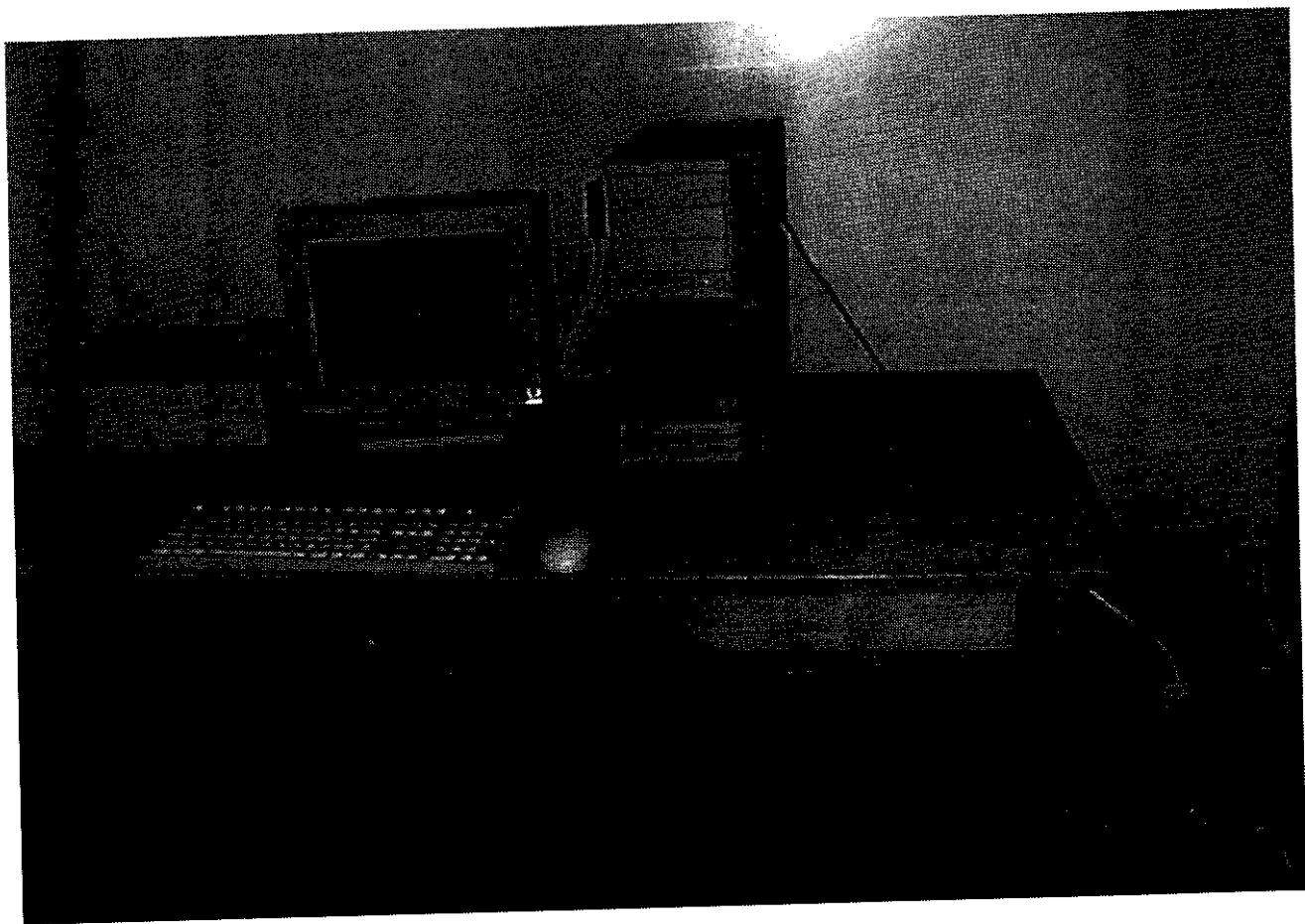
Limit: quasi peak

EUT: Exercitor™ 21



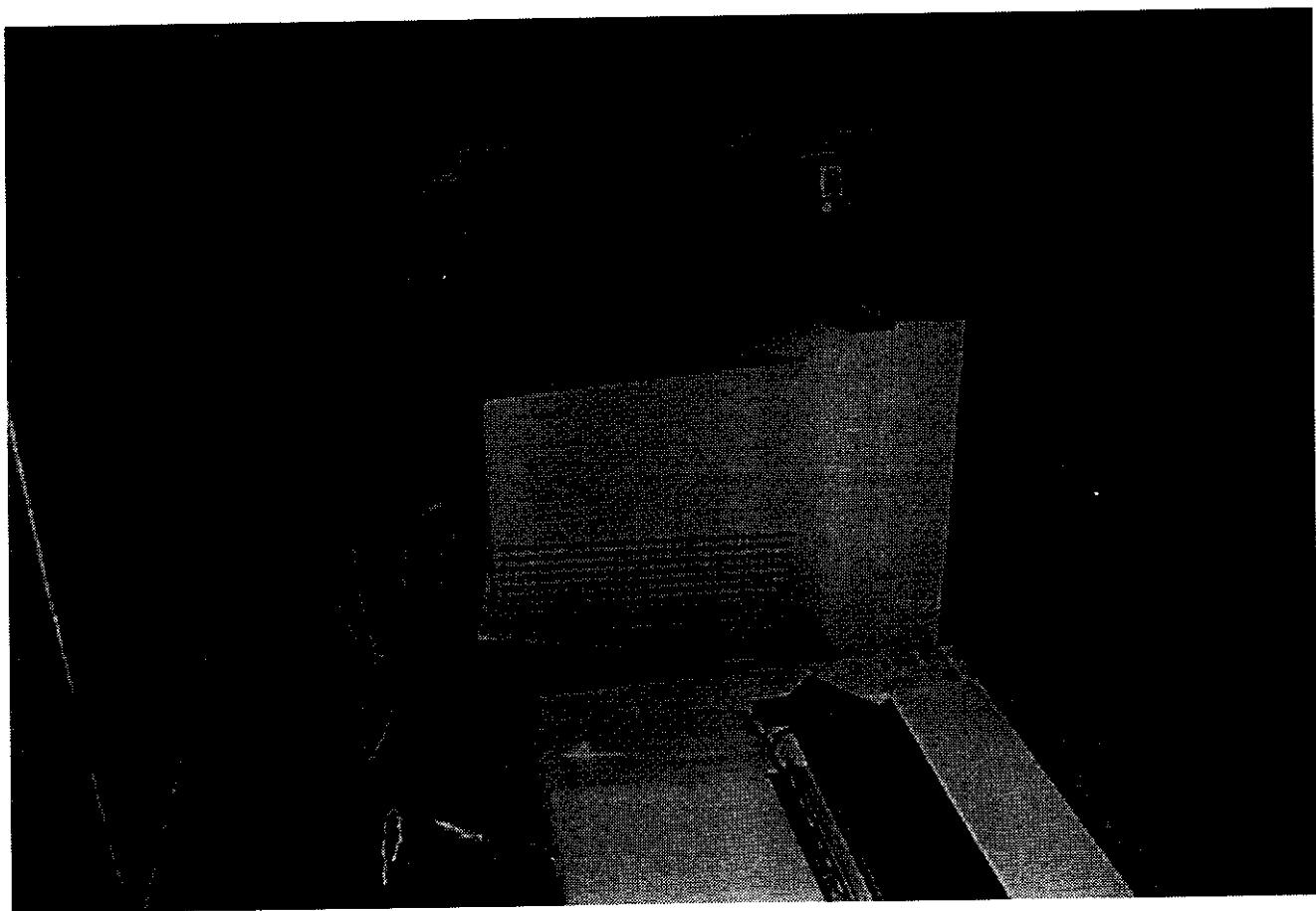
HERMON LABORATORIES

Test Report: KEYRX.12648
Date: March, 1998
FCC ID: NRFER9744


Figure 3.1
Setup for conducted emissions test

HERMON LABORATORIES

Test Report: KEYRX.12648
Date: March, 1998
FCC ID: NRFER9744



Photograph 3.1
Setup for conducted emissions measurements

HERMON LABORATORIES

Test Report: KEYRX.12648
Date: March, 1998
FCC ID: NRFER9744

Photograph 3.2
Setup for conducted emissions measurements

HERMON LABORATORIES

Test Report: KEYRX.12648
Date: March, 1998
FCC ID: NRFER9744

4 Radiated Emission Measurements

Radiated emission measurement specification limits are given in Table 4.1 below:

**Table 4.1. Limits for Electric field strength at 3 meters distance,
quasi-peak detector**

Frequency MHz	Class B Equipment dB(μ V/m)
30 - 88	40
88 - 216	43.5
216 - 960	46
960 - 5000	54

4.1 Radiated Emission Measurements, Test Procedure

The test was performed in the Hermon Labs anechoic chamber at 3 meter test distance, i.e. the distance between measuring antenna and EUT boundary.

The EUT was placed on the wooden turntable, as shown in Figure 4.1 and Photographs 4.1 to 4.2. The frequency range from 30 MHz up to 5th harmonic (5 GHz) was investigated. Biconilog and Double Ridged Guide antennas were used. To find maximum radiation the turntable was rotated 360°, the measuring antenna height was changed from 1 to 4 m, the EUT cables were moved and the antennas polarization was changed from vertical to horizontal.

The measurements were performed with the quasi-peak detector below 1 GHz and with the average detector above 1 MHz.

The test results are given in Table 4.2 and shown in Plots 4.1 to 4.3. The plots correspond to the different Spectrum Analyzer settings.

Reference numbers of test equipment used

HL 0041	HL 0275	HL 0465	HL 0521	HL 0593	HL 0604	
---------	---------	---------	---------	---------	---------	--

Full description is given in Appendix A.

HERMON LABORATORIES

Test Report: KEYRX.12648
Date: March, 1998
FCC ID: NRFER9744

Table 4.2

**Radiated Emission Measurements - Test Results
(Electric field, frequency range 30 MHz - 5 GHz)**

TEST SPECIFICATION: FCC part 15 subpart B class B
 COMPANY: Keytron Electronics & Technologies Ltd.
 EUT: Exercitor™ 21 receiver
 DATE: March 4, 1998
 RELATIVE HUMIDITY: 47%
 AMBIENT TEMPERATURE: 18°C

MEASUREMENTS PERFORMED AT 3 METRES DISTANCE

Frequency MHz	Detector Type	RBW MHz	Ant. Type	Ant. Pol.	Ant. Hgt.	TT Pos. (°)	Radiated Emissions dB (μ V/m)	Spec. Limit dB (μ V/m)	Spec. Margin dB	Pass/ Fail
30.164	QP	0.120	BL	V	1.0	54	34.3	40.0	5.7	Pass
66.475	QP	0.120	BL	V	1.0	47	31.3	40.0	8.2	Pass
253.229	QP	0.120	BL	H	1.0	99	34.2	46.0	11.8	Pass
398.863	QP	0.120	BL	V	1.0	237	37.6	46.0	8.4	Pass
465.325	QP	0.120	BL	V	1.0	134	40.1	46.0	5.9	Pass
598.300	QP	0.120	BL	H	1.0	225	39.8	46.0	6.2	Pass
1196.609	AVR	1	DRG	H	1.0	115	38.0	54.0	16.0	Pass
1595.458	AVR	1	DRG	V	1.0	224	37.1	54.0	16.9	Pass

Table Abbreviations:

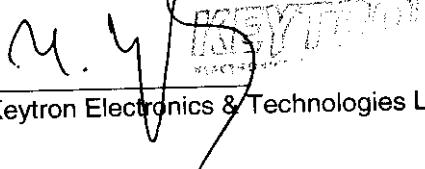
RBW - resolution bandwidth

Ant. Type = Antenna type (BL- biconilog, DRG-double ridged guide)

Ant. Pol. = Antenna polarization (V-vertical, H- horizontal)

TT Position - turntable position in degrees (EUT front panel=0°)

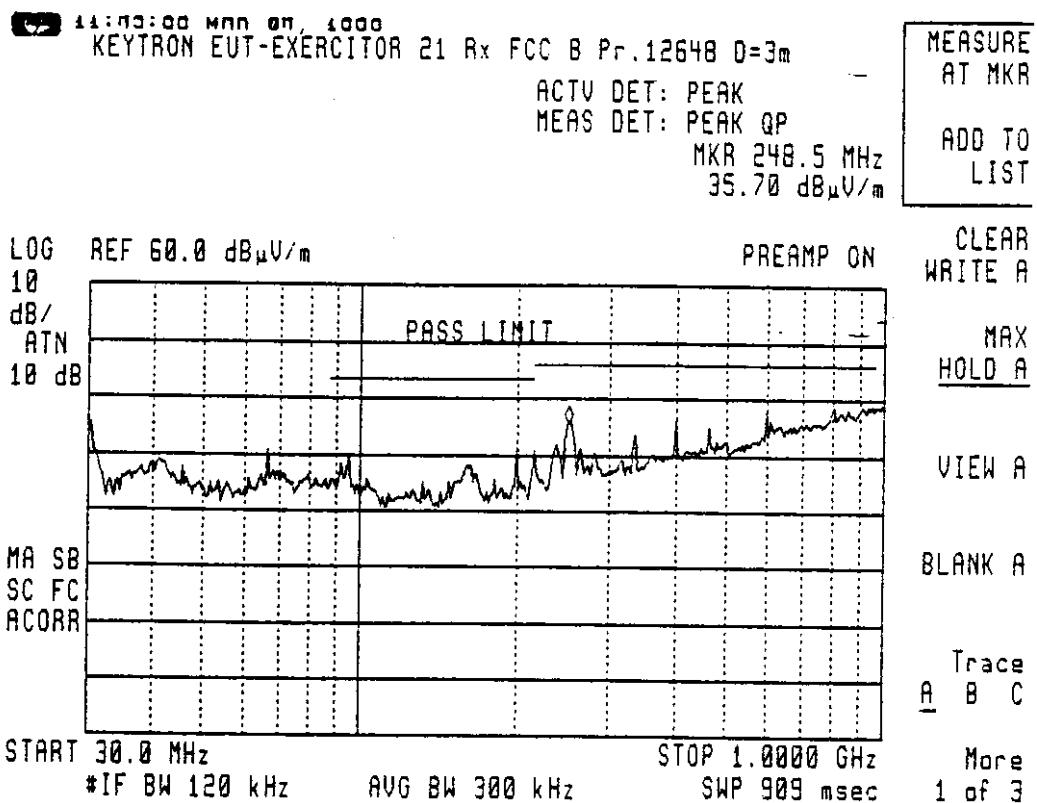
QP- quasi-peak


Spec. Limit = specification limit

Spec. Margin = specification margins = dB below (negative if above) specification limit.

Test Performed by:
Mr. Michael Feldman, test technician

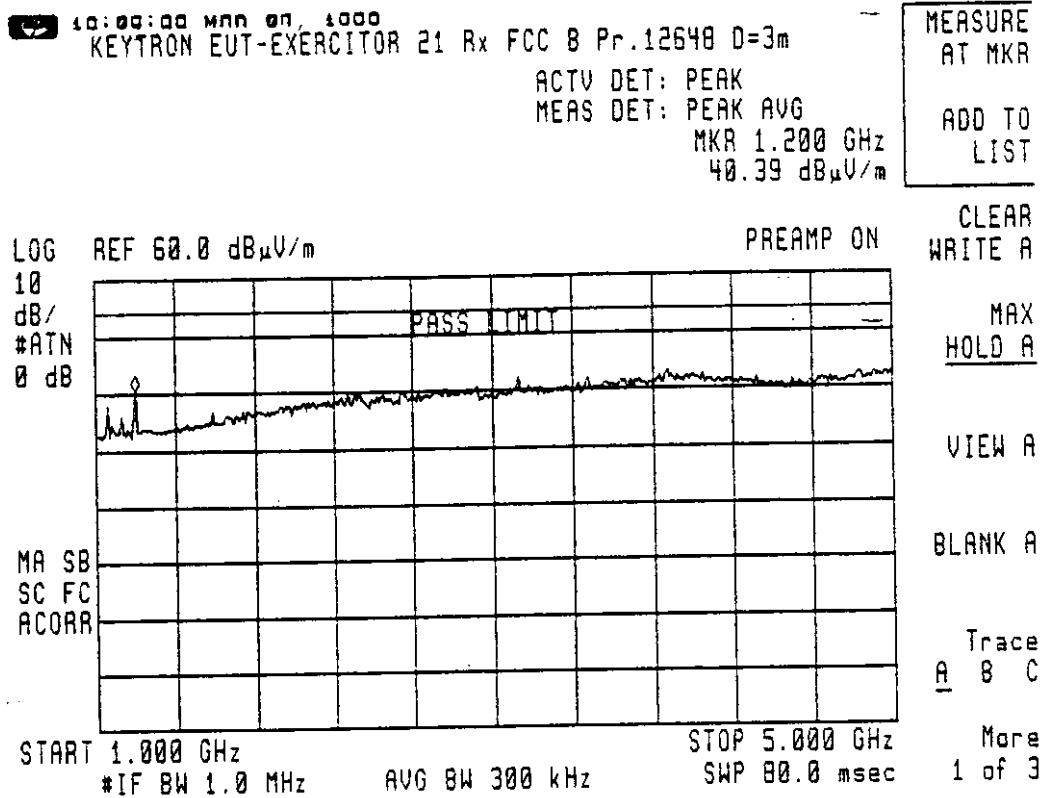
Hermon Labs


Customer Representative person:
Mr. Yaakov Krupka, President

Keytron Electronics & Technologies Ltd.

Test Report: KEYRX.12648
Date: March, 1998
FCC ID: NRFER9744

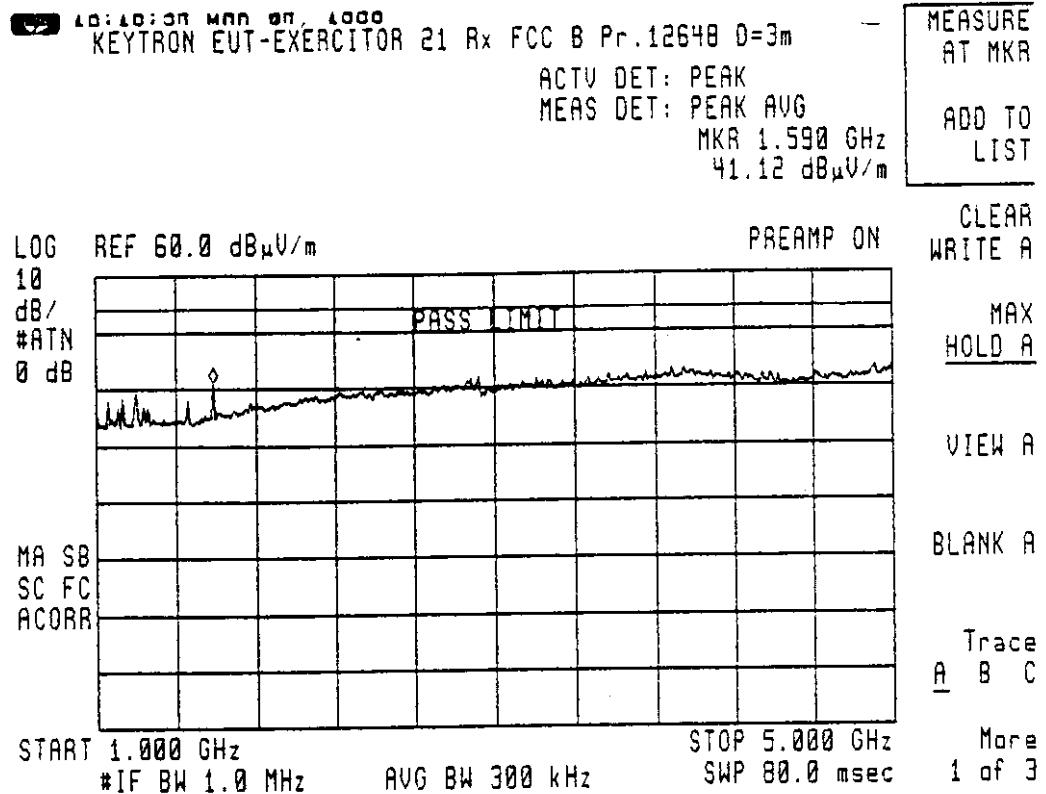
Plot 4.1
Radiated Emission Measurement Results



HERMON LABORATORIES

Test Report: KEYRX.12648
Date: March, 1998
FCC ID: NRFER9744

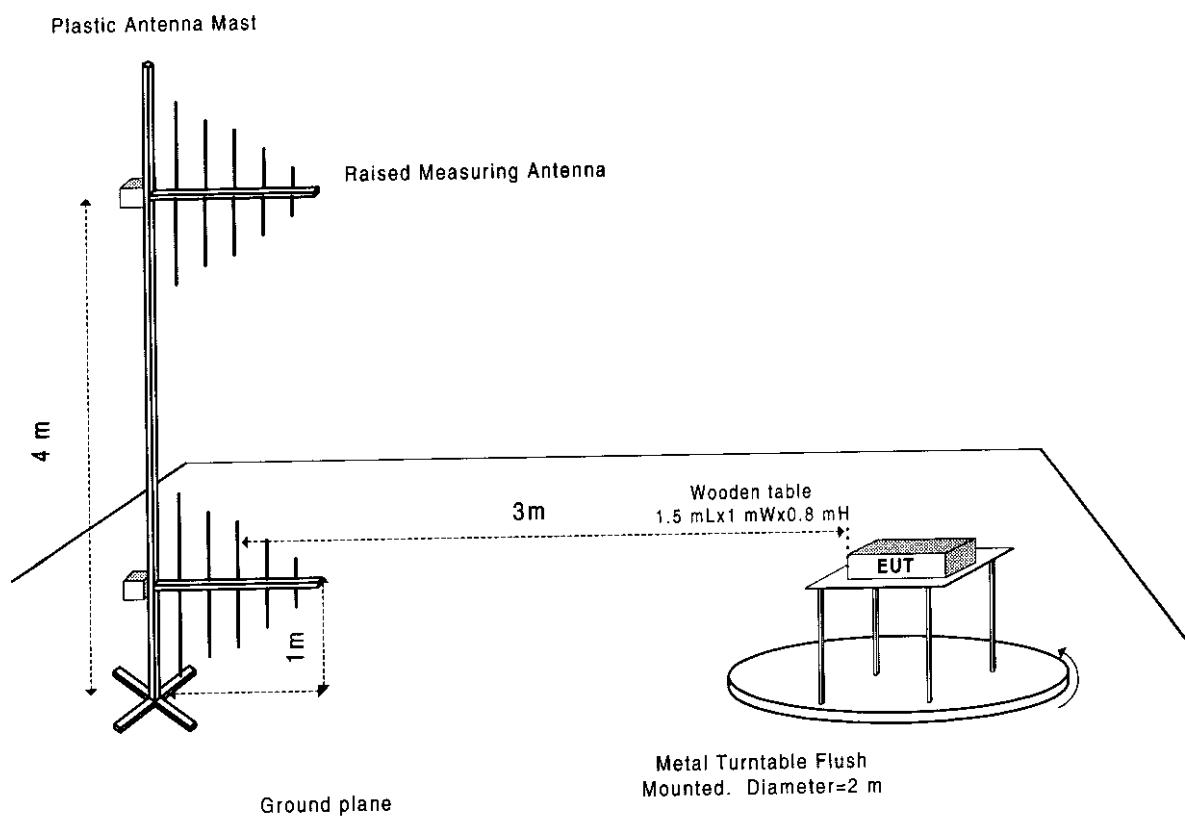
Plot 4.2
Radiated Emission Measurement Results



HERMON LABORATORIES

Test Report: KEYRX.12648
Date: March, 1998
FCC ID: NRFER9744

Plot 4.3
Radiated Emission Measurement Results



HERMON LABORATORIES

Test Report: KEYRX.12648
Date: March, 1998
FCC ID: NFER9744

Figure 4.1
Radiated Emission Test Setup

HERMON LABORATORIES

Test Report: KEYRX.12648
Date: March, 1998
FCC ID: NRFER9744

4 Summary and Signatures

The Exercitor™ 21 receiver, FCC ID:NRFER9744 was found to be in compliance with the FCC part 15, subpart B, class B requirements.

Test performed by:

Mr. Michael Feldman, test technician

Approved by:

Dr. Edward Usoskin, C.E.O.

Responsible Person from
KEYTRON ELECTRONICS & TECHNOLOGIES Ltd.

Mr. Yaakov Krupka, President

KEYTRON
KEYTRON ELECTRONICS & TECHNOLOGIES Ltd.

HERMON LABORATORIES

Test Report: KEYRX.12648
Date: March, 1998
FCC ID: NRFER9744

APPENDIX A - Test equipment and ancillaries used for tests

HL Serial No.	Serial No.	Description	Manufacturer	Model No.	Due Calibr.
0025	5837	Spectrum Analyzer, 10 kHz-23 GHz	Anritsu	MS-710C	8/98
0026	3460	Spectrum Analyzer, 100 Hz-2.2 GHz	Anritsu	MS 2601A	8/99
0041	2811	Double Ridged Guide Antenna, 1 - 18 GHz	Electro-Metrics	RGA 50/60	8/98
0185	1765	Graphics Plotter	Hewlett Packard	7475A	NA
0275	0275	Wooden Table, 1.5 x 1.0 x 0.8	Hermon Labs	NA	NA
0287	287	Turntable Motorized, Diameter 1.2	Hermon Labs	HLTT-MDC1	NA
0447	447	LISN, 16/2, 300 V RMS	Hermon Labs	NA	2/99
0465	0465	Anechoic Chamber 9 mL x 6.5 mW x 5.5 mH	Hermon Labs	NA	10/99
0466	0466	Shielded Room 3 mL x 3 mW x 2.4 mH	Hermon Labs	NA	5/98
0521	0319	Spectrum Analyzer with RF filter section (EMI Receiver 9 kHz - 6.5 GHz)	Hewlett Packard	8546A	7/98
0593	593	Antenna Mast, 1-4 m/ 1-6 m Pneumatic	Hermon Labs	HLAM-F1	NA
0604	1011	Antenna Log-Periodic/T Bow-Tie, 26 - 2000 MHz	EMCO	3141 BICONILOG	12/98

HERMON LABORATORIES

Test Report: KEYRX.12648
Date: March, 1998
FCC ID: NFER9744

APPENDIX B-Test Equipment Correction Factors

Correction Factor
Line Impedance Stabilization Network
Model ANS-25/2
Electro-Metrics

Frequency, kHz	Correction Factor
10	4.9
15	2.86
20	1.83
25	1.25
30	0.91
35	0.69
40	0.53
50	0.35
60	0.25
70	0.18
80	0.14
90	0.11
100	0.09
125	0.06
150	0.04

The correction factor dB is to be added to the meter readings (dB/ μ V) of the interference analyzer or spectrum analyzer.

HERMON LABORATORIES

Test Report: KEYRX.12648
Date: March, 1998
FCC ID: NRFER9744

Antenna Factor at 3m calibration
Biconilog Antenna EMCO Model 3141
Ser.No.1011

Frequency, MHz	Antenna Factor, dB(1/m)
26	7.8
28	7.8
30	7.8
40	7.2
60	7.1
70	8.5
80	9.4
90	9.8
100	9.7
110	9.3
120	8.8
130	8.7
140	9.2
150	9.8
160	10.2
170	10.4
180	10.4
190	10.3
200	10.6
220	11.6
240	12.4
260	12.8
280	13.7
300	14.7
320	15.2
340	15.4
360	16.1
380	16.4
400	16.6
420	16.7
440	17.0
460	17.7
480	18.1
500	18.5
520	19.1
540	19.5
560	19.8
580	20.6
600	21.3
620	21.5
640	21.2
660	21.4
680	21.9
700	22.2
720	22.2
740	22.1
760	22.3
780	22.6
800	22.7
820	22.9
840	23.1
860	23.4
880	23.8
900	24.1
920	24.1

Frequency, MHz	Antenna Factor, dB(1/m)
940	24.0
960	24.1
980	24.5
1000	24.9
1020	25.0
1040	25.2
1060	25.4
1080	25.6
1100	25.7
1120	26.0
1140	26.4
1160	27.0
1180	27.0
1200	26.7
1220	26.5
1240	26.5
1260	26.5
1280	26.6
1300	27.0
1320	27.8
1340	28.3
1360	28.2
1380	27.9
1400	27.9
1420	27.9
1440	27.8
1460	27.8
1480	28.0
1500	28.5
1520	28.9
1540	29.6
1560	29.8
1580	29.6
1600	29.5
1620	29.3
1640	29.2
1660	29.4
1680	29.6
1700	29.8
1720	30.3
1740	30.8
1760	31.1
1780	31.0
1800	30.9
1820	30.7
1840	30.6
1860	30.6
1880	30.6
1900	30.6
1920	30.7
1940	30.9
1960	31.2
1980	31.6
2000	32.0

Antenna factor is to be added to receiver meter reading in dB(μ V) to convert to field intensity in dB(μ V/meter).