ATTACHMENT	R:	PROBE & DIPOLE CALIBRATION
		© 2005, DIGITAL EMC Co., Ltd.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

Digital EMC (Dymstec)

Calibration procedure(s)	QA CAL-01.v2 Calibration prod		
		cedure for dosimetric E-field prob	pes
Calibration date:	February 17, 20	004	
Condition of the calibrated item	In Tolerance (a	ccording to the specific calibratio	n document)
All calibrations have been conduct	ainties with confidence prob ed in the closed laboratory f	al standards, which realize the physical units of me bability are given on the following pages and are pa acility: environment temperature 22 +/- 2 degrees C	rt of the certificate.
All calibrations have been conduct Calibration Equipment used (M&T	ainties with confidence probed in the closed laboratory for calibration)	bability are given on the following pages and are pa acility: environment temperature 22 +/- 2 degrees C	rt of the certificate. Celsius and humidity < 75%.
All calibrations have been conduct Calibration Equipment used (M&T Model Type	inities with confidence prob ad in the closed laboratory fi critical for calibration)	bability are given on the following pages and are pai acility: environment temperature 22 +/- 2 degrees C Cal Date (Calibrated by, Certificate No.)	rt of the certificate. Celsius and humidity < 75%. Scheduled Calibration
All calibrations have been conduct Calibration Equipment used (M&T Model Type Power meter EPM E4419B	ainties with confidence prob ed in the closed laboratory fi E critical for calibration) ID # GB41293874	calibrate (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250)	rt of the certificate. Celsius and humidity < 75%. Scheduled Calibration Apr-04
All calibrations have been conduct Calibration Equipment used (M&T Model Type Power meter EPM E4419B Power sensor E4412A	ainties with confidence probabilities with confidence probabilities and in the closed laboratory for critical for calibration) ID # GB41293874 MY41495277	cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250)	rt of the certificate. Celsius and humidity < 75%. Scheduled Calibration Apr-04 Apr-04
All calibrations have been conduct Calibration Equipment used (M&T Model Type Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator	ainties with confidence protein the closed laboratory for critical for calibration) ID# GB41293874 MY41495277 SN: 5086 (20b)	cability are given on the following pages and are pair active: environment temperature 22 +/- 2 degrees C Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS, No 252-0250)	rt of the certificate. Celsius and humidity < 75%. Scheduled Calibration Apr-04 Apr-04 Apr-04
All calibrations have been conduct Calibration Equipment used (M&T Model Type Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator Fluke Process Calibrator Type 70:	ainties with confidence probed in the closed laboratory file critical for calibration) ID # GB41293874 MY41495277 SN: 5086 (20b) 2 SN: 6295803	cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS, No 251-0340) 8-Sep-03 (Sintrel SCS No. E-030020)	rt of the certificate. Celsius and humidity < 75%. Scheduled Calibration Apr-04 Apr-04 Apr-04 Sep-04
All calibrations have been conduct Calibration Equipment used (M&T Model Type Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator	ainties with confidence protein the closed laboratory for critical for calibration) ID# GB41293874 MY41495277 SN: 5086 (20b)	cability are given on the following pages and are pair active: environment temperature 22 +/- 2 degrees C Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS, No 252-0250)	rt of the certificate. Celsius and humidity < 75%. Scheduled Calibration Apr-04 Apr-04 Apr-04

Date issued: February 17, 2004

This calibration certificate is issued as an intermediate solution until the accreditation process (based on ISO/IEC 17025 International Standard) for Calibration Laboratory of Schmid & Partner Engineering AG is completed.

Probe ET3DV6

SN:1702

Manufactured: Last calibrated: Recalibrated: July 3, 2002 July 29, 2002 February 17, 2004

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

ET3DV6 SN:1702

DASY - Parameters of Probe: ET3DV6 SN:1702

Sensitivity in Fre	Diode	Comp	oressio	n ^A	
NormX	1.66 μV/(V/m) ²	DCP X	96	mV	
NormY	1.71 μV/(V/m) ²	DCP Y	96	mV	
NormZ	1.67 μV/(V/m) ²	DCP Z	96	mV	

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Plese see Page 7.

Boundary Effect

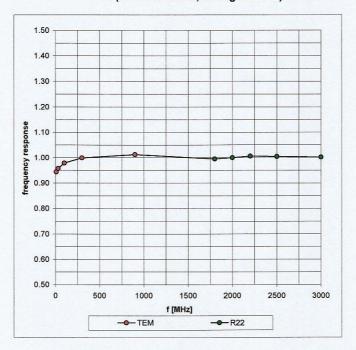
Head	900 MHz	Typical SAR gradient: 5 % per mm	

Sensor Cener t	o Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	7.5	3.9
SAR _{be} [%]	With Correction Algorithm	0.0	0.2

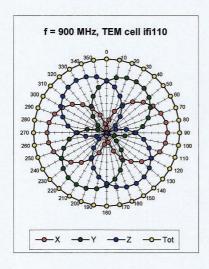
Head 1800 MHz Typical SAR gradient: 10 % per mm

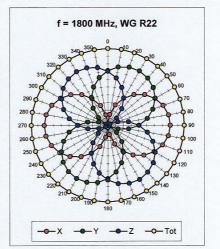
Sensor to Surface Distance		3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	11.5	8.0
SAR _{be} [%]	With Correction Algorithm	0.2	0.4

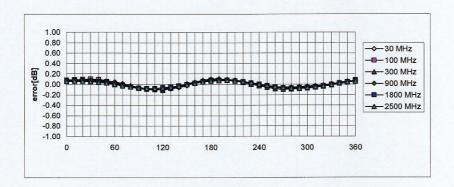
Sensor Offset


Probe Tip to Sensor Center	2.7 mm	
Optical Surface Detection		in tolerance

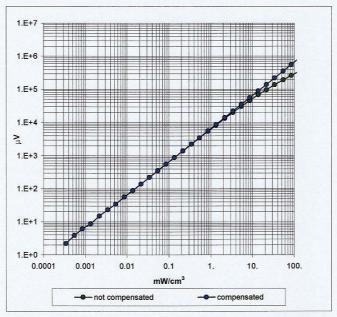
The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

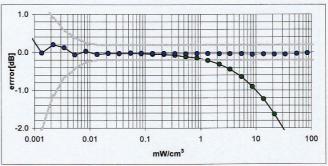

^A numerical linearization parameter: uncertainty not required


Frequency Response of E-Field


(TEM-Cell:ifi110, Waveguide R22)

Receiving Pattern (ϕ) , θ = 0°

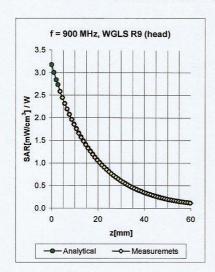


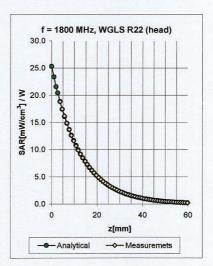


Axial Isotropy Error $< \pm 0.2 \text{ dB}$

Dynamic Range f(SAR_{head})

(Waveguide R22)

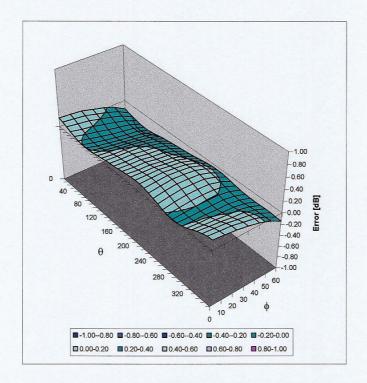




Probe Linearity < ± 0.2 dB

ET3DV6 SN:1702

Conversion Factor Assessment


f [MHz]	Validity [MHz] ^B	Tissue	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
000	000 1000		44.5 + 50/	0.07 + 50/	0.50	4 74	0.50 + 44.00/ /I0\
900	800-1000 1710-1910	Head Head	41.5 ± 5% 40.0 ± 5%	0.97 ± 5% 1.40 ± 5%	0.58	1.74 2.57	6.52 ± 11.3% (k=2) 5.21 ± 11.7% (k=2)
2450	2400-2500	Head	39.2 ± 5%	1.80 ± 5%	0.82	2.00	4.67 ± 9.7% (k=2)
2450	2400-2500	Body	52.7 ± 5%	1.95 ± 5%	0.95	1.82	4.19 ± 9.7% (k=2)

⁸ The total standard uncertainty is calculated as root-sum-square of standard uncertainty of the Conversion Factor at calibration frequency and the standard uncertainty for the indicated frequency band.

ET3DV6 SN:1702

Deviation from Isotropy in HSL

Error (θ , ϕ), f = 900 MHz

Spherical Isotropy Error < ± 0.4 dB

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Additional Conversion Factors

for Dosimetric E-Field Probe

Type: ET3DV6

Serial Number: 1702

Place of Assessment: Zurich

Date of Assessment: February 20, 2004

Probe Calibration Date: February 17, 2004

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1800 MHz.

Assessed by:

Blow - Matyes

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Dosimetric E-Field Probe ET3DV6 SN:1702

Conversion factor (± standard deviation)

900 MHz	ConvF	$6.3 \pm 8\%$	$\varepsilon_{\rm r}$ = 55.0 ± 5%
			$\sigma = 1.05 \pm 5\% \text{ mho/m}$
			(body tissue)

1800 MHz ConvF
$$4.8 \pm 8\%$$
 $\epsilon_r = 53.3 \pm 5\%$ $\sigma = 1.52 \pm 5\%$ mho/m

1900 MHz ConvF 4.6
$$\pm$$
 8% $\epsilon_r = 53.2 \pm 5\%$ $\sigma = 1.52 \pm 5\%$ mho/m

(body tissue)

Important Note:

For numerically assessed probe conversion factors, parameters Alpha and Delta in the DASY software must have the following entries: Alpha = 0 and Delta = 1.

Please see also Section 4.7 of the DASY4 Manual.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

Digital EMC (Dymstec)

CALIBRATION (CERTIFICAT	E					
Object(s)	D835V2 - SN:4	164					
Calibration procedure(s)	OA CAL-05.v2 Calibration procedure for dipole validation kits						
Calibration date:	February 12, 2004						
Condition of the calibrated item	In Tolerance (a	according to the specific calibration	document)				
17025 international standard.	galves i immersione en commencial de la commencial de production de commencial de la commencial de commencial	used in the calibration procedures and conformity of					
All calibrations have been conducted	ed in the closed laborator	y facility: environment temperature 22 +/- 2 degrees	Celsius and humidity < 75%.				
Calibration Equipment used (M&TI	E critical for calibration)						
Model Type	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration				
Power meter EPM E442	GB37480704	6-Nov-03 (METAS, No. 252-0254)	Nov-04				
Power sensor HP 8481A	US37292783	6-Nov-03 (METAS, No. 252-0254)	Nov-04				
Power sensor HP 8481A	MY41092317	18-Oct-02 (Agilent, No. 20021018)	Oct-04				
RF generator R&S SML-03	100698	27-Mar-2002 (R&S, No. 20-92389)	In house check: Mar-05				
Network Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check Nov-03)	In house check: Oct 05				
	Name	Function	Signature				
Calibrated by:	Judith Mueller	Technician	Mille				
Approved by:	Katja Pokovic	Laboratory Director	Down Ulde				
			Date issued: February 18, 2004				
This calibration certificate is issued		ion until the accreditation process (based on ISO/IEC	17025 International Standard) for				

880-KP0301061-A

Page 1 (1)

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

DASY

Dipole Validation Kit

Type: D835V2

Serial: 464

Manufactured: March 27, 2002 Calibrated: February 12, 2004

1. Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with **head simulating solution** of the following electrical parameters at 900 MHz:

Relative Dielectricity 42.1 \pm 5% Conductivity 0.89 mho/m \pm 5%

The DASY4 System with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 6.3 at 835 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 15mm from dipole center to the solution surface. The included distance spacer was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was 250 mW $\pm\,3$ %. The results are normalized to 1W input power.

2. SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 1. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 SN:1507 and applying the advanced extrapolation are:

averaged over 1 cm³ (1 g) of tissue: 10.4 mW/g \pm 16.8 % (k=2)¹

averaged over 10 cm³ (10 g) of tissue: **6.52 mW/g** \pm 16.2 % (k=2)¹

¹ validation uncertainty

3. Dipole Impedance and Return Loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

Electrical delay:

1.381 ns (one direction)

Transmission factor:

0.989

(voltage transmission, one direction)

The dipole was positioned at the flat phantom sections according to section 1 and the distance spacer was in place during impedance measurements.

Feedpoint impedance at 900 MHz:

 $Re{Z} = 49.7 \Omega$

Im $\{Z\} = -0.5 \Omega$

Return Loss at 900 MHz

-44.6 dB

4. Handling

Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feedpoint leading to a damage of the dipole.

5. Design

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

6. Power Test

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Page 1 of 1

Date/Time: 02/12/04 11:31:15

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN464

Communication System: CW-835; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.89$ mho/m; $\varepsilon_r = 42.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

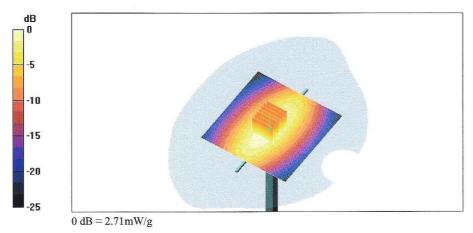
DASY4 Configuration:

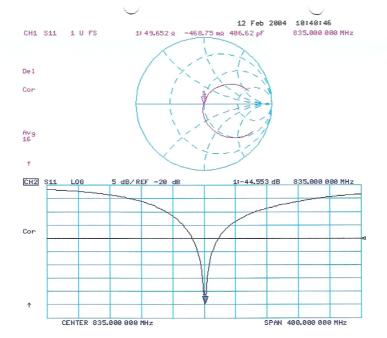
- Probe: ET3DV6 SN1507; ConvF(6.3, 6.3, 6.3); Calibrated: 1/23/2004
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn411; Calibrated: 11/6/2003
- Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006
- Measurement SW: DASY4, V4.2 Build 25; Postprocessing SW: SEMCAD, V1.8 Build 98

Pin = 250 mW; d = 15 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 56.9 V/m

Power Drift = 0.01 dB

Maximum value of SAR = 2.68 mW/g


Pin = 250 mW; d = 15 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


Peak SAR (extrapolated) = 3.83 W/kg

SAR(1 g) = 2.51 mW/g; SAR(10 g) = 1.63 mW/g Reference Value = 56.9 V/m

Power Drift = 0.01 dB

Maximum value of SAR = 2.71 mW/g

