Exhibit No. 9

ENGINEERING TEST REPORT

ON:

Model 9803-1

IN ACCORDANCE WITH: FCC PART 15, SUBPART B CLASS B; SUBPART C 15.247

REPORT NO.: 8L0106EUS

TESTED FOR:

PERSONAL SECURITY & SAFTY SYSTEMS, INC. 1237 EXECUTIVE DRIVE EAST RICHARDSON TEXAS 75081

TESTED BY:

KTL DALLAS, INC. 802 N. KEALY STREET LEWISVILLE, TEXAS 75057-3136

Malvá

NVLAP LAB CODE: 100426-0

NOVEMBER 1998

This document contains 28 pages including this one.

KTL Dallas, Inc. authorizes the above named company to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. KTL Dallas, Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

This report applies only to the item/s tested and does not constitute endorsement by the United States of America.

The equipment has been tested by KTL Dallas, Inc. for verification of compliance with FCC Part 15, Subpart B. Class B requirements for Digital Devices. Each unit manufactured, imported or marketed will conform to the sample(s) tested within the variations that can be expected due to quantity production and testing on a statistical basis.

TITLE: RF Engineer

COMPANY: Personal Security + Safety Systems, Inc.

DATE: 11/30/98

Summary of Test Results Section 1.

General:

All measurements are traceable to national standards.

These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with FCC Part 15, Subpart B for Class B. and Subpart C.

These tests were conducted using measurement procedures of ANSI C63.4-1992.

The equipment was tested for conducted emissions from 0.45 MHz to 30 MHz using a 50 ųH line impedance stabilization network (L.I.S.N.) as described in ANSI C63.4-1992. Peripheral equipment was also operated through a 50 uH L.I.S.N.

The equipment was tested for radiated emissions from 30 MHz to 1000 MHz with extension to the 10^{th} harmonic of any fundamental clock frequency in accordance with the requirements of FCC Part 15, Subpart B. and Subpart C. Frequencies were initially identified in a large shielded room. Amplitude measurements were made on an outdoor Open Area Test Site. Details of the outdoor site are on file with the FCC.

Abstract:

Results COMPLIANT
COMPLIANT
O 01.11 1011 11.11
COMPLIANT
COMPLIANT
COMPLIANT
COMPLIANT

THIS REPORT APPLIES ONLY TO THE ITEM(S) TESTED AND DOES NOT CONSTITUTE ENDORSEMENT BY THE UNITED STATES OF AMERICA.

THE FOLLOWING DEVIATIONS FROM, ADDITIONS TO, OR EXCLUSIONS FROM THE TEST SPECIFICATIONS HAVE BEEN MADE: NONE

NVLAP Lab Code: 100426-0

APPROVED BY:

Wes Atchison, Senior EMC Engineer

TESTED BY: Column M = Strath DATE: 10/28/98
Edward McGrath

APPROVED BY: Mullicha DATE: 11/30/98

Section 2. Equipment Under Test (E.U.T.)

Manufacturer:

Personal Security & Safty Systems Inc.

Model No.:

9803-1

Serial No.:

0001

X

Production Unit P

Pre-Production Unit

The E.U.T was received in excellent condition on 10/27/98.

Description of E.U.T.

The E.U.T. is a transmitter with direct sequence spread spectrum modulation

Transmitting Frequency: 915.200 MHz.

Modifications Incorporated in E.U.T.

To achieve compliance the following change was made by customer during compliance testing:

Added 915.2 MHz Bandpass Tank circuit

Justification:

The E.U.T. was configured for testing as per typical installation. Position and bundling of cables were investigated to establish maximum amplitude of emissions.

The following combinations were investigated to establish worst case configuration:

(1) Transmitting, Direct sequence spread spectrum

Exercise Program:

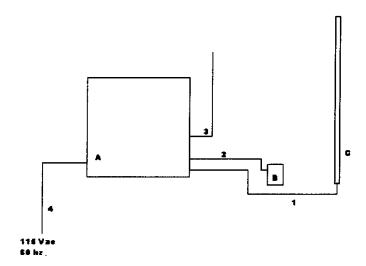
The E.U.T. exercise program used during radiated and conducted testing was designed to exercise the various system components in a manner similar to typical use.

Exercise mode:

(1) Transmitting with direct sequence spread spectrum

Section 3. Equipment Configuration

Equipment Configuration List:


Item	Manufacturer	Description	FCC ID:	Model No.	Serial No.
(A)	PSSI	Transmitter	None	9803-1	0001
(B)	DB Products	50 Ohm Load	None	30 Watt	None
(C)	Antenna	Antenna Specialists	None	ASPG-955	253219-5

Inter-connection Cables:

Item	Description	Model No. / Manufacturer Connectors		Length	Shie	lded
		. 1		(m)	Yes	No
(1)	COAX	RG142 / PSSI	SMA/N	4	Х	
(2)	COAX	RG316/PSSI	SMA/SMA	1	X	
(3)	RS232	None/Unknown	DB9/DB9	2	X	
(4)	Power	None/Unknown	IEC	2		Х

NOTE: Please see block diagram on next page.

Configuration of the Equipment Under Test (E.U.T)

Section 4. Conducted Emissions

NAME OF TEST: Conducted Emissions PARA. NO.: 15.207

TESTED BY: Ed McGrath DATE: 10/27/98

Test Conditions: Test Voltage

Test Voltage: 115 Vac

Temperature: 22°C

Humidity: 46%

Minimum Standard:

Frequency(MHz)	Maximum Powerline (Conducted RF Voltage
	$\mu \mathbf{V}$	dΒμV
0.45 - 30.0	250	48

Test Results:

The E.U.T. complies.

The worst case conducted emission was measured as 21 dB μ V on the Hot conductor at 12.04 MHz. This is 27 dB below the specification limit of 48 dB μ V.

Measurement Data:

See table below.

Test Data - Powerline Conducted Emissions, Test # CE-1:

Freq.	Meter Reading (dBuV)	Attn.	Cable Loss (dB)	Probe Factor (dB)	Corrected Reading (dBuV)	Spec.limit (dBuV)		Comments:
0.613	7	0	0	0	7	48	Hot	
11.54	14	0	0	0	14	48	Hot	
12.04	11	10	0	0	21	48	Hot	
24.1	16	0	0	0	16	48	Hot	
0.613	6	0	0	0	6	48	Neut.	
11.57	13	0	0	0	13	48	Neut.	
12.07	11	10	0	0	21	48	Neut.	
24.02	17	0	0	0	17	48	Neut.	
27.02	, , , , , , , , , , , , , , , , , , ,							Scanned 0.450 MHz to 30 MHz

Method Of Measurement: (Procedure ANSI C63.4-1992)

Measurements were made using a spectrum analyzer with 9 kHz RBW, Peak detector. Any emissions that are close to the limit are measured using a test receiver with 10 kHz bandwidth, CISPR Quasi-Peak detector.

Broadband emissions are identified by switching the receiver detector function from Quasi-Peak to Average. If the amplitude of the emission drops by 6 dB or more then the emission is classified as broadband and the Quasi-Peak level is reduced by a factor of 13 dB.

Section 5. Radiated Emissions

NAME OF TEST: Radiated Emissions

PARA. NO.: 15.109

TESTED BY: Ed McGrath

DATE: 10/27/98

Test Conditions:

Test Voltage: 115 Vac

Temperature: 22°C

Humidity:

47%

Minimum Standard:

Frequency(MHz)	Maximum Fie	ld Strength at 3m
	(μ V /m)	(dBμV/m)
30 - 88	100	40.0
88 - 216	150	43.5
216 - 960	200	46.0
Above 960	500	54.0

Test Results: Radiated Emisssoins, 30MHz to 1000MHz

Th E.U.T complies.

The worst-case emission level is $40.58~dB\mu V/m$ @ 3m at 514.8 MHz. This is 5.42 dB below the specification limit after Modification #1 was added to EUT.

Test Results: Microwave Radiated Emissions, 1GHz to 10GHz

The E.U.T. complies

The worst-case emissionlevel is 51.3 dB μ V/m @ 3m at 2.745 GHz. This is 2.7 dB below the specification limit.

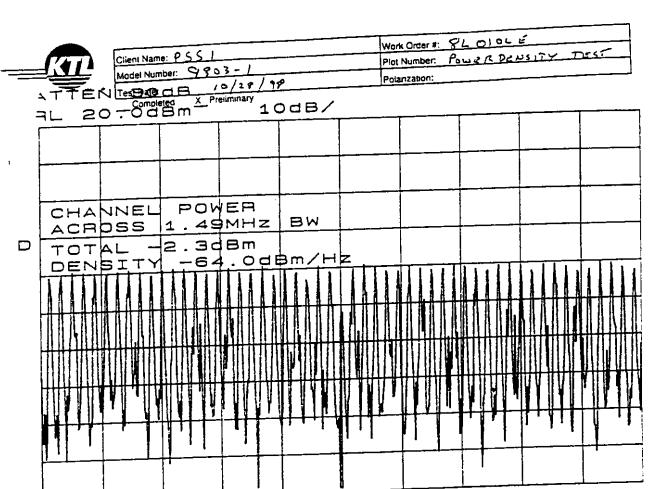
Measurement Data:

See attached table next page.

The equipment was prescanned in a shielded room using a spectrum analyzer and broadband antenna. A list of frequencies was compiled for investigation in the open field. The equipment was then moved to an open area test site where amplitude measurements were made at a distance of 3 meters. The bandwidth was set to 100 kHz and the detector function was CISPR Quasi-Peak. Any emission within 6 dB of the specification limit is re-measured using a reference tuned dipole antenna per ANSI C63.4.

Any emissions above 1 GHz were measured with a horn antenna and low noise pre-amplifier at a distance of 3 meters.

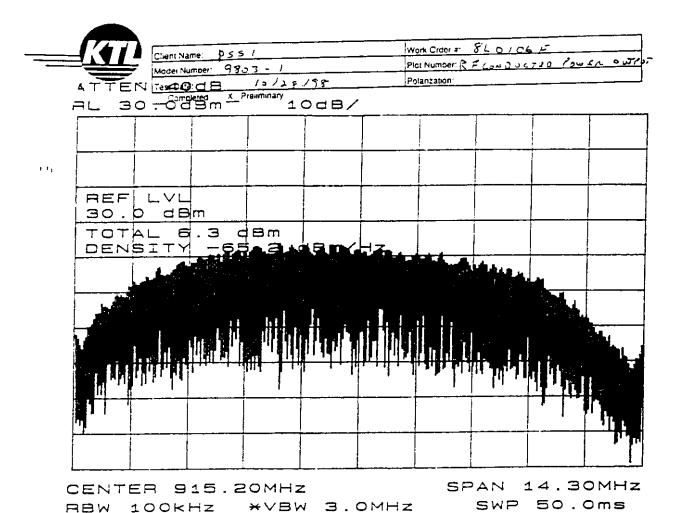
Test Data - Radiated Emissions 30MHz to 1GHz, Test # RE-1:

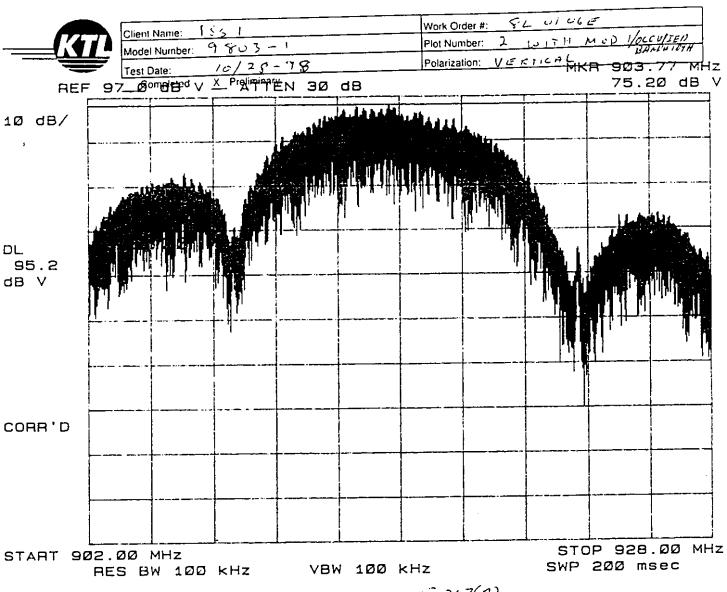

Emission	Ant.	Det.	Vieter	Antenna	Path	RF	Corrected	Spec.	CKISL	Pass Fail	
	Pol.		Reading	Factor	Loss	Gain	Reading	Limit	Delta	Fail	
requency	(H/V)	(dB)	(dBuV)	(dB)	(aB)	(aB)	(dBu∀/m)	(dBuV/m)	(dB)	Marginal	. <u></u>
(MHz)	(17,47)	(46)	(42.47)	 	<u> </u>						NOISE FLOOR
	₹	0.0	42.0	10.36	2.59	24.6	30.35	40	-9.65	Pass	NOISE FLOOR
42.900		0.0	43.0	13.3	3.79	24.6	35.69	43.5	-7.81	Pass	5W 50 TO OD
160.000	¥		49.0	13.23	3.79	24.6	41.42	43.5	-2.08	Pass	REFER TO QP
171.600	٧	0.0	45.5	13.23	3.79	24.6	37.92	43.5	-5.58	Pass	QP ICC #100
171.600	٧	0.0		15.54	4.93	24.6	43.47	43.5	-0.03	Marginal	REFER TO QP
214.500	٧	0.0	47.6		4.93	24.6	39.87	43.5	-3.63	Pass	QP ICC # 100
214.500	₩_	0.0	44.0	15.54		24.6	46.895	46		Marginal	REFER TO QP
257.400	¥_	0.0	48.0	17.995	5.5	24.6	44.395	46		Marginal	QP ICC # 100
257.400	٧	0.0	45.5	17.995	5.5		45.348	46		Marginal	refer to op
264.500	V	0.0	46.5	17.948	3.5	24.6	45.340	46	-3.652	Pass	QP ICC # 100
264.500	۱v	0.0	43.5	17.948	5.5	24.6	42.348	46		Marginal	RÈFER TO QP
271.700	V	0.0	46.0	17.577	5.5	24.6	44.477		-5.523	Pass	QP ICC #100
271.700	TV	0.0	42.0	17.577	5.5	24.6	40.477	46	-4.894	Pass	REFER TO QP
278.847	1	0.0	43.0	17.206	3.5	24.6	41.106	46		Pass	QP ICC #100
278.847	 ∵	0.0	39.5	17.206	5.5	24.6	37.606	46	-8.394		<u> </u>
	₩.	6.0	37.0	16.32	5.5	24.6	34.22	46	-11.78	Pass	
293.170	10	0.0	42.5	15.96	5.5	24.6	39.36	46	-6.64	Pass	
299.900	↓ ~	10.0	+	+	 			Ī	<u> </u>	<u> </u>	
	 -	1-22	33.0	12	3.92	24.6	24.32	43.5	-19.18		
128.700	H	0.0	37.0	135	3.79	24.6	29.69	43.5	-13.81		
160.000	H	0.0		13.23	3.79	24.6	36.42	43.5	-7.08	Pass	
171.600	Ħ	0.0	44.0		4.93	24.6	35.87	43.5	-7.63	Pass	
214.500	H	0.0	40.0	15.54		24.6	37.895	46	-8.103	Pass	
257.400	H	0.0	39.0	17.995	5.5		35.848	16	-10.15		
264.500	H	0.0	37.0	17.948	3.5	24.6	32.477	46	-13.52		
271.700	H	0.0	34.0	17.577	5.5	24.6		46	-16.89		
278.847	H	0.0	31.0	17.206		24.6	29.106	46	-21.78		
293.170	H	0.0	27.0	16.32	5.5	24.6	24.22		-19 14		
299.900	H	0.0	30.0	15.96	3.5	24.6	26.86	46	-19.14	·	
233.300	 -	+	- 				Ī		1	, 	
300.000	┪┰	10.0	27.5	159	6.07	24.7	34.77	46	-11.2		
340.000	Ť	10.0		15.8	6.07	24.7	39.17	46	-6.83		REFER TO QP
	+ ∨	100		15.8	6.07			46	0.77	Marginal	OP ICC # 100
343.200		100		13.8	6.07			46	-1.33		QF 100
343.200	V			143	6.07			46	-6.13		
350.360	7	10.0			6.07			46	-6.92	Pass	L
359.300	V	10.0						46	-2.71	Pass	refer to QP
360.000	V	10.0		14.72				46	-4.21	Pass	QP ICC # 100
360.000	V	10.0						46	-7.81		
380.000	V	10.0		15.76				46	1.34		REFER TO QP
386.100	V	10.0						46	-0.16		QP ICC # 100
386.100		10.0	38.5					46	-7.3		
400.000		10.0			7.1			46	-1.6		refer to op
429.000				16.8	7.1	24.5			-1.6	Pass	OP ICC # 100
429,000		10		16.8	7.1	24.		46	-0.8		REFER TO QP
442.650				16.92		24.9			-1.8		OP ICC #100
442.650						24.9	44.12				
470.000	1 🔻			16.76	7.1	24.			-12.0	Pass	REFER TO QP
4 /U.UUU	+ *					4 25.			-2.4		QP ICC # 100
514.800									-4.9		QE 100 # 100
514.800								46	-8.3		NESS TO AB
570.000									0.4		REFER TO QP
786.500					9 9 7				-2.6		QP ICC #100
786.500									33.7	73 Fail	EXEMPT (13.205)
898.875	7					8 25			63.6		Fundamental frequency *
915.200	1 1	10	.0 90.	0 23.3	2 112	24 24	7 107.0				

Emussion	Ant.	Det.		Antenna	Path	KI.	Connected	Spac.	CKSL	Pass	Notes
nquency	Pol.	Atten.	Reading	Factor	Loss	Gain	Reading	Limit	Delta	Fail	
(MHz)	(H/V)	(4B)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Marginal	
340,000	H	10.0	28.0	15.8	6.07	24.7	35.17	46	-10.83	Pass	
343.200	H	10.0	36.0	15.8	6.07	24.7	43.17	46	-2.83	Pass	REFER TO QP
343.200	H	10.0	33.0	15.8	6.07	24.7	40.17	46	-5.83	Pass	QP ICC # 100
350.000	H	10.0	29.0	14.5	6.07	24.7	34.87	46	-11.13	Pass	
359.300	Ħ	10.0	30.0	14.71	6.07	24.7	36.08	46	-9.92	Pass	
360.000	Ħ	10.0	32.0	14.92	6.07	24.7	38.29	46	-7.71	Pass	
380.000	Ħ	10.0	27.0	15.76	6.07	24.7	34.13	46	-11.87	Pass	
386.100	Ħ	10.0	33.0	15.97	6.07	24.7	40.34	46	-5.66	Pass	
429.000	H	10.0	27.0	16.8	7.1	24.9	36	46	-10	Pass	
470.000	H	10.0	25.0	16.76	7.1	24.9	33.96	46	-12.04	Pass	
570.000	H	10.0	27.0	18.72	8.04	25.1	38.66	46	-7.34	Pass	
786.500	H	10.0	25.0	22.09	9.71	25.4	41.4	46	-4.6	Pass	EXEMPT (15.205)
898.000	H	10.0	43.0	23.35	10.48	25.0	61.83	46	15.83	Fail	EXEMPT (15.205)
915.200	H	10.0	72.0	23.32	11.24	24.9	91.66	46	45.66	Fail	Fundamental frequency *
									-	 	Continued 10/28/98
	-									1	Added Mod I
214.500	w	10.0	30.0	15.54	493	24.6	35.87	43.5	-7.63	Pass	
257.400	l v	10.0	34.0	17.995	3.5	24.6	42.895	46	-3.105	Pass	REFER TO OP
257.400	V	10.0	29.5	17.995	5.5	24.6	38.395	46	-7.605	Pass	QP 100
264.500	V	10.0	28.0	17.948	5.5	24.6	36.848	46	-9.152		
271.700	V	10.0	33.0	17.577	5.5	24.6	41.477	46	-4.523	Pass	REPER TO QP
271.700	V	10.0	29.0	17.577	5.5	24.6	37.477	46	-8.523	Pass	QP 100
						<u> </u>			1 20		
343.200	V	10.0	31.2	15.8	6.07	24.7	38.37	46	-7.63	Pass	
360.000	V	10.0	31.0	14.92	6.07	24.7	37.29	46	-8.71	Pass	
386.100	Ÿ	10.0	29.0	15.97	6.07	24.7	36.34	46	-9.66	Pass	
429.000	V	10.0	30.0	16.8	7.1	24.9	39	46	-7	Pass	
442.650	V	10.0	22.0	16.92	7.1	24.9	31.12	46	-14.88	Pass	ļ
514.800	V	10.0	31.0	16.64	8.04	23.1	40.58	46	-5.42 5.6	Fail	RE: QP EXEMPT (15.205
786.500	٧	10.0	35.2	22.09	9.71	25.4	51.6	46 46	3.9	Fail	OP EXEMPT (15.205)
786.500	٧	10.0	33.5	22.09	9.71	25.4	49.9	46	-11.2	Pass	VF EACHIFI (13.203)
400.000	Y	10.0	26.0	16.6	7.1	24.9	34.8 83.33	46	37.33	Fail	EXEMPT (15.205)
898.750	V .	10.0	64.5	23.35	10.48	25.0	114.86	46	68.86	Fail	Fundamental frequency *
915.200	Ÿ	10.0	95.2	23.32	11.24	24.9	114.85	40	56.00	- Fan	Pursuamental frequency
											+ #V#UDT (15 342 D)
								<u> </u>	↓	1	* EXEMPT (15.247,D) edited 11/19/98 M.S.
					L	L	<u> </u>	<u> </u>	<u> </u>	 	6diled 11112120 Mr.2.
			1		<u> </u>	L			 	 	Scanned 30 MHz to 1 GHz
		L	L			1	<u> </u>	<u></u>	<u></u>	<u> </u>	2 Scanned 20 WILLS to 1 OUS

Test Data – Microwave Radiated Emissions 1GHz to 10GHz, Test # MW-1:

Freq. (GHz)	Meter Reading (dBuV)	Antenna Factor (dB)	Cable Loss (dB)	RF Gain (dB)	Conver. Factor	Corrected Reading (dBuV/m)	Spec. Limit (dBuV/m)	Pol.	Comm	
915.2	94	22.5	0.21	0	0	116.7		V	116.7	Fundimenta
1.8	38	25.1	3.09	0	0	66.2	96.7	V	-30.5	
2.745	18	29.1	4.21	0	0	51.3	54	V	-2.7	*
3.66	11	30.3	5.16	0	0	46.5	54	V	-7.5	*
9.152	18	37.7	9.01	0	0	64.7	96.7	V	-32.0	Noise Floor
915.2	64	22.5	0.21	0	0	86.7		Н	86.7	Fundimenta
1.8	31	25.1	3.09	0	0	59.2	66.7	Н	-7.5	
2.745	18	29.1	4.21	0	0	51.3	54	Н	-2.7	*
3.66	11	30.3	5.16	0	0	46.5	54	H	-7.5	
9.152	18	37.7	9.01	0	0	64.7	66.7	<u>H</u> _	-2.0 Scann to 10 C	Noise Floor ed 1 GHz GHz
		 							(*) Inc	dicates Freq
<u>.</u>										n Restricted
		 							Bands	(15.205)


Power Density Test:


CENTER 915.200MHZ *RBW 3.0KHZ *VBW 300KHZ SPAN 1.500MHZ *SWP 500sec

1 00,,,0,	Analyzer reading	External	Conversion factor Hz to 3 kHz	Corrected Reading	Limit d8m/3kHz	Deita (dB)
Frequency MHz 915.2	dBm/Hz -64	20	34.77	-9.23	+8	-17.23

Conducted Power Output:

Occupied Bandwidth:

15.247(A)

Section 6. Sample Calculations

Conducted Emissions:

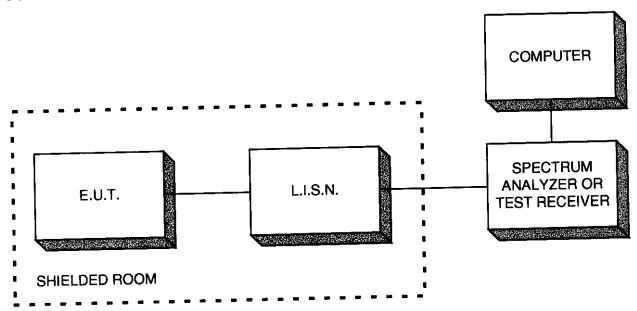
If the Quasi-Peak to Average ratio is greater than 6 dB, then the emission is classified as broadband and its Quasi-Peak level is reduced by 13 dB for comparison to the limit.

i.e. Quasi-Peak level = $40 \text{ dB}\mu\text{V}$ Average level = $34 \text{ dB}\mu\text{V}$ Corrected level = $40 - 13 = 27 \text{ dB}\mu\text{V}$

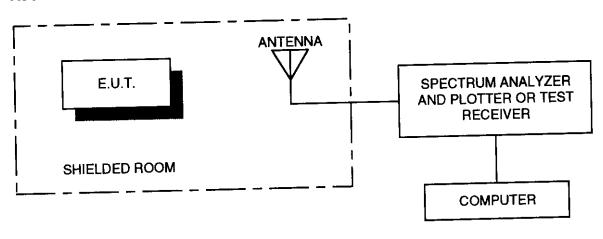
Radiated Emissions:

Emissions are measured at a distance of 3 meters and corrected for antenna factor and cable loss.

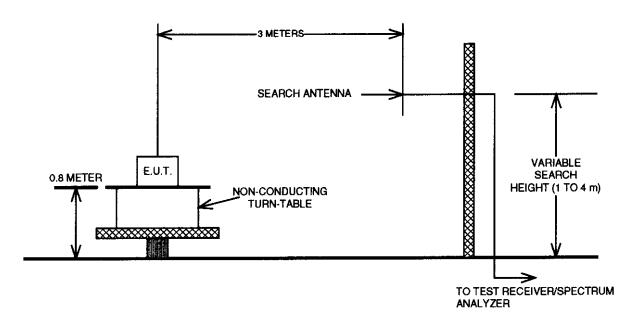
i.e. Received Signal = 25 dBµV @ 100 MHz
Antenna Factor & Cable Loss = 9.8 dB
Field Intensity = 25 + 9.8 = 34.8 dBµV/m @ 3 m


Power Spectral Density:

Emissions are measured using a Spectrum Analyzer and attenuators then corrected for bandwidth and attenuation loss.


i.e. Density = - 64.0 dBm/HZ @ 915.2 MHz
Attenuator = 20 dB
Conversion factor for Hz to 3KHz = 10 Log(3KHz/Hz) = 34.77 dB
Power Spectral Density @ 3 KHz = -64 dBm/Hz + 20 dB + 34.77 dB = -9.23 dBm/3KHz

Section 7. Block Diagrams


Conducted Emissions

Radiated Prescan

Outdoor Test Site For Radiated Emissions

The spectrum was searched up to the 10th harmonic of the fundamental frequency of operation.

Section 8. Test Equipment List

The listing below indicates the test equipment utilized for the test (s). Calibration interval on all items is typically 12 months from the calibration date shown.

KTL ID	<u>Nomenclature</u>	<u>Manufacturer</u> <u>Model Number</u>	Serial Number	Calibration Date
C1A	A O.A.T.S.			04/03/98
İ	Cable Set			08/10/98
C21	RG223 Cable (9.1 Meters)			
C42	RG213 Cable (1.0 meter)			04/09/98
CF01	Storm Cable (7.7 meters)			04/28/98
182	Limiter	Fischer FCC45013-1.2	NSN	02/27/98
212	LISN (10 kHz - 100 MHz)	EMCO 3825/2	1214	08/04/98
227	Antenna, LP	A.H. Systems SAS-200/510	556	01/24/98
230	Biconical Antenna (30 MHz - 300 MHz)	International Compliance Corporation. BCON-30300	210	01/17/98
250	Receiver (9 kHz - 30 MHz)	Rohde & Schwarz ESH2	88037/029	04/30/98
280	High Pass Filter (f _C = 5 kHz)	Solar 7930-5.0	9331234	11/16/98
401	Low Noise Preamplifer (1 MHz - 1 GHz)	RF Consultants LNA-14	020	08/13/98
446	K.20/K.21 Surge Adapter	International Compliance Corporation		CBU
494	Horn Antenna	A.H. Systems SAS-200/571	162	04/29/98
660(a)	Spectrum Analyzer	Hewlett Packard 8567A	2541A00109	01/06/98
660(b)	Display Unit	Hewlett Packard 85662A	2542A10537	01/06/98

The listing below indicates the test equipment utilized for the test (s). Calibration interval on all items is typically 12 months from the calibration date shown.

KTL ID	<u>Nomenclature</u>	<u>Manufacturer</u> <u>Model Number</u>	Serial Number	Calibration Date
660(c)	Quasi-Peak Adapter	Hewlett Packard 85650A	2551A00608	01/06/98
677	Receiver (1 - 18 GHz)	Electro Metrics EMC 50	185	0/24/97
697	Spectrum Analyzer	Hewlett Packard 8563E	3551A04428	10/05/98
G1017B	Attenuator	Narda 776B-20		08/14/98
		LAB #1 (IN DOOR)		
		SITE A O.A.T.S. (OPEN AREA TEST SITE) 10 Meter Site		
	Turntable, 4 foot	RF Consultants (Automated)		CNR
	Antenna Mast, 4 Meter	EMCO Part # 1050 (Automated)		CNR

LEGEND:

CNR = CALIBRATION NOT REQUIRED N/A = NOT APPLICABLE CBU = CALIBRATED BEFORE US

BOOTH, FRERET, IMLAY & TEPPER, P.C.

-ATTORNEYS AT LAW-

CHRISTOPHER D. IMLAY
CARY S. TEPPER
EVAN C. BARANOFF

5101 WISCONSIN AVENUE, N.W. SUITE 307 WASHINGTON, D.C. 20016-4120 ROBERT M. BOOTH, JR. (1911-1981) JULIAN P. FRERET (RETIRED)

TELEPHONE: (202) 686-9600 FACSIMILE: (202) 686-7797

December 7, 1998

By Courier Service

Federal Communications Commission c/o Mellon Bank Three Mellon Bank Center 525 William Penn Way 27th Floor, Room 153-2713 Pittsburgh, PA 15259-0001 Attn: Wholesale Lockbox Shift Supervisor

Attii. Wholesale Lockbox Shift Supervisor

Federal Communications Commission EQUIPMENT APPROVAL SERVICES P. O. Box 358315 Pittsburgh, PA 15251-5315

RE: PERSONAL SECURITY AND SAFETY SYSTEMS, INC.; Application for Equipment Authorization / Certification of Spread Spectrum Transmitter; FCC ID: NQQ; Equipment Product Code: PS911-9803-1; FCC Form 731.

Gentlemen / Ladies:

Attached hereto for filing on behalf of the applicant, **PERSONAL SECURITY AND SAFETY SYSTEMS, INC. (PSSI)**, please find an original, executed FCC Form 731, together with exhibits, constituting an application for equipment authorization (certification) of a spread spectrum transmitter.

Please also find the enclosed check in the amount of \$940.00 to cover the requisite filing fee. This application is being submitted to Pittsburgh, PA, together with the fee. Should any question arise concerning this application, kindly notify the undersigned, counsel for the applicant.

Yours very truly,

Christopher D. Imlay

Encl.

CC:

Chris Hudgins