TABLE OF CONTENTS

APPLICANT: SECURITY ASSOCIATES INTERNATIONAL INC.

FCC ID: NNK8090RC

TEST REPORT CONTAINING:

PAGE	1TEST PROCEDURE
PAGE	2 TEST PROC. CONDTD & CIRCUIT DESCRIPTION
PAGE	3RADIATION INTERFERENCE TEST DATA
PAGE	4CALCULATION OF DUTY CYCLE
PAGE	5OCCUPIED BANDWIDTH

EXHIBIT ATTACHMENTS:

EXHIBIT 1POWER OF ATTORNEY LETTER
EXHIBIT 2LETTER CONFIRMING MODIFICATIONS
EXHIBIT 3BLOCK DIAGRAM
EXHIBIT 4ASCHEMATIC - MAIN UNIT
EXHIBIT 4BSCHEMATIC - TX PORTION
EXHIBIT 4CSCHEMATIC - BLOWN UP VIEW OF TX PORTION
EXHIBIT 5A-5CINSTRUCTION MANUAL
EXHIBIT 6FCC ID LABEL SAMPLE
EXHIBIT 7SKETCH OF FCC ID LABEL LOCATION
EXHIBIT 8A-8BDUTY CYCLE PLOTS
EXHIBIT 9OCCUPIED BANDWIDTH PLOT
EXHIBIT 10AFRONT VIEW EXTERNAL PHOTO
EXHIBIT 10BREAR VIEW EXTERNAL PHOTO
EXHIBIT 10C-10DCOMPONENT SIDE INTERNAL PHOTOS
EXHIBIT 10E-10FCOPPER SIDE INTERNAL PHOTOS

APPLICANT: SECURITY ASSOCIATES INTERNATIONAL INC.

dba J. TECHNOLOGY

FCC ID: NNK8090RC

REPORT #: T:\CUS\S\SAI\385Z9\SAI385Z9.RPT

PAGE: TABLE OF CONTENTS LIST

TEST EQUIPMENT LIST

- Spectrum Analyzer: HP 8566B-Opt 462, S/N 3138A07786, w/ preselector HP 85685A, S/N 3221A01400, Quasi-Peak Adapter HP 85650A, S/N 3303A01690 & Preamplifier HP 8449B-OPT H02, S/N 3008A00372 Cal. 10/17/99
- 2. Signal Generator: HP 8640B, S/N 2308A21464 Cal. 9/23/99
- 3. Signal Generator: HP 8614A, S/N 2015A07428 Cal. 5/29/99
- 4. Passive Loop Antenna: EMCO Model 6512, 9KHz to 30MHz, S/N 9706-1211 Cal. 6/23/97
- 5. Biconnical Antenna: Eaton Model 94455-1, S/N 1057
- 6. Log-Periodic Antenna: Electro-Metrics Model EM-6950, S/N 632
- 7. Dipole Antenna Kit: Electro-Metrics Model TDA-30/1-4, S/N 153 Cal. 11/24/99
- 8. Double-Ridged Horn Antenna: Electro-Metrics Model RGA-180, 1-18 GHz, S/N 2319 Cal. 4/27/99
- 9. Horn 40-60GHz: ATM Part #19-443-6R
- 10. Line Impedance Stabilization Network: Electro-Metrics Model FCC-25/2, S/N 2512 Cal. 11/18/99
- 11. Line Impedance Stabilization Network: Electro-Metrics Model ANS-25/2, S/N 2604 Cal. 11/30/99
- 12. Line Impedance Stabilization Network: Electro-Metrics Model EM-7820, S/N 2682 Cal. 12/1/99
- 13. Line Impedance Stabilization Network: Electro-Metrics Model EM-7821, S/N 101 Cal. 12/1/99
- 14. Temperature Chamber: Tenney Engineering Model TTRC, S/N 11717-7
- 15. AC Voltmeter: HP Model 400FL, S/N 2213A14499 Cal. 9/21/99
- 16. Digital Multimeter: Fluke Model 8012A, S/N 4810047 Cal 9/21/99
- 17. Digital Multimeter: Fluke Model 77, S/N 43850817 Cal 9/21/99
- 18. Oscilloscope: Tektronix Model 2230, S/N 300572 Cal 9/23/99
- 19. Frequency Counter: HP Model 5385A, S/N 3242A07460 Cal 10/6/99

TEST PROCEDURE

GENERAL: This report shall NOT be reproduced except in full without the written approval of TIMCO ENGINEERING, INC.

RADIATION INTERFERENCE: The test procedure used was ANSI STANDARD C63.4-1992 using a HEWLETT PACKARD spectrum analyzer with a preselector. The bandwidth of the spectrum analyzer was 100 kHz with an appropriate sweep speed. The analyzer was calibrated in dB above a microvolt at the output of the antenna. The resolution bandwidth was 100KHz and the video bandwidth was 300KHz. The ambient temperature of the UUT was 75oF with a humidity of 30%.

APPLICANT: SECURITY ASSOCIATES INTERNATIONAL INC.

dba J. TECHNOLOGY

FCC ID: NNK8090RC

REPORT #: T:\CUS\S\SAI\385Z9\SAI385Z9.RPT

PAGE: 1

TEST PROCEDURE CONTINUED

FORMULA OF CONVERSION FACTORS: The Field Strength at 3m was established by adding the meter reading of the spectrum analyzer (which is set to read in units of dBuV) to the antenna correction factor supplied by the antenna manufacturer. The antenna correction factors are stated in terms of dB. The gain of the Preselector was accounted for in the Spectrum Analyzer Meter Reading.

Example: Freq (MHz) METER READING + ACF = FS 33 20 dBuV + 10.36 dB = 30.36 dBuV/m @ 3m

ANSI STANDARD C63.4-1992 10.1.7 MEASUREMENT PROCEDURES: The UUT was placed on a table 80 cm high and with dimensions of 1m by 1.5m. The UUT was placed in the center of the table. The table used for radiated measurements is capable of continuous rotation. The spectrum was scanned from 30 MHz to 10th harmonic of the fundamental.

Peak readings were taken in three (3) orthogonal planes and the highest readings were converted to average readings based on the duration of "ON" time.

Measurements were made by TIMCO ENGINEERING INC. at the registered open field test site located at 6051 N.W. 19th Lane, Gainesville, Fl 32605.

When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and vertical planes.

RULES: 2.1033(b)(4) CIRCUIT DESCRIPTION

This unit is a low power security device transceiver. The transmitter crystal oscillator(Q3) is a crystal controlled oscillator formed by the transistor Q3 and the output of Q3 is tuned to the 3rd harmonic of the the crystal. The output is fed through the bandpass filter made up of C39, TC4, C38, L14, C37, & C33 to the base of the output device(Q2). The output of Q2 is fed through a bandpass filter made up of C35, TC3, L12, C32, C31 C27 L1, & TC 6. TC6 is connected to the antenna.

In the receive mode the signal comes in on the antenna to the double tuned circuit T1 and through C3 to the RF amplifier Q4. The local oscillator is crystal controlled and starts with Q6. The output of the oscillator is tuned to the 3rd harmonic of the Crystal frequency and fed through a bandpass filter to the base of Q5. From the output of Q5 the local oscillator signal is fed into the mixer(Q7). From Q7 the signal is fed through a crystal 10.7MHz filter. The output of the filter is fed into the 1st IF amplifier Q8 which in turn drives the main receiver IC U1. The output of U1 decodes and controls the functions of the unit.

ANTENNA & GROUND: This unit uses the PCB inductor as the antenna. There is no provision for an external antenna.

APPLICANT: SECURITY ASSOCIATES INTERNATIONAL INC.

FCC ID: NNK8090RC

NAME OF TEST: RADIATION INTERFERENCE

RULES PART NO.: 15.231

REQUIREMENTS:

Fundamental	Field Strength	Field Strength of		
Frequency	of Fundamental	Harmonics and Spurious		
MHz	dBuV	Emissions (dBuV/m @ 3m)		
40.66 to 40.70	67.04	47.04		
70 to 130	61.94	41.94		
130 to 174	61.94 to 71.48	41.94 to 51.48		
174 to 260	71.48	51.48		
260 to 470	71.48 to 81.94	51.48 to 61.94		
470 and above	81.94	61.94		

THE LIMIT FOR AVERAGE FIELD STRENGTH dBuV/m FOR THE FUNDAMENTAL FREQUENCY= $81.26~\mathrm{dBuV/m}$. NO FUNDAMENTAL IS ALLOWED IN THE RESTRICTED BANDS.

THE LIMIT FOR AVERAGE FIELD STRENGTH dBuV/m FOR THE HARMONICS AND SPURIOUS FREQUENCIES = 61.26~dBuV/m . SPURIOUS IN THE RESTRICTED BANDS MUST BE LESS THAN 54dBuV/m OR 15.209.

TEST DATA:

EMISSION	METER	COAX		PEAK FIELD	AVERAGE FIELD		
FREQ.	READING	LOSS	ACF	STRENGTH	STRENGTH	MARGIN	
MHz	@ 3m dBuV	dВ	dВ	dBuV/m	dBuV/m	dВ	ANT.
447.80	41.10	1.60	18.10	60.80	60.08	21.18	Н
895.50	26.50	2.90	24.15	53.55	52.82	8.44	H
1343.00R	26.50	1.00	25.37	52.87	52.15	1.85	V
1791.00	18.80	1.00	27.16	46.96	46.24	15.02	V
2238.00R	8.00	1.07	28.59	37.66	36.94	17.06	V
2686.00R	11.50	1.13	29.72	42.35	41.62	12.38	V
3134.00	5.90	1.20	30.84	37.94	37.21	24.05	V

SAMPLE CALCULATION OF LIMIT @ 303 MHz:

(470 - 260)Mhz = 210 MHz

(12500 - 3750)uV/m = 8750 uV/m

8750uV/m/210MHz = 41.67 uV/m/MHz

(303-260)MHz = 43 MHz

43 MHz * 41.67 uV/m/MHz = 1791.81 uV/m

(1791.81 + 3750)uV/m = 5541.81 uV/m limit @ 303 MHz

The transmitter ceases transmitting when the button is released.

TEST RESULTS: The unit DOES meet the FCC requirements.

PERFORMED BY: DATE TESTED: DECEMBER 9, 1999

REPORT #: T:\CUS\S\SAI\385Z9\SAI385Z9.RPT

PAGE #: 3

APPLICANT: SECURITY ASSOCIATES INTERNATIONAL INC.

FCC ID: NNK8090RC

CALCULATION OF DUTY CYCLE:

The period of the pulse train is determined by observing it on an oscilloscope or a spectrum analyzer with zero(0) frequency span. A plot is then made of the pulse train with a sweep time of 100milliseconds. This sweep determines the duration of the pulse train, which in this case is milliseconds. This sweep allows the determination of the number of and type of pulses, i.e. long & short. Plots are then made showing the duration of each type of pulse and its duration. From the 100millisecond Plot the number of a given type of pulse is then multiplied by the duration of that type pulse. This allows the calculation of the amount of time the UUT is on within 100milliseconds. If the pulse train is longer than 100milliseconds then this number is multiplied by 100 to determine the percentage ON TIME. the pulse train is less than 100milliseconds the total on-time is divided by the length of the pulse train and then multiplied by 100 to determine the percentage ON TIME. In this case there were pulses milliseconds long and pulses 7.92milliseconds long for a total of 92milliseconds time within on either 100milliseconds or the pulse train. The average field strength is determined by multiplying the peak field strength by the percent on time. In this case the percentage ON time was 92%percent.

APPLICANT: SECURITY ASSOCIATES INTERNATIONAL INC.

dba J. TECHNOLOGY

FCC ID: NNK8090RC

REPORT #: T:\CUS\S\SAI\385Z9\SAI385Z9.RPT

PAGE #: 4

APPLICANT: SECURITY ASSOCIATES INTERNATIONAL INC.

FCC ID: NNK8090RC

NAME OF TEST: Occupied Bandwidth

RULES PART NO.: 15.231(C)

REQUIREMENTS: The bandwidth of the emission shall be no

wider than .25% of the center frequency for devices operating between 70 and 900 MHz. Bandwidth is determined at the points 20 dB

down from the modulated carrier.

447.80 MHz * .0025 = 1.1195 MHz

1.1195 MHz/2 = +/- 559.75

THE GRAPH ON THE FOLLOWING PAGE REPRESENTS THE EMISSIONS TAKEN FOR THE DEVICE.

METHOD OF MEASUREMENT: A small sample of the transmitter output was fed into the spectrum analyzer and the above photo was taken. The vertical scale is set to 10 dB per division: the horizontal scale is set to 100 kHz per division.

TEST RESULTS: The unit meets the FCC requirements.

PERFORMED BY: DATE: DECEMBER 9, 1999

APPLICANT: SECURITY ASSOCIATES INTERNATIONAL INC.

FCC ID: NNK8090RC

REPORT #: T:\CUS\S\SAI\385Z9\SAI385Z9.RPT

PAGE #: 5