



**KTL Dallas, Inc.**

*Safety - EMC - Telecom - ISO Guide 25*

**ENGINEERING TEST REPORT**

**ON:  
PROFESSIONAL TRANSMITTER  
FCC ID: NQQPS911-9805-1**

**IN ACCORDANCE WITH:**

**FCC PART 15, SUBPART C, SECTION 247  
DIRECT SEQUENCE TRANSMITTERS 902 - 928 MHZ**

**REPORT NO.: 8L0077EUS**

**TESTED FOR:**

**PERSONAL SECURITY & SAFETY SYSTEMS, INC.  
1237 EXECUTIVE DRIVE EAST  
RICHARDSON, TEXAS 75081**

**TESTED BY:**

**KTL DALLAS, INC.  
802 N. KEALY  
LEWISVILLE, TEXAS 75057-3136**



**NVLAP LAB CODE: 100426-0**

**JANUARY 1999**

**This document contains 42 pages including this one.**

**KTL Dallas, Inc. authorizes the above named company to reproduce this report provided  
it is reproduced in its entirety and for use by the company's employees only.**

**Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility  
of such third parties. KTL Dallas, Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of  
decisions made or actions based on this report.**

**This report applies only to the items tested.**

*EQUIPMENT: Professional Transmitter*

FCC ID: NQQPS911-9805-1

**Section 1. Summary Of Test Results****General:****All measurements are traceable to national standards.**

These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with FCC Part 15, Subpart C, Paragraph 15.247 for Direct Sequence Spread Spectrum Devices.

**Abstract:**

| NAME OF TEST                              | PARA. NO.     | SPEC.               | MEAS.                                           | RESULT               |
|-------------------------------------------|---------------|---------------------|-------------------------------------------------|----------------------|
| Powerline Conducted Emissions             | 15.207 (a)    | 48 dB $\mu$ V       | N/A                                             | N/A                  |
| Occupied Bandwidth                        | 15.247 (a)(2) | $\geq$ 500 kHz      | 4.5 MHz                                         | Pass                 |
| Peak Power Output                         | 15.247 (b)    | 1 Watt              | 50 mW                                           | Pass                 |
| Spurious Emissions<br>(Antenna Conducted) | 15.247 (c)    | -20 dBc             | N/A                                             | N/A                  |
| Spurious Emissions                        | 15.247 (c)    | Table<br>15.209 (a) | -18.25 Db(H)<br>-9.08 dB(H)<br>72 dB $\mu$ V(V) | Pass<br>Pass<br>Pass |
| Transmitter Power Density                 | 15.247 (d)    | $\leq$ +8 dBm       | 35.8 dB $\mu$ V/Hz                              | Pass                 |
| Processing Gain                           | 15.247 (e)    | $\geq$ 10 dB        | N/A                                             | Not Tested           |

**Footnotes For N/A's:**

Powerline Conducted Emissions

N/A Battery Powered

Spurious Emissions (Antenna Conducted)

N/A Non-detachable Antenna

Processing Gain

Not Tested per Client's Request

**Test Conditions:**

Temperature: Within Standard Day Levels °C

Humidity: Within Standard Day Levels %

*EQUIPMENT: Professional Transmitter*

FCC ID: NQQPS911-9805-1

---

THIS TEST REPORT RELATES ONLY TO THE ITEM(S) TESTED.

THE FOLLOWING DEVIATIONS FROM, ADDITIONS TO, OR EXCLUSIONS FROM THE TEST SPECIFICATIONS HAVE BEEN MADE:

Powerline Conducted Emissions was not applicable as the EUT is battery powered.

Spurious Emissions (Antenna Conducted) was not applicable as the EUT has a non-detachable antenna.

Processing Gain was not tested per the client's request.

TESTED BY:

Michael Sundstrom DATE: 12/04/98

Michael Sundstrom, Sr EMC Test Technician

TECHNICAL REVIEW:

Wes Atchison DATE: 1/19/99

Wes Atchison, Senior EMC Engineer

*EQUIPMENT: Professional Transmitter*  
*FCC ID: NQQPS911-9805-1*

---

**Section 2. General Equipment Specification**

Manufacturer: Personal Security & Safety Systems

Model No.: Professional Transmitter

Serial No.: NONE

Part No.: 10-102-0000

New Submission

Production Unit

Class II Permissive Change

Pre-Production Unit

Family Listing

*EQUIPMENT: Professional Transmitter*  
*FCC ID: NQQPS911-9805-1*

---

**Transmitter:**

|                                                   |                   |        |
|---------------------------------------------------|-------------------|--------|
| <b>Power Input:</b>                               | N/A               |        |
| <b>Frequency Range:</b>                           | 902-928 MHz       |        |
| <b>Turnable Bands:</b>                            | FIXED             |        |
| <b>6 dB Bandwidth:</b>                            | 12 MHz            |        |
| <b>Type of Modulation</b>                         | BPSK DSSS         |        |
| <b>Data Rate:</b>                                 | 900 bps           |        |
| <b>Internal / External Data Source:</b>           | Internal          |        |
| <b>Emissions Designator:</b>                      | 14M3GID           |        |
| <b>Output Impedance:</b>                          | 50 Ohm nominal    |        |
| <b>RF Power Output (Rated):</b>                   | <b>Single:</b>    | 1 Watt |
|                                                   | <b>Composite:</b> |        |
| <b>Duty Cycle:</b>                                | 3 %               |        |
| <b>Channel Spacing:</b>                           | N/A               |        |
| <b>Operator Selection of Operating Frequency:</b> | NONE (fixed)      |        |
| <b>Power Output Adjustment Capability:</b>        | Factory Set       |        |

**KTL Dallas, Inc.**

CFR 47, PART 15, SUBPART C, SECTION 247  
DIRECT SEQUENCE TRANSMITTERS  
REPORT NO.: 8L0077EUS

*EQUIPMENT: Professional Transmitter*  
*FCC ID: NQQPS911-9805-1*

---

**Receiver:**

**N/A Transmitter only**

**KTL Dallas, Inc.**

CFR 47, PART 15, SUBPART C, SECTION 247

DIRECT SEQUENCE TRANSMITTERS

REPORT NO.: 8L0077EUS

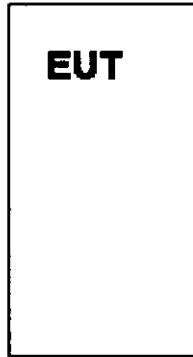
*EQUIPMENT: Professional Transmitter*

*FCC ID: NQQPS911-9805-1*

---

**Description of Modification for Modification Filing:**

N/A


*EQUIPMENT: Professional Transmitter*  
*FCC ID: NQQPS911-9805-1*

---

**Theory of Operation:**

The Professional Transmitter is a battery powered direct sequence spread spectrum wireless location device; which operates within the 902 MHz to 928 MHz frequency band.

**System Diagram:**



**KTL Dallas, Inc.**

CFR 47, PART 15, SUBPART C, SECTION 247  
DIRECT SEQUENCE TRANSMITTERS  
REPORT NO.: 8L0077EUS

*EQUIPMENT: Professional Transmitter*  
*FCC ID: NQQPS911-9805-1*

---

**Section 3. Powerline Conducted Emissions**

|                                             |                      |
|---------------------------------------------|----------------------|
| NAME OF TEST: Powerline Conducted Emissions | PARA. NO.: 15.207(a) |
|---------------------------------------------|----------------------|

**N/A**

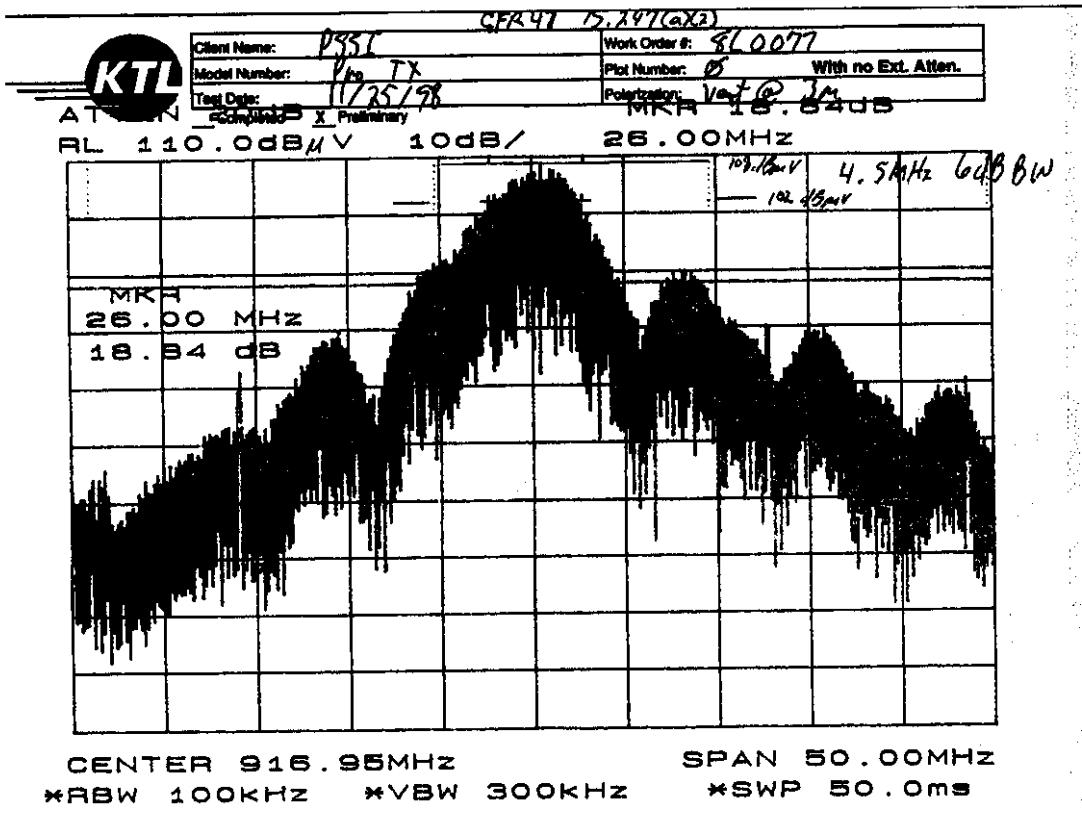
**Battery Operated**

*EQUIPMENT: Professional Transmitter*  
*FCC ID: NQQPS911-9805-1*

**Section 4.      Occupied Bandwidth**

|                                  |                         |
|----------------------------------|-------------------------|
| NAME OF TEST: Occupied Bandwidth | PARA. NO.: 15.247(a)(2) |
| TESTED BY: Michael Sundstrom     | DATE: 11/25/98          |

**Test Results:**


**The EUT complies.**

The 6 dB bandwidth is 4.5 MHz.

**Measurement Data:**

See attached graph on page 14.

*EQUIPMENT: Professional Transmitter*  
*FCC ID: NQQPS911-9805-1*

**Occupied Bandwidth Test Data:**

*EQUIPMENT: Professional Transmitter  
FCC ID: NQQPS911-9805-1*

**Section 5. Peak Power Output**

|                                        |                              |
|----------------------------------------|------------------------------|
| <b>NAME OF TEST: Peak Power Output</b> | <b>PARA. NO.: 15.247 (b)</b> |
| <b>TESTED BY: Michael Sundstrom</b>    | <b>DATE: 11/25/98</b>        |

**Test Results:**

**The EUT complies.**

The maximum peak power output of the transmitter is 1.0 Watt.

**Measurement Data:** Detachable antenna?  Yes  No  
If yes, state the type of non-standard connector used at the antenna port: N/A.

Directional Gain of Antenna: 0 dBi or 1 Numeric Gain

Peak Power Output: 0.05 Watts

Field Strength: 112 dB $\mu$ V/m @ 3m or 0.398 V/m @ 3 m

**Measured Power Output as a Field Strength "Calculated"**

$$P = \frac{E^2 R^2}{30 G}$$

Where:

P= Power in Watts

E= Field Strength (V/m)

R= Measurement Distance

G=Numeric Gain of Antenna

$$P = (0.4)^2 (3)^2 / (30) (1) = (0.16) (9) / 30 = 1.44 / 30 = 0.05 \text{ W or } 50 \text{ mW}$$

*EQUIPMENT: Professional Transmitter*

FCC ID: NQQPS911-9805-1

**Peak Power Output:**

| Test Distance<br>(meters) : 3 |              | Range:<br>B OATS |                     | Receiver:<br>677 |                                  | RBW(kHz):<br>1000                |                         | Detector:<br>Peak        |                                     |                         |                |
|-------------------------------|--------------|------------------|---------------------|------------------|----------------------------------|----------------------------------|-------------------------|--------------------------|-------------------------------------|-------------------------|----------------|
| Freq.<br>(MHz)                | Ant.<br>*494 | Pol.<br>(V/H)    | Ant.<br>HGT.<br>(m) | Table<br>(deg.)  | RCVD<br>Signal<br>(dB $\mu$ V/m) | Ant.<br>Facto<br>r<br>(dB)*<br>* | Amp.<br>Gain<br>(dB)*** | Cable.<br>Factor<br>(dB) | Field<br>Strength<br>(dB $\mu$ V/m) | Limit<br>(dB $\mu$ V/m) | Margin<br>(dB) |
| 0.91                          | H            | V                | 1.3                 | N/A              | 86                               | 22.7                             | 0                       | 3.31                     | 112                                 | N/A                     | N/A            |
|                               |              |                  |                     |                  |                                  |                                  |                         |                          |                                     |                         |                |
|                               |              |                  |                     |                  |                                  |                                  |                         |                          |                                     |                         |                |

## Notes:

B/C = Biconical, B/L = Biconilog, L/P = Log-Periodic, H = Horn, D/P = Dipole

\* Re-measured using dipole antenna.

\*\* Includes cable loss when amplifier is not used.

\*\*\* Includes cable loss.

( ) Denotes failing emission level.

**KTL Dallas, Inc.**

CFR 47, PART 15, SUBPART C, SECTION 247

DIRECT SEQUENCE TRANSMITTERS

REPORT NO.: 8L0077EUS

*EQUIPMENT: Professional Transmitter*

*FCC ID: NQQPS911-9805-1*

---

**Section 6.                    Spurious Emissions (Antenna Conducted)**

**NAME OF TEST: Spurious Emissions (Antenna Conducted)    PARA. NO.: 15.247(c)**

**N/A**

**Non-detachable Antenna**

*EQUIPMENT: Professional Transmitter*  
*FCC ID: NQQPS911-9805-1*

---

## **Section 7. Spurious Emissions (Radiated)**

|                                                    |                                                |
|----------------------------------------------------|------------------------------------------------|
| <b>NAME OF TEST: Spurious Emissions (Radiated)</b> | <b>PARA. NO.: 15.247(c)</b>                    |
| <b>TESTED BY: Michael Sundstrom</b>                | <b>DATES: 11/25/98, 12/04/98,<br/>12/04/98</b> |

### **Test Results:**

**The EUT complies.**

***Test # RE 3 (30 MHz to 300 MHz)***

The worst-case emission level is 19.39 dB $\mu$ V/m at 114.390 MHz at a distance of 3 meters on the Vertical polarization. This is 24.11 dB below the quasi-peak specification limit of 43.5 dB $\mu$ V/m.

***Test # RE 4 (300 MHz to 1 GHz)***

The worst-case emission level is 38.67 dB $\mu$ V/m at 960.480 MHz at a distance of 3 meters on the Horizontal polarization. This is 15.33 dB below the quasi-peak specification limit of 54 dB $\mu$ V/m.

***Test # MW 3 (1 GHz to 10 GHz)***

The worst-case microwave radiated emission is 72 dB $\mu$ V/m at 1.82 GHz at a distance of 3 meters at the Vertical polarization. This is 20 dB below the measured carrier.

### **Measurement Data:**

See test data on pages 21, 22, and 24.

*EQUIPMENT: Professional Transmitter*  
*FCC ID: NQQPS911-9805-1*

**Test Data - Radiated Emissions (PEAK) Test # RE-3 (30 MHz to 300 MHz)**

| Emission Frequency (MHz) | Ant. Pol. (H/V) | Ant. Atten. (dB) | Meter Reading (dBuV) | Antenna Factor (dB) | Path Loss (dB) | RF Gain (dB) | Corrected Reading (dBuV/m) | Spec. Limit (dBuV/m) | CR/SL Delta (dB) | Pass Fail Marginal | Notes                     |
|--------------------------|-----------------|------------------|----------------------|---------------------|----------------|--------------|----------------------------|----------------------|------------------|--------------------|---------------------------|
| 40.480                   | V               | 20.0             | 100                  | 13                  | 2.67           | 25.0         | 20.67                      | 107.8                | -87.13           | Pass               | QP 100                    |
| 114.390                  | V               | 10.0             | 20.0                 | 10.7                | 3.58           | 24.9         | 19.39                      | 43.5                 | -24.11           | Pass               | QP 100 15.205             |
| 143.000                  | V               | 10.0             | 20.0                 | 12.6                | 3.99           | 24.8         | 11.75                      | 107.8                | -96.05           | Pass               | (BB) QP 100               |
| 171.380                  | V               | 10.0             | 16.0                 | 13                  | 3.99           | 24.8         | 18.21                      | 43.5                 | -25.29           | Pass               | QP 100 15.205             |
| 252.130                  | V               | 0.0              | 20.0                 | 14.9                | 5.54           | 24.7         | 15.78                      | 46                   | -30.22           | Pass               | QP 100 15.205             |
|                          |                 |                  |                      |                     |                |              |                            |                      |                  |                    |                           |
| 33.750                   | H               | 0.0              | 31.0                 | 13.5                | 2.25           | 25.0         | 21.75                      | 95.8                 | -74.05           | Pass               |                           |
| 120.000                  | H               | 0.0              | 20.0                 | 11.4                | 3.58           | 24.9         | 10.11                      | 43.5                 | -33.39           | Pass               | NOISE FLOOR 15.205        |
| 280.000                  | H               | 0.0              | 20.0                 | 17.5                | 5.54           | 24.7         | 18.38                      | 46                   | -27.62           | Pass               | NOISE FLOOR 15.205        |
|                          |                 |                  |                      |                     |                |              |                            |                      |                  |                    |                           |
| 33.750                   | H               | 10.0             | 18.0                 | 13.5                | 2.25           | 25.0         | 18.75                      | 95.8                 | -77.05           | Pass               | QP 100                    |
| 120.000                  | H               | 10.0             | 12.0                 | 11.4                | 3.58           | 24.9         | 12.11                      | 43.5                 | -31.39           | Pass               | QP 100 NOISE FLOOR 15.205 |
| 280.000                  | H               | 10.0             | 10.0                 | 17.5                | 5.54           | 24.7         | 18.38                      | 46                   | -27.62           | Pass               | QP 100 NOISE FLOOR 15.205 |
|                          |                 |                  |                      |                     |                |              |                            |                      |                  |                    |                           |

Scanned 30MHz to 300MHz

*EQUIPMENT: Professional Transmitter*  
*FCC ID: NQQPS911-9805-1*

## Test Data - Radiated Emissions (PEAK) TEST # RE 4 (300 MHz to 1 GHz)

| Emission Frequency (MHz) | Ant. Pol. (H/V) | Det. Atten. (dB) | Meter Reading (dBuV) | Antenna Factor (dB) | Path Loss (dB) | RF Gain (dB) | Corrected Reading (dBuV/m) | Spec. Limit (dBuV/m) | CRSL Delta (dB) | Pass Fail Marginal | Notes              |
|--------------------------|-----------------|------------------|----------------------|---------------------|----------------|--------------|----------------------------|----------------------|-----------------|--------------------|--------------------|
| 325.500                  | V               | 0.0              | 18.0                 | 13.5                | 6.08           | 14.7         | 22.91                      | 46                   | -23.09          | Pass               | 15.205 N.F.        |
| 325.500                  | V               | 0.0              | 9.0                  | 13.5                | 6.08           | 14.7         | 13.91                      | 46                   | -32.09          | Pass               | QP 151 15.205 N.F. |
| 327.785                  | V               | 0.0              | 18.0                 | 13.5                | 6.08           | 14.7         | 22.91                      | 46                   | -23.09          | Pass               | 15.205 N.F.        |
| 327.785                  | V               | 0.0              | 9.0                  | 13.5                | 6.08           | 14.7         | 13.91                      | 46                   | -32.09          | Pass               | QP 151 15.205 N.F. |
| 330.000                  | V               | 0.0              | 18.0                 | 13.5                | 6.08           | 14.7         | 22.91                      | 46                   | -23.09          | Pass               | 15.205 N.F.        |
| 330.000                  | V               | 0.0              | 9.0                  | 13.5                | 6.08           | 14.7         | 13.91                      | 46                   | -32.09          | Pass               | QP 151 15.205 N.F. |
| 332.600                  | V               | 0.0              | 25.0                 | 13.5                | 6.08           | 14.7         | 29.91                      | 46                   | -16.09          | Pass               | 15.205             |
| 332.600                  | V               | 0.0              | 9.0                  | 13.5                | 6.08           | 14.7         | 13.91                      | 46                   | -32.09          | Pass               | QP 151 15.205      |
| 410.000                  | V               | 0.0              | 21.0                 | 15.9                | 7.08           | 14.7         | 29.29                      | 46                   | -16.71          | Pass               | 15.205             |
| 410.000                  | V               | 0.0              | 9.0                  | 15.9                | 7.08           | 14.7         | 17.29                      | 46                   | -28.71          | Pass               | QP 151 15.205      |
| 960.500                  | V               | 0.0              | 30.0                 | 23.06               | 11.13          | 14.5         | 49.67                      | 54                   | -4.33           | Pass               | 15.205             |
| 960.500                  | V               | 0.0              | 18.0                 | 23.06               | 11.13          | 14.5         | 37.67                      | 54                   | -16.33          | Pass               | QP 151 15.205      |
| 961.500                  | V               | 0.0              | 31.0                 | 23.06               | 11.13          | 14.5         | 50.67                      | 54                   | -3.33           | Pass               | 15.205             |
| 961.500                  | V               | 0.0              | 18.0                 | 23.06               | 11.13          | 14.5         | 37.67                      | 54                   | -16.33          | Pass               | QP 151 15.205      |
| 300.100                  | H               | 0.0              | 18.0                 | 13.5                | 6.08           | 14.7         | 22.91                      | 95.8                 | -72.89          | Pass               | N.F.               |
| 300.100                  | H               | 0.0              | 9.0                  | 13.5                | 6.08           | 14.7         | 13.91                      | 95.8                 | -81.89          | Pass               | QP 151 N.F.        |
| 697.500                  | H               | 0.0              | 20.0                 | 20.73               | 8.85           | 14.6         | 34.94                      | 95.8                 | -60.86          | Pass               |                    |
| 697.500                  | H               | 0.0              | 10.0                 | 20.73               | 8.85           | 14.6         | 24.94                      | 95.8                 | -70.86          | Pass               | QP 151             |
| 759.600                  | H               | 0.0              | 40.0                 | 22.85               | 9.63           | 14.6         | 57.92                      | 95.8                 | -37.88          | Pass               |                    |
| 759.600                  | H               | 0.0              | 19.0                 | 22.85               | 9.63           | 14.6         | 36.92                      | 95.8                 | -58.88          | Pass               | QP 151             |
| 774.000                  | H               | 0.0              | 18.0                 | 23.6                | 9.63           | 14.6         | 36.67                      | 95.8                 | -59.13          | Pass               | N.F.               |
| 774.000                  | H               | 0.0              | 9.0                  | 23.6                | 9.63           | 14.6         | 27.67                      | 95.8                 | -68.13          | Pass               | QP 151 N.F.        |
| 776.000                  | H               | 0.0              | 18.0                 | 23.85               | 9.63           | 14.6         | 36.92                      | 95.8                 | -58.88          | Pass               | N.F.               |
| 776.000                  | H               | 0.0              | 9.0                  | 23.85               | 9.63           | 14.6         | 27.92                      | 95.8                 | -67.88          | Pass               | QP 151 N.F.        |
| 779.500                  | H               | 0.0              | 18.0                 | 23.85               | 9.63           | 14.6         | 36.92                      | 95.8                 | -58.88          | Pass               | N.F.               |
| 779.500                  | H               | 0.0              | 9.0                  | 23.85               | 9.63           | 14.6         | 27.92                      | 95.8                 | -67.88          | Pass               | QP 151 N.F.        |
| 790.200                  | H               | 0.0              | 18.0                 | 24.6                | 9.63           | 14.6         | 37.67                      | 95.8                 | -58.13          | Pass               | N.F.               |
| 790.200                  | H               | 0.0              | 9.0                  | 24.6                | 9.63           | 14.6         | 28.67                      | 95.8                 | -67.13          | Pass               | QP 151 N.F.        |
| 883.770                  | H               | 0.0              | 18.0                 | 24.72               | 10.41          | 14.7         | 38.46                      | 95.8                 | -57.34          | Pass               | N.F.               |
| 883.770                  | H               | 0.0              | 9.0                  | 24.72               | 10.41          | 14.7         | 29.46                      | 95.8                 | -66.34          | Pass               | QP 151 N.F.        |
| 916.700                  | H               | 0.0              | 94.0                 | 25.15               | 11.13          | 14.5         | 115.76                     | 46                   | 69.76           | Fail               | Fundamental        |
| 916.700                  | H               | 0.0              | 81.0                 | 25.15               | 11.13          | 14.5         | 102.76                     | 46                   | 56.76           | Fail               | QP 151 Fundamental |
| 960.480                  | H               | 0.0              | 30.0                 | 23.06               | 11.13          | 14.5         | 49.67                      | 54                   | -4.33           | Pass               | 15.205             |
| 960.480                  | H               | 0.0              | 19.0                 | 23.06               | 11.13          | 14.5         | 38.67                      | 54                   | -15.33          | Pass               | QP 151 15.205      |
| 916.700                  | V               | 0.0              | 106.0                | 25.15               | 11.13          | 14.5         | 127.76                     | 46                   | 81.76           | Fail               | Fundamental        |
| 916.700                  | V               | 0.0              | 94.0                 | 25.15               | 11.13          | 14.5         | 115.76                     | 46                   | 69.76           | Fail               | QP 151 Fundamental |
| Peak Power               |                 |                  |                      |                     |                |              |                            |                      |                 |                    |                    |
| RBW = 3kHz VBW = 10kHz   |                 |                  |                      |                     |                |              |                            |                      |                 |                    |                    |
| Sweep = 100 sec.         |                 |                  |                      |                     |                |              |                            |                      |                 |                    |                    |
| Span = 300kHz            |                 |                  |                      |                     |                |              |                            |                      |                 |                    |                    |
| 916.700                  | V               | 0.0              | 86.3                 | 25.15               | 11.13          | 14.5         | 108.09                     | 46                   | 62.09           | Fail               | Fundamental        |
| Scanned 300MHz to 1GHz   |                 |                  |                      |                     |                |              |                            |                      |                 |                    |                    |

*EQUIPMENT: Professional Transmitter*

FCC ID: NQQPS911-9805-1

**Test Data – Microwave Radiated Emissions Test # MW 3 (1 GHz to 10 GHz)**

| Freq.<br>(GHz) | Meter<br>Reading<br>(dBuV) | Antenna<br>Factor<br>(dB) | Cable<br>Loss<br>(dB) | RF<br>Gain<br>(dB) | Conver.<br>Factor | Corrected<br>Reading<br>(dBuV/m) | Spec.<br>Limit<br>(dBuV/m) | Pol. | Comments:   |
|----------------|----------------------------|---------------------------|-----------------------|--------------------|-------------------|----------------------------------|----------------------------|------|-------------|
| 1.82           | 40                         | 28.2                      | 3.31                  | 0                  | 0                 | 72                               | 92                         | V    |             |
| 2.8            | 10                         | 30.8                      | 4.23                  | 0                  | 0                 | 45                               | 54                         | V    | N.F. 15.205 |
| 6              | 2                          | 35.3                      | 6.37                  | 0                  | 0                 | 44                               | 54                         | V    | N.F.        |
| 9              | 3                          | 37.7                      | 8.13                  | 0                  | 0                 | 49                               | 54                         | V    | N.F. 15.205 |
|                |                            |                           |                       |                    |                   |                                  |                            |      |             |
| 1.82           | 17                         | 28.2                      | 3.31                  | 0                  | 0                 | 49                               | 76                         | H    |             |
| 3              | 9                          | 30.8                      | 4.23                  | 0                  | 0                 | 44                               | 54                         | H    | N.F.        |
| 6              | 3                          | 35.3                      | 6.37                  | 0                  | 0                 | 45                               | 54                         | H    | N.F.        |
| 9              | 4                          | 37.7                      | 8.13                  | 0                  | 0                 | 50                               | 54                         | H    | N.F. 15.205 |
|                |                            |                           |                       |                    |                   |                                  |                            |      |             |
| 0.91           | 86                         | 22.7                      | 3.31                  | 0                  | 0                 | 112                              | N/A                        | V    | Fundamental |
| 0.91           | 70                         | 22.7                      | 3.31                  | 0                  | 0                 | 96                               | N/A                        | H    | Fundamental |
|                |                            |                           |                       |                    |                   |                                  | Scanned 1GHz to 10GHz      |      |             |
|                |                            |                           |                       |                    |                   |                                  |                            |      |             |

**Legend:**

N.F. = Noise Floor reading

*EQUIPMENT: Professional Transmitter*

FCC ID: NQQPS911-9805-1

**Section 8. Transmitter Power Density**

|                                                |                             |
|------------------------------------------------|-----------------------------|
| <b>NAME OF TEST: Transmitter Power Density</b> | <b>PARA. NO.: 15.247(d)</b> |
| <b>TESTED BY: Michael Sundstrom</b>            | <b>DATE: 12/04/98</b>       |

**Test Results:****The EUT complies.****Measurement Data:**

See attached graph on page 27.

Received Signal: 35.8 dB $\mu$ V/m/Hz

Antenna Factor: 25.15 dB

Cable Loss: 11.13 dB

Pre Amp Gain: 14.5 dB

Corrected Field Strength: 60.28 dB $\mu$ V/m/HzMeasured Reading: 60.28 dB $\mu$ V/m/Hz

BW Correction: 34.77 dB

Corrected reading: 95.05 dB $\mu$ V/m/3kHz(Log)-1(Corrected reading / 20) 56558.8  $\mu$ V/m/3kHz(56558.8  $\mu$ V/m/3kHz)/(1X10)6 0.057 V/m/3kHz**Power Output as a Field Strength "Calculated"**

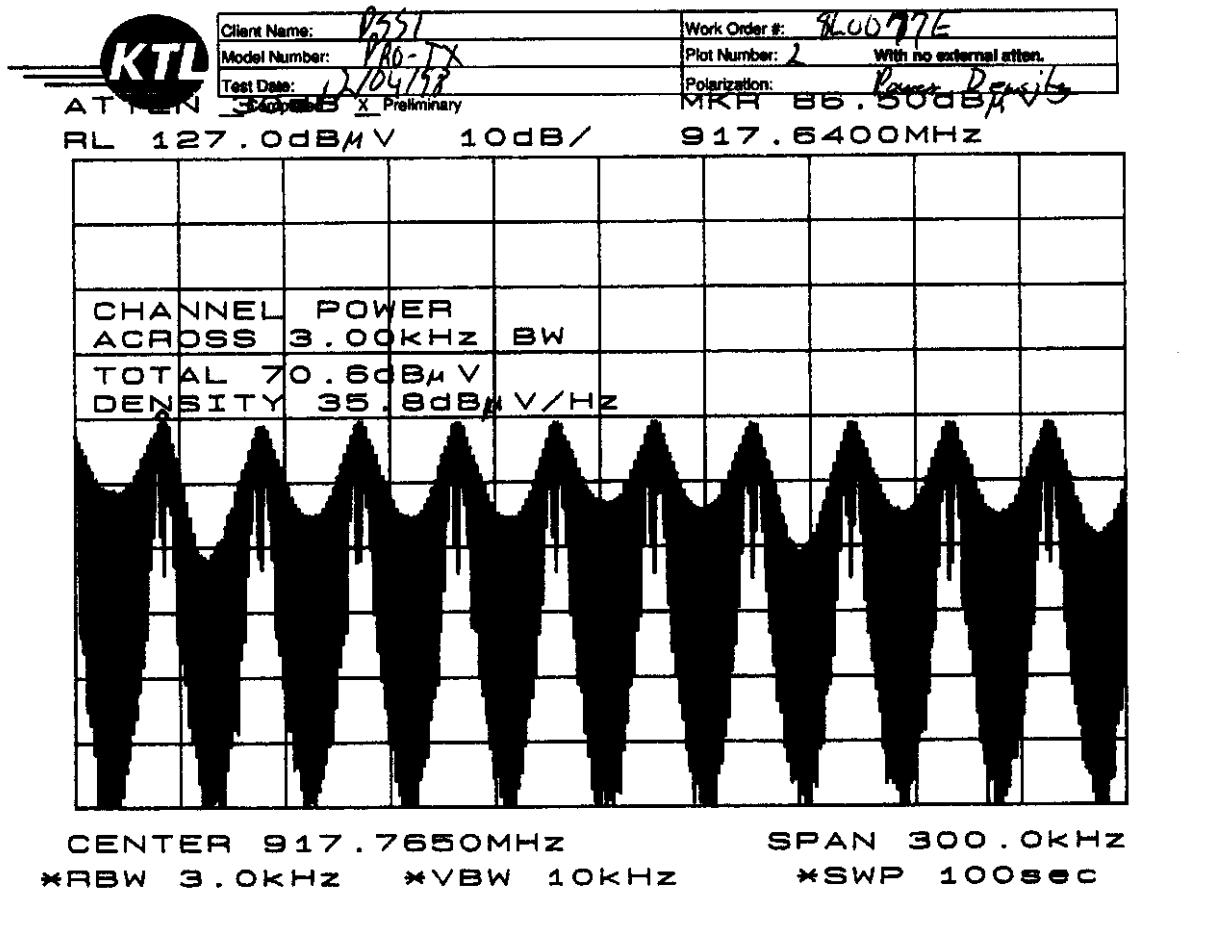
$$P = \frac{E^2 R^2}{30 G}$$

Where:

P= Power in Watts

E= Field Strength (V/m)

R= Measurement Distance


G=Numeric Gain of Antenna

$$P = (0.057)^2 (3)^2 / (30) (1) = (0.003) (9) / 30 = 0.29 / 30 = 0.001 \text{ W or } 1.0 \text{ mW}$$

$$1.0 \text{ mW} = 0 \text{ dBm}$$

$$\text{Compare: } (0 \text{ dBm}) - (+8 \text{ dBm limit}) = (-8 \text{ dB}) \text{ below limit}$$

*EQUIPMENT: Professional Transmitter*  
FCC ID: NQQPS911-9805-1

**Transmitter Power Density Data**

**KTL Dallas, Inc.**

CFR 47, PART 15, SUBPART C, SECTION 247  
DIRECT SEQUENCE TRANSMITTERS  
REPORT NO.: 8L0077EUS

*EQUIPMENT: Professional Transmitter*  
*FCC ID: NQQPS911-9805-1*

---

## **Section 9. Processing Gain**

|                                      |                             |
|--------------------------------------|-----------------------------|
| <b>NAME OF TEST: Processing Gain</b> | <b>PARA. NO.: 15.247(e)</b> |
|--------------------------------------|-----------------------------|

**Not tested per Client Request**

*EQUIPMENT: Professional Transmitter*  
FCC ID: NQQPS911-9805-1

## Section 10. Test Equipment List

The listing below indicates the test equipment utilized for the test (s). Calibration interval on all items is typically 12 months from the calibration date shown.

| <u>KTL ID</u> | <u>Nomenclature</u>                   | <u>Manufacturer Model Number</u>                | <u>Serial Number</u> | <u>Calibration Date</u> |
|---------------|---------------------------------------|-------------------------------------------------|----------------------|-------------------------|
| C1A           | A O.A.T.S. Cable Set                  |                                                 |                      | 04/03/98                |
| CF01          | Storm Cable (7.7 meters)              |                                                 |                      | 04/28/98                |
| 100           | Polarad Receiver                      | Rohde & Schwarz ESV                             | 872149/28            | 10/07/98                |
| 151           | Receiver (20-1000 MHz)                | Rohde & Schwarz ESVS 30                         | 843710/0001          | 03/04/98                |
| 182           | Limiter                               | Fischer FCC45013-1.2                            | NSN                  | 02/27/98                |
| 201           | Biconical Antenna (30 MHz - 300 MHz)  | A.H. Systems SAS200/542                         | 235                  | 01/17/98                |
| 241           | Biconical Antenna (30 MHz - 300 MHz)  | International Compliance Corporation BCON-30300 | 212                  | 11/17/98                |
| 398           | Preamplifier, 25dB (30 MHz - 1.5 GHz) | ICC LNA25                                       | 398                  | 06/18/98                |
| 408           | Low Noise Amplifier                   | International Compliance Corporation LN22       | N/A                  | 04/27/98                |
| 494           | Horn Antenna                          | A.H. Systems SAS-200/571                        | 162                  | 04/29/98                |
| 660(a)        | Spectrum Analyzer                     | Hewlett Packard 8567A                           | 2541A00109           | 01/06/98                |
| 660(b)        | Display Unit                          | Hewlett Packard 85662A                          | 2542A10537           | 01/06/98                |
| 660(c)        | Quasi-Peak Adapter                    | Hewlett Packard 85650A                          | 2551A00608           | 01/06/98                |
| 664           | Antenna, Log Periodic                 | EMCO 3146                                       | 1753                 | 01/24/98                |

*EQUIPMENT: Professional Transmitter*  
**FCC ID: NQQPS911-9805-1**

**Test Equipment List (Continued):**

The listing below indicates the test equipment utilized for the test (s). Calibration interval on all items is typically 12 months from the calibration date shown.

| <b><u>KTL ID</u></b> | <b><u>Nomenclature</u></b>                        | <b><u>Manufacturer<br/>Model Number</u></b>                        | <b><u>Serial Number</u></b> | <b><u>Calibration<br/>Date</u></b> |
|----------------------|---------------------------------------------------|--------------------------------------------------------------------|-----------------------------|------------------------------------|
| 677                  | Receiver<br>(1 - 18 GHz)                          | Electro Metrics<br>EMC 50                                          | 185                         | 08/26/98                           |
| 850                  | Log Periodic Antenna                              | A.H. Systems<br>SAS-200/510                                        | 821                         | 01/24/98                           |
| G2624                | Spectrum Analyzer                                 | HP<br>8563E                                                        | 3551A04428                  | 10/05/98                           |
|                      |                                                   | <b>SITE A O.A.T.S.<br/>(OPEN AREA TEST SITE)<br/>10 Meter Site</b> |                             |                                    |
|                      | Turntable, 4 foot                                 | RF Consultants<br>(Automated)                                      |                             | CNR                                |
|                      | Antenna Mast, 4 Meter                             | EMCO Part # 1050<br>(Automated)                                    |                             | CNR                                |
|                      |                                                   | <b>SITE B O.A.T.S.<br/>(OPEN AREA TEST SITE)<br/>10 Meter Site</b> |                             |                                    |
|                      | Turntable Flush Mounted,<br>Metal Covered, 8 Foot | RF Consultants<br>Model AT-8 (Automated)                           |                             | CNR                                |
|                      | Antenna Mast, 4 Meter                             | ICC<br>(Automated)                                                 |                             | CNR                                |

**LEGEND:**

CNR = CALIBRATION NOT REQUIRED

N/A = NOT APPLICABLE

CBU = CALIBRATED BEFORE USE

**KTL Dallas, Inc.**

CFR 47, PART 15, SUBPART C, SECTION 247  
DIRECT SEQUENCE TRANSMITTERS  
REPORT NO.: 8L0077EUS  
ANNEX A

*EQUIPMENT: Professional Transmitter*  
*FCC ID: NQQPS911-9805-1*

---

## **ANNEX A**

### **TEST METHODOLOGIES**

*EQUIPMENT: Professional Transmitter*

*FCC ID: NQQPS911-9805-1*

---

## **Section A1. Powerline Conducted Emissions**

### **Test Method - Powerline Conducted Emissions**

**PARA. NO.: 15.207(a)**

**Test Conditions:** Standard Temperature and Humidity  
Standard Test Voltage

**Minimum Standard:** The R.F. that is conducted back onto the AC power line on any frequency within the band 0.45 to 30 MHz shall not exceed 250 $\mu$ V (48 dB $\mu$ V) across 50 ohms.

*EQUIPMENT: Professional Transmitter*  
FCC ID: NQQPS911-9805-1

**Section A2. Occupied Bandwidth****Test Method - Occupied Bandwidth****PARA. NO.: 15.247(a)(2)**

**Test Conditions:** Standard Temperature and Humidity  
Standard Test Voltage

**Minimum Standard:** The minimum bandwidth shall be at least 500 kHz.

**Method Of Measurement:**

The spectrum analyzer is set as follows:

RBW: 100 kHz  
VBW: 100 kHz  
Span: >RBW  
LOG dB/div.: 2 dB  
Sweep: Auto

Number of channels tested:

| Tuning Range     | Number Of Channels Tested | Channel Location In Band |
|------------------|---------------------------|--------------------------|
| 1 MHz or Less    | 1                         | Middle                   |
| 1 to 10 MHz      | 2                         | Top And Bottom           |
| More Than 10 MHz | 3                         | Top, Middle, Bottom      |

*EQUIPMENT: Professional Transmitter*  
*FCC ID: NQQPS911-9805-1*

## Section A3. Peak Power Output

### Test Method - Peak Power Output

**PARA. NO.: 15.247(b)**

**Test Conditions:** Standard Temperature and Humidity  
 Standard Test Voltage

**Minimum Standard:** The maximum peak power output shall not exceed 1 Watt. If transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

#### Direct Measurement Method For Detachable Antennas:

If the antenna is detachable, a peak power meter is used to measure the power output with the transmitter operating into a 50 ohm load.

#### Calculation Of EIRP For Integral Antenna:

If the antenna is not detachable from the circuit, then the Peak Power Output is derived from the peak radiated field strength of the fundamental emission by using the plane wave relation  $GP/4\pi R^2 = E^2/120\pi$  and proceeding as follows:

$$P = \frac{E^2 R^2}{30G} = \frac{E^2 3^2}{30G}$$

where,

P = the equivalent isotropic radiated power in Watts

E = the maximum measured field strength in V/m

R = the measurement range (3 meters)

G = the numeric gain of the transmit antenna in relation to an isotropic radiator

The RBW of the spectrum analyzer shall be set to a value greater than the measured 6 dB occupied bandwidth of the E.U.T.

Number of channels tested:

| Tuning Range     | Number Of Channels Tested | Channel Location In Band |
|------------------|---------------------------|--------------------------|
| 1 MHz or Less    | 1                         | Middle                   |
| 1 to 10 MHz      | 2                         | Top And Bottom           |
| More Than 10 MHz | 3                         | Top, Middle, Bottom      |

*EQUIPMENT: Professional Transmitter*  
*FCC ID: NQQPS911-9805-1*

## Section A4. Spurious Emissions at Antenna Terminal

### Test Method - Spurious Emissions at Antenna Terminal

PARA. NO.: 15.247(c)

**Test Conditions:** Standard Temperature and Humidity  
 Standard Test Voltage

**Minimum Standard:** In any 100 kHz bandwidth outside the 902 - 928 MHz bands, emissions shall be at least 20 dB below the fundamental emission or shall not exceed the following field strength limits. Emissions falling in the restricted bands of 15.205 shall not exceed the following field strength limits:

| Frequency (MHz) | Field Strength ( $\mu$ V/m @ 3m) | Field Strength (dB @ 3m) |
|-----------------|----------------------------------|--------------------------|
| 30 - 88         | 100                              | 40.0                     |
| 88 - 216        | 150                              | 43.5                     |
| 216 - 960       | 200                              | 46.0                     |
| Above 960       | 500                              | 54.0                     |

*The spectrum is searched to the 10<sup>th</sup> harmonic.*

### Method Of Measurement:

#### Upper Band Edge

RBW: At least 1% of span/div.

VBW: >RBW

Span: As necessary to display any spurious at band edge.

Sweep: Auto

Center Frequency: 928 MHz

Marker: Peak of fundamental emission

Marker Δ: Peak of highest spurious level above 928 MHz

#### Lower Band Edge

RBW: At least 1% of span/div.

VBW: >RBW

Span: As necessary to display any spurious at band edge.

Sweep: Auto

Center Frequency: 902 MHz

Marker: Peak of fundamental emission

Marker Δ: Peak of highest spurious level below 902 MHz

### 30 MHz - 10th Harmonic Plot

RBW: 100 kHz

VBW: 300 kHz

Sweep: Auto

Display line: -20 dBc

Number of channels tested:

| Tuning Range     | Number Of Channels Tested | Channel Location In Band |
|------------------|---------------------------|--------------------------|
| 1 MHz or Less    | 1                         | Middle                   |
| 1 to 10 MHz      | 2                         | Top And Bottom           |
| More Than 10 MHz | 3                         | Top, Middle, Bottom      |

*EQUIPMENT: Professional Transmitter*  
*FCC ID: NQQPS911-9805-1*

## Section A5. Radiated Spurious Emissions

### Test Method - Radiated Spurious Emissions

PARA. NO.: 15.247(c)

**Test Conditions:** Standard Temperature and Humidity  
 Standard Test Voltage

**Minimum Standard:** In any 100kHz bandwidth outside the 902 - 928 MHz bands emissions shall be at least 20 dB below the fundamental emission or shall not exceed the following field strength limits. *Emissions falling in the restricted bands of 15.205 shall not exceed the following field strength limits:*

| Frequency (MHz) | Field Strength ( $\mu$ V/m @ 3m) | Field Strength (dB @ 3m) |
|-----------------|----------------------------------|--------------------------|
| 30 - 88         | 100                              | 40.0                     |
| 88 - 216        | 150                              | 43.5                     |
| 216 - 960       | 200                              | 46.0                     |
| Above 960       | 500                              | 54.0                     |

*The spectrum is searched to the 10<sup>th</sup> harmonic.*

### 15.205 Restricted Bands

| MHz               | MHz                 | MHz           | GHz         |
|-------------------|---------------------|---------------|-------------|
| 0.09-0.11         | 16.42-16.423        | 399.9-410     | 4.5-5.25    |
| 0.495-0.505       | 16.69475-16.69525   | 608-614       | 5.35-5.46   |
| 2.1735-2.1905     | 16.80425-16.80475   | 960-1240      | 7.25-7.75   |
| 4.125-4.128       | 25.5-25.67          | 1300-1427     | 8.025-8.5   |
| 4.17725-4.17775   | 37.5-38.25          | 1435-1626.5   | 9.0-9.2     |
| 4.20725-4.20775   | 73-74.6             | 1645.5-1646.5 | 9.3-9.5     |
| 6.125-6.218       | 74.8-75.2           | 1660-1710     | 10.6-12.7   |
| 6.26775-6.26825   | 108-121.94          | 1718.8-1722.2 | 13.25-13.4  |
| 6.31175-6.31225   | 123-138             | 2200-2300     | 14.47-14.5  |
| 8.291-8.294       | 149.9-150.05        | 2310-2390     | 15.35-16.2  |
| 8.362-8.366       | 156.52475-156.52525 | 2483.5-2500   | 17.7-21.4   |
| 8.37625-8.38675   | 156.7-156.9         | 2655-2900     | 22.01-23.12 |
| 8.41425-8.41475   | 162.0125-167.17     | 3260-3267     | 23.6-24.0   |
| 12.29-12.293      | 167.72-173.2        | 3332-3339     | 31.2-31.8   |
| 12.51975-12.52025 | 240-285             | 3345.8-3358   | 36.43-36.5  |
| 12.57675-12.57725 | 322-335.4           | 3600-4400     | Above 38.6  |
| 13.36-13.41       | 1718                |               |             |

Number of channels tested:

| Tuning Range     | Number Of Channels Tested | Channel Location In Band |
|------------------|---------------------------|--------------------------|
| 1 MHz or Less    | 1                         | Middle                   |
| 1 to 10 MHz      | 2                         | Top And Bottom           |
| More Than 10 MHz | 3                         | Top, Middle, Bottom      |

*EQUIPMENT: Professional Transmitter*

FCC ID: NQQPS911-9805-1

**Section A6. Transmitter Power Density****Test Method - Transmitter Power Density****PARA. NO.: 15.247(d)**

**Test Conditions:** Standard Temperature and Humidity  
Standard Test Voltage

**Minimum Standard:** The transmitted power density averaged over any 1 second interval shall not be greater than +8 dBm in any 3 kHz bandwidth.

**Method Of Measurement:** The spectrum analyzer is set as follows:

RBW: 3 kHz

VBW: &gt;3 kHz

Span: =&gt; measured 6 dB bandwidth

Sweep: Span(kHz)/3 (i.e. for a span of 1.5 MHz the sweep rate is 1500/3 = 500 sec.

LOG dB/div.: 2 dB

**Note:** For devices with spectrum line spacing =< 3 kHz, the RBW of the analyzer is reduced until the spectral lines are resolved. The measurement data is normalized to 3 kHz by summing the power of all the individual spectral lines within a 3 kHz band in linear power units.

**For Devices With Integral Antenna:**

For devices with non-detachable antennas, the received field strength is peaked and the spectrum analyzer is set as above. The peak emission level is then measured and converted to a field strength by adding the appropriate antenna factor and cable loss. This field strength is then converted to an equivalent isotropic radiated power using the same method as described for Peak Power output.

Number of channels tested:

| Tuning Range     | Number Of Channels Tested | Channel Location In Band |
|------------------|---------------------------|--------------------------|
| 1 MHz or Less    | 1                         | Middle                   |
| 1 to 10 MHz      | 2                         | Top And Bottom           |
| More Than 10 MHz | 3                         | Top, Middle, Bottom      |

*EQUIPMENT: Professional Transmitter**FCC ID: NQQPS911-9805-1***Section A9. Processing Gain****Test Method - Processing Gain****PARA. NO.: 15.247(e)**

**Test Conditions:** Standard Temperature and Humidity  
Standard Test Voltage

**Minimum Standard:** The processing gain shall be at least 10 dB.

**Method Of Measurement:** The CW jamming margin method is used to determine the processing gain. A CW signal generator is stepped across the passband of the receiver in 50 kHz increments. At each point the signal generator level required to obtain the recommended bit error rate is recorded. The jammer to signal ratio (J/S) is then calculated. The worst 20% of the J/S points is discarded. The lowest remaining J/S ratio is used to calculate the processing gain.

**Calculation Of Processing Gain:**

The processing gain is determined by measuring the jamming margin of the E.U.T. and using the following formula:

$$\text{Jamming Margin} = G_p - (S/N)_{out} - L_{sys}$$

For a receiver using non-coherent detection the value  $(S/N)_{out}$  is calculated using the formula:

$P_e = (1/2)\text{EXP}\{-E/2N_o\}$  where  $P_e$  is the probability of error (minimum Bit Error Rate required for proper operation).

$E/N_o$  is  $(S/N)_{out}$

For example, for a bit error rate of  $10^{-4}$  a S/N ratio of 12.3 dB is required.

$L_{sys}$  (system losses) is assumed to be 2 dB.

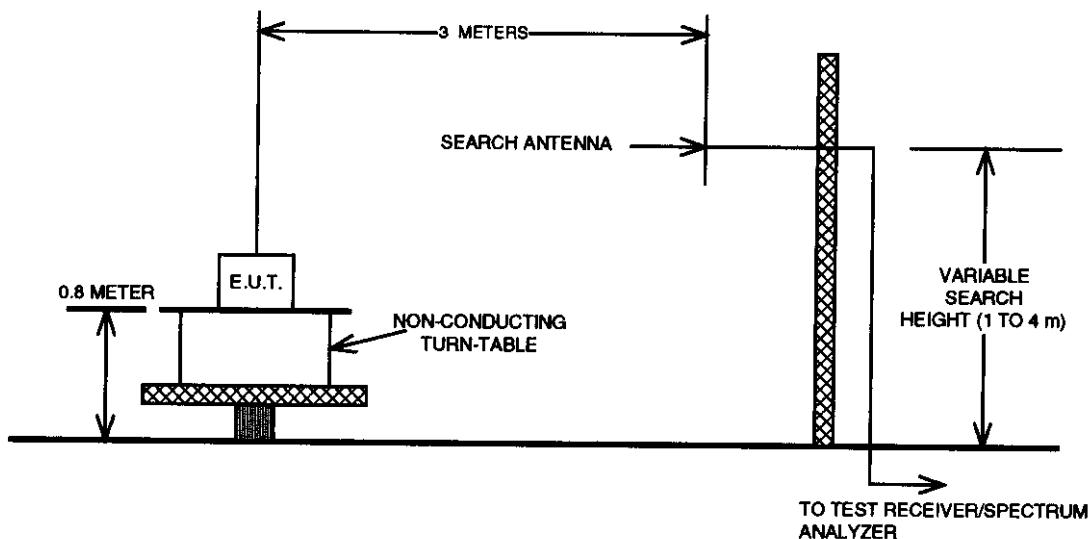
$$\text{Therefore } G_p = M_j + (S/N)_{out} + L_{sys}$$

Measurement performed at 915 MHz.

**KTL Dallas, Inc.**

CFR 47, PART 15, SUBPART C, SECTION 247  
DIRECT SEQUENCE TRANSMITTERS  
REPORT NO.: 8L0077EUS  
ANNEX B

*EQUIPMENT: Professional Transmitter*  
FCC ID: NQQPS911-9805-1


---

**ANNEX B**

**BLOCK DIAGRAMS**

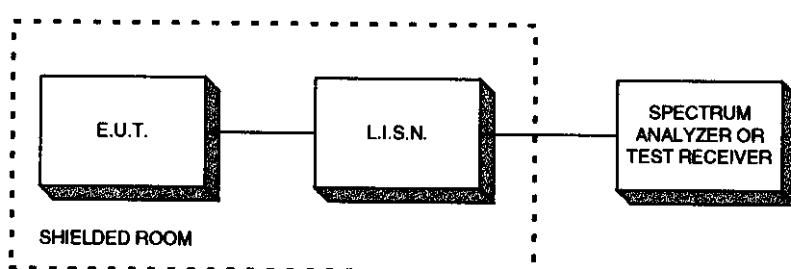
*EQUIPMENT: Professional Transmitter*  
FCC ID: NQQPS911-9805-1

### Test Site For Radiated Emissions

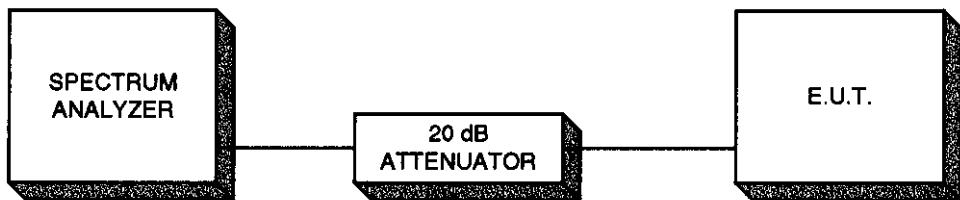


#### Below 1 GHz

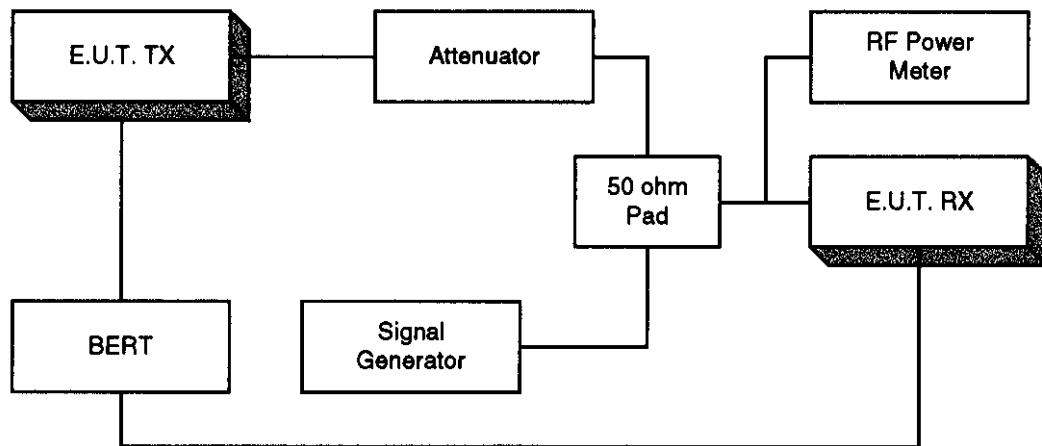
Peak detector.  
RBW = 100 kHz


#### Above 1 GHz For Peak Emission Levels

Peak detector  
RBW = 1 MHz  
VBW = >RBW


#### Above 1 GHz For Average Emission Levels

Peak detector  
RBW = 1 MHz  
VBW = 10 Hz


### Conducted Emissions



*EQUIPMENT: Professional Transmitter*  
FCC ID: NQQPS911-9805-1

**Transmitter Power Density & Peak Power At Antenna Terminals**

If the E.U.T. has an integral (non-detachable) antenna, the above test is performed as a radiated measurement and the result is reported as EIRP.

**Processing Gain**

**NOTE:** This is a typical setup. The setup may vary slightly since many devices have BER test functions built into the device.