

Electromagnetic Compatibility Test Report

Tests Performed on a Grayhill, Inc.

Industrial Handheld Computer, Model M1YY1023-3

Radiometrics Document RP-5867

Product Detail:

FCC ID: NMAM1YY10233

Industry Canada ID: 2972A-M1Y10233

Equipment type: 2.4 GHz Spread Spectrum Transmitter

Test Standards:

US CFR Title 47, Chapter I, FCC Part 15 Subpart C

FCC Part 15 CFR Title 47: 2006

Industry Canada RSS-210, Issue 7 as required for Category I Equipment

This report concerns: Original Grant for Certification

FCC Part 15.247

Tests Performed For: Test Facility:

Grayhill, Inc. Radiometrics Midwest Corporation

561 Hillgrove Rd. 12 East Devonwood LaGrange, IL 60525 Romeoville, IL 60446

Test Date(s): (Month-Day-Year)

September 13 thru October 14, 2007

Document RP-5867 Revisions:

Rev.	Issue Date	Affected Pages	Revised By
0	October 23, 2007		
1	October 30, 2007	1	Joseph Strzelecki
2	November 5, 2007	1, 5	Joseph Strzelecki
3	November 16, 2007	5	Joseph Strzelecki

Testing of the Grayhill, Inc. Industrial Handheld Computer, Model M1YY1203-3

Table of Contents

1 ADMINISTRATIVE DATA	
2 TEST SUMMARY AND RESULTS	
2.1 RF Exposure Compliance Requirements	4
3 EQUIPMENT UNDER TEST (EUT) DETAILS	4
3.1 EUT Description	4
3.2 Related Submittals	4
4 TESTED SYSTEM DETAILS	
4.1 Tested System Configuration	4
4.2 Special Accessories	
4.3 Equipment Modifications	5
5 TEST SPECIFICATIONS AND RELATED DOCUMENTS	
6 RADIOMETRICS' TEST FACILITIES	6
7 DEVIATIONS AND EXCLUSIONS FROM THE TEST SPECIFICATIONS	7
8 CERTIFICATION	
9 TEST EQUIPMENT TABLE	7
10 TEST SECTIONS	
10.1 AC Conducted Emissions; Section 15.207	7
Figure 1. Conducted Emissions Test Setup	
10.2 Carrier Frequency Separation (Bluetooth)	10
10.3 Number of Hopping Frequencies (Bluetooth)	
10.4 Time of Occupancy (Dwell Time for Bluetoth)	
10.5 Occupied Bandwidth (802.11)	12
10.6 Occupied Bandwidth (Bluetooth)	16
10.7 Peak Output Power	
10.7.1 Output Power (802.11 & Bluetooth)	18
10.8 Power Spectral Density (802.11)	19
10.9 Spurious RF Conducted Emissions	
10.9.1 Spurious RF Conducted Emissions (802.11)	
10.9.2 Spurious RF Conducted Emissions (Bluetooth)	21
10.9.3 Band edge emissions (802.11)	
10.9.4 Band edge emissions (Bluetooth)	24
10.10 Spurious Radiated Emissions	25
10.10.1 Radiated Emissions Field Strength Sample Calculation	26
Figure 2. Drawing of Radiated Emissions Setup	27
10.10.2 Spurious Radiated emissions results above 2 GHz	27
10.10.2.1 Spurious Radiated Emissions Test Results (802.11)	27
10.10.2.2 Spurious Radiated Emissions Test Results (Bluetooth)	
10.10.3 Spurious Radiated Emissions Below 2 GHz (Bluetooth and 802.11)	

Notice: This report must not be reproduced (except in full) without the written approval of Radiometrics Midwest Corporation.

Testing of the Grayhill, Inc. Industrial Handheld Computer, Model M1YY1203-3

1 ADMINISTRATIVE DATA

Equipment Under Test:

A Grayhill, Inc., Industrial Handheld Computer Model: M1YY1023-3, Serial Number: none This will be referred to as the EUT in this Report Date EUT Received at Radiometrics: (Month-Day-Year) Test Date(s): (Month-Day-Year) September 13, 2007 September 13 thru October 14, 2007 Test Report Written By: Test Partially Witnessed By: Robert Chiocca Joseph Strzelecki Senior EMC Engineer Grayhill, Inc. Radiometrics' Personnel Responsible for Test: Test Report Approved By seph Strzelecki

Joseph Strzelecki Senior EMC Engineer NARTE EMC-000877-NE

Ron Lazarowicz EMC Engineer Chris W. Carlson Director of Engineering

NARTE EMC-000921-NE

2 TEST SUMMARY AND RESULTS

The EUT (Equipment Under Test) is an Industrial Handheld Computer, Model M1YY1203-3, manufactured by Grayhill, Inc. The detailed test results are presented in a separate section. The following is a summary of the test results.

Emissions Tests Results

Environmental Phenomena	Frequency Range	Basic Standard	Test Result
Unintentional RF Radiated Emissions	30-2,000 MHz	RSS-210 & FCC Part 15	Pass
Conducted Emissions, AC Mains	0.15 - 30 MHz	RSS-210 & FCC Part 15	Pass

Bluetooth FHSS Spread Spectrum Transmitter Requirements

Environmental Phenomena	Frequency Range	FCC Section	RSS-210 Section	Test Result			
Carrier Frequency Separation	2400 to 2483 MHz	15.247 a	6.2.2 (o) (a)	Pass			
Number of Hopping Frequencies	2400 to 2483 MHz	15.247 a	6.2.2 (o) (a)	Pass			
Time of Occupancy (Dwell Time)	2400 to 2483 MHz	15.247 a	6.2.2 (o) (a)	Pass			
20 dB Bandwidth Test	2400 to 2483 MHz	15.247 a	6.2.2 (o) (a)	Pass			
Peak Output Power	2400 to 2483 MHz	15.247 b	6.2.2 (o) (a)	Pass			
Band-edge Compliance of RF	2400 to 2483 MHz	15.247 d	6.2.2 (o) (e)	Pass			
Conducted Emissions							
Spurious RF Conducted Emissions	30 MHz to 25 GHz	15.247 d	6.2.2 (o) (e1)	Pass			

RP-6142B Rev. 3 Page 3 of 30

Testing of the Grayhill, Inc. Industrial Handheld Computer, Model M1YY1203-3

Environmental Phenomena	Frequency Range	FCC Section	RSS-210 Section	Test Result
Spurious Radiated Emissions	30 MHz to 25 GHz	15.247 d	6.2.2 (o) (a)	Pass

802.11 DTS Spread Spectrum Transmitter Requirements

Environmental Phenomena	Frequency Range	FCC Section	RSS-210 Section	Test Result
6 & 20 dB Bandwidth Test;	2400 to 2483 MHz	15.247 a	6.2.2 (o) (a)	Pass
Peak Output Power	2400 to 2483 MHz	15.247 b	6.2.2 (o) (a)	Pass
Band-edge Compliance of RF Conducted Emissions	2400 to 2483 MHz	15.247 d	6.2.2 (o) (e)	Pass
Spurious RF Conducted Emissions	30 MHz to 25 GHz	15.247 d	6.2.2 (o) (e1)	Pass
Spurious Radiated Emissions	30 MHz to 25 GHz	15.247 d	6.2.2 (o) (a)	Pass
Power Spectral Density	2400 to 2483 MHz	15.247 e	6.2.2 (o) (b)	Pass

2.1 RF Exposure Compliance Requirements

Since the power output is 21 mW EIRP, The EUT meets the FCC and IC requirements for RF exposure. There are no power level adjustments and the antennas are permanently attached. The detailed calculations for RF Exposure are presented in a separate document.

3 EQUIPMENT UNDER TEST (EUT) DETAILS

3.1 EUT Description

The EUT is an Industrial Handheld Computer, Model M1YY1203-3, manufactured by Grayhill, Inc. The EUT was in good working condition during the tests, with no known defects. The EUT has two transmitters, an 802.11b WiFi and a Bluetooth.

3.2 Related Submittals

Grayhill, Inc. is not submitting any other products simultaneously for equipment authorization related to the EUT.

4 TESTED SYSTEM DETAILS

4.1 Tested System Configuration

The EUT was placed on an 80-cm high, nonconductive test stand. The testing was performed in conditions as close as possible to installed conditions. Wiring was consistent with manufacturer's recommendations.

Power was supplied at 115 VAC, 60 Hz single-phase to its external power supply.

The identification for all equipment, plus descriptions of all cables used in the tested system, are:

RP-6142B Rev. 3 Page 4 of 30

Testing of the Grayhill, Inc. Industrial Handheld Computer, Model M1YY1203-3

Tested System Configuration List

Item	Description Type*		escription Type* Manufacturer Model Number		Serial Number
1	DuraMaxHG Industrial E Handheld Computer		Grayhill, Inc.	M1YY1023-3	None
2	AC Adaptor	Е	Ault, Inc.	PW128RA1503F01	None
3	GPS Antenna	Р	Trimble	56237-50	13671609
4	Notebook PC	Р	Dell	PPX	28310531 4024706
5	ITE Power supply	Р	Dell	09364UC/O CN Rev A00	09364U-16291-275- 01WZ
6	Mouse	Р	Logitech	M-BT96a	HCA51701289

^{*} Type: E = EUT, P = Peripheral

List of System Cables

QTY	Length (m)	Cable Description	Connected to (Item #)	Shielded?
1	1.9	Power Cable to the AC adapter.	#1 and #2	No
3	1.1	GPS Antenna Coaxial Cable	#1 and #3	Yes

4.2 Special Accessories

No special accessories were used during the tests in order to achieve compliance.

4.3 Equipment Modifications

No modifications were made to the EUT at Radiometrics' test facility in order to comply with the standards listed in this report.

5 TEST SPECIFICATIONS AND RELATED DOCUMENTS

Document	Date	Title
FCC CFR Title 47	2006	Code of Federal Regulations Title 47, Chapter 1, Federal Communications Commission, Part 15 - Radio Frequency Devices
ANSI C63.4-2003	2003	Methods of Measurement of Radio Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
IC RSS-210 Issue 7	2007	Low Power Licence-Exempt Radiocommunication Devices (All Frequency Bands) Category I Equipment
IC RSS-Gen Issue 2	2007	General Requirements and Information for the Certification of Radiocommunication Equipment (RSS-Gen)
FCC DA 00-705	2000	Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems
FCC 558074	2005	Measurement of Digital Transmission Systems Operating under Section 15.247

RP-6142B Rev. 3 Page 5 of 30

Testing of the Grayhill, Inc. Industrial Handheld Computer, Model M1YY1203-3

The test procedures used are in accordance with the FCC DA 00-705, <or>
FCC 558074, Industry Canada RSS-212 and ANSI document C63.4-2003, "Methods of Measurement of Radio Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz". The specific procedures are described herein. Radiated testing was performed at an antenna to EUT distance of 3 meters. The antenna was raised and lowered from 1 to 4 meters.

6 RADIOMETRICS' TEST FACILITIES

The results of these tests were obtained at Radiometrics Midwest Corp. in Romeoville, Illinois, USA. Radiometrics is accredited by A2LA (American Association for Laboratory Accreditation) to conform to ISO/IEC 17025: 1999 "General Requirements for the Competence of Calibration and Testing Laboratories". Radiometrics' Lab Code is 121191 and Certification Number is 1495.01. Radiometrics' scope of accreditation includes all of the test methods listed herein. A copy of the accreditation can be accessed on our web site (www.radiomet.com). Radiometrics accreditation status can be verified at A2LA's web site (www.a2la2.org).

The following is a list of shielded enclosures located in Romeoville, Illinois:

- Chamber A: Is an anechoic chamber that measures 24' L X 12' W X 12' H. The walls and ceiling are fully lined with ferrite absorber tiles. The floor has a 10' x 10' section of ferrite absorber tiles located in the center. Panashield of Rowayton, Connecticut manufactured the chamber. The enclosure is NAMAS certified.
- Chamber B: Is a shielded enclosure that measures 24' L X 12' W X 8' H. Erik A. Lindgren & Associates of Chicago, Illinois manufactured the enclosure.
- Chamber C: Is a shielded enclosure that measures 20' L X 10' W X 8' H. Lindgren RF Enclosures Inc. of Addison, Illinois manufactured the enclosure.
- Chamber D: Is a fully anechoic chamber that measures 22' L X 10' W X 10' H. The walls, ceiling and floor are fully lined with ferrite absorber tiles. Braden Shielding Systems of Tulsa, Oklahoma manufactured the chamber.
- Chamber E: Is a custom made anechoic chamber that measures 52' L X 30' W X 18' H. The walls and ceiling are fully lined with RF absorber. Pro-shield of Collinsville, Oklahoma manufactured the chamber.
- Test Station F: Is an area that measures 10' D X 12' W X 10' H. The floor and back wall are metal shielded. This area is used for conducted emissions measurements.

A separate ten-foot long, brass plated, steel ground rod attached via a 6 inch copper braid grounds each of the above chambers. Each enclosure is also equipped with low-pass power line filters.

Open Area Test Site (OATS): Is located on 8625 Helmar Road in Newark, Illinois, USA and measures 56' L X 24' W X 17' H. The entire open field test site has a metal ground screen. The FCC has accepted these sites as test site number US1065. The FCC test site Registration Number is 732175. Details of the site characteristics are on file with the Industry Canada as file number IC3124.

A complete list of the test equipment is provided herein. The calibration due dates are indicated on the equipment list. The equipment is calibrated in accordance to ANSI/NCSL Z540-1 with traceability to the National Institute of Standards and Technology (NIST).

RP-6142B Rev. 3 Page 6 of 30

Testing of the Grayhill, Inc. Industrial Handheld Computer, Model M1YY1203-3

7 DEVIATIONS AND EXCLUSIONS FROM THE TEST SPECIFICATIONS

There were no deviations or exclusions from the test specifications.

8 CERTIFICATION

Radiometrics Midwest Corporation certifies that the data contained herein was taken under conditions that meet or exceed the requirements of the test specification. The results relate only to the EUT listed herein. Any modifications made to the EUT subsequent to the indicated test date will invalidate the data and void this certification.

9 TEST EQUIPMENT TABLE

					Frequency	Cal	Cal
RMC ID	Manufacturer	Description	Model No.	Serial No.	Range	Period	Date(s)
AMP-05	RMC/Celeritek	Pre-amplifier	MW110G	1001	1.0-12GHz	12 Mo.	12/22/05
							12/27/06
AMP-20	Avantek	Pre-amplifier	SF8-0652	15221	8-18GHz	12 Mo	12/22/05
							12/27/06
AMP-22	Anritsu	Pre-amplifier	MH648A	M23969	0.1-1200MHz	12 Mo.	12/21/05
							12/29/06
AMP-29		Amplifier	11975A	2304A00158	2-8 GHz	12 Mo.	03/15/06
	HP / Agilent						03/14/07
ANT-13	EMCO	Horn Antenna	3115	2502	1.0-18GHz	24 Mo.	10/24/06
ANT-42	EMCO	Bicon Antenna	3104C	9512-4713	25-300MHz	24 Mo.	01/26/06
ANT-44	Impossible	Super Log Antenna	SL-20M2G	1002	20-2000MHz	24 Mo.	12/12/05
	Machine						
ANT-48	RMC	Std Gain Horn	HW2020	1001	18-26 GHz	24 Mo.	08/18/06
LSN-03	Farnell	50 uH LISN	1EXLSN30B	000314	0.01-30MHz	24 Mo.	04/25/05
							05/03/07
MXR-02	HP / Agilent	Harmonic Mixer	11970K	2332A00489	18-26.5GHz	12 Mo.	03/15/06
							03/14/07
REC-07	Anritsu	Spectrum Analyzer	MS2601A	MT53067	0.01-2200MHz	12 Mo.	02/07/06
							01/17/07
REC-08	Hewlett	Spectrum Analyzer	8566B	2648A13481	30Hz-22GHz	12 Mo.	07/05/06
	Packard			2209A01436			07/31/07
THM-01	Extech Inst.	Temp/Humid Meter	4465CF	001106557	N/A	24 Mo.	03/31/06

Note: All calibrated equipment is subject to periodic checks.

10 TEST SECTIONS

10.1 AC Conducted Emissions; Section 15.207

A computer-controlled analyzer was used to perform the conducted emissions measurements. The frequency range was divided into 500 subranges equally spaced on a logarithmic scale. The computer recorded the peak of each subrange. This data was then plotted on semi-log graph paper generated by the computer and plotter. Adjusting the positions of the cables and orientation of the test system then maximizes the highest emissions.

RP-6142B Rev. 3 Page 7 of 30

The spectrum analyzer is the property of BACL and was used for the SAR testing.

Testing of the Grayhill, Inc. Industrial Handheld Computer, Model M1YY1203-3

Mains Conducted emission measurements were performed using a 50 Ohm/50 uH Line Impedance Stabilization Network (LISN) as the pick-up device. Measurements were repeated on both leads within the power cord. If the EUT power cord exceeded 80 cm in length, the excess length of the power cord was made into a 30 to 40 cm bundle near the center of the cord. The LISN was placed on the floor at the base of the test platform and electrically bonded to the ground plane.

Broadband conducted emissions may exceed the following limits by no more than 13 dB. An emission is defined as broadband if the average detector amplitude is 6 dB or more under the quasi-peak detector amplitude.

FCC Limits of Conducted Emissions at the AC Mains Ports

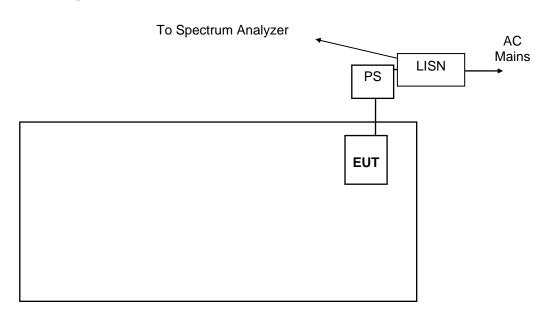
Frequency Range	Class B Limits (dBuV)			
(MHz)	Quasi-Peak	Average		
0.150 - 0.50*	66 - 56	56 - 46		
0.5 - 5.0	56	46		
5.0 - 30	60	50		
* The limit decreases linearly with the logarithm of the frequency in this range.				

The initial step in collecting conducted data is a peak detector scan and the plotting of the measurement range. Significant peaks are then marked as shown on the following table, and these signals are then measured with the quasi-peak detector. The following represents the worst case emissions from power cord, after testing all modes of operation both Bluetooth and 802.11.

Test Date : October 2, 2007

The Amplitude is the final corrected value with cable and LISN Loss.

	Frequency	QP		Average	Average	Margin under
Lead Tested	MHz	Amplitude	QP Limit	Amplitude	Limit	Limit
AC Hot	0.18	40.9	64.4	34.5	54.4	19.9
AC Hot	0.19	38.2	64.4	33.7	54.4	20.6
AC Hot	0.42	36.6	57.4	35.2	47.4	12.1
AC Hot	0.67	35.5	56.0	33.4	46.0	12.7
AC Hot	1.03	33.8	56.0	32.1	46.0	13.9
AC Hot	1.15	34.7	56.0	32.9	46.0	13.1
AC Hot	2.42	33.6	56.0	29.5	46.0	16.5
AC Hot	2.91	35.1	56.0	29.5	46.0	16.5
AC Hot	3.09	35.0	56.0	26.8	46.0	19.2
AC Hot	3.51	33.2	56.0	25.1	46.0	20.9
AC Hot	3.69	34.0	56.0	26.0	46.0	20.0
AC Hot	18.37	29.4	60.0	19.4	50.0	30.6
AC Hot	20.71	32.8	60.0	23.8	50.0	26.2
AC Hot	21.06	31.9	60.0	26.3	50.0	23.7
AC Hot	21.1	32.5	60.0	23.8	50.0	26.2
AC Hot	21.33	30.0	60.0	23.3	50.0	26.7
AC Neutral	0.18	44.7	64.4	38.6	54.4	15.8
AC Neutral	0.19	43.0	64.4	38.6	54.4	15.8
AC Neutral	0.43	39.4	57.4	38.8	47.4	8.5
AC Neutral	0.61	39.0	56.0	38.5	46.0	7.5
AC Neutral	0.67	38.6	56.0	37.1	46.0	8.9

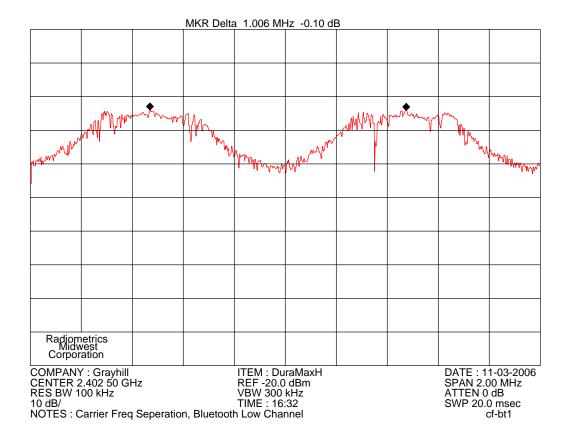

RP-6142B Rev. 3 Page 8 of 30

Testing of the Grayhill, Inc. Industrial Handheld Computer, Model M1YY1203-3

Lead Tested	Frequency MHz	QP Amplitude	QP Limit	Average Amplitude	Average Limit	Margin under Limit
AC Neutral	1.16	35.4	56.0	33.7	46.0	12.3
AC Neutral	1.4	37.6	56.0	35.3	46.0	10.7
AC Neutral	1.46	34.5	56.0	32.5	46.0	13.5
AC Neutral	1.88	37.0	56.0	34.4	46.0	11.6
AC Neutral	3.16	29.1	56.0	20.0	46.0	26.0
AC Neutral	20.1	30.9	60.0	23.1	50.0	26.9
AC Neutral	20.31	30.9	60.0	25.0	50.0	25.0
AC Neutral	21.07	31.1	60.0	25.0	50.0	25.0
AC Neutral	29.34	33.6	60.0	28.2	50.0	21.8

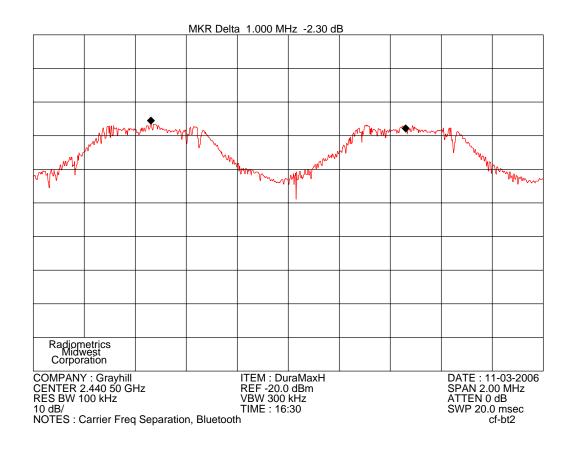
^{*} QP readings are quasi-peak with a 9 kHz bandwidth. Judgment: Passed by 7.5 dB

Figure 1. Conducted Emissions Test Setup


- LISN's at least 80 cm from EUT chassis
- Vertical conductive plane 40 cm from rear of table top
- EUT power cord bundled

1x1.5m surface

RP-6142B Rev. 3 Page 9 of 30


10.2 Carrier Frequency Separation (Bluetooth)


The channel separation is 1 MHz for this bluetooth device. The minimum separation required is 0.66 MHz since the power is less than 0.125 Watts.

RP-6142B Rev. 3 Page 10 of 30

Testing of the Grayhill, Inc. Industrial Handheld Computer, Model M1YY1203-3

RP-6142B Rev. 3 Page 11 of 30

Testing of the Grayhill, Inc. Industrial Handheld Computer, Model M1YY1203-3

10.3 Number of Hopping Frequencies (Bluetooth)

There are 79 hopping frequencies from 2402 -2480 MHz.

10.4 Time of Occupancy (Dwell Time for Bluetoth)

The dwell time of 0.3797s within a 30 second period in data mode is independent from the packet type (packet length). The calculation for a 30 second period is a follows:

Dwell time = time slot length * hop rate/number of hopping channels *30s

Example for a packet (with a maximum length of one time slot)

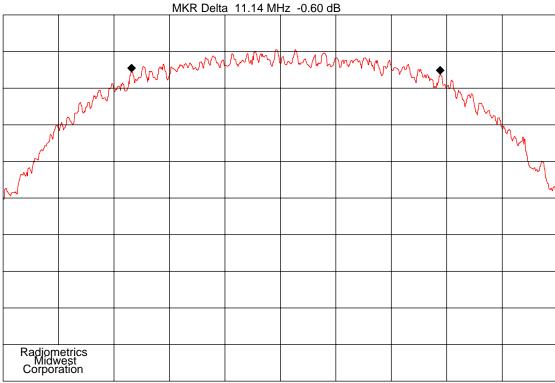
Dwell time = $625 \text{ us}^* 1600 \text{ 1/s/79} * 30s = 0.3797s$ (in a 30s period)

	Hopping		Time			
Slot	Rate per	Number of	period of	Dwell Time in a	Dwell per 100	PKA
Length	30 Sec	Channels	Calculation	30 Sec period	mS	(dB)
625 uS	1600	79	30 Sec	0.3797 Sec	3.797 mSec	28.4

PKA = peak to average factor in dB.

The Peak to average factor is calculated by the highest duty cycle in percent over any 100mS transmission. The factor in dB is 20 * Log(Duty cycle/100).

10.5 Occupied Bandwidth (802.11)

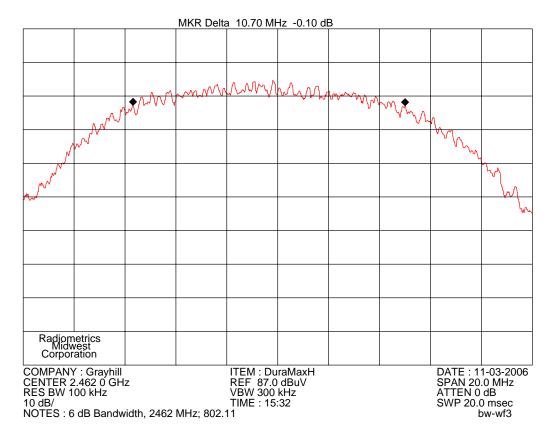

	802.11b	802.11b					
Channel	6 dB EBW MHz	20 dB EBW MHz					
1	11.14	14.82					
6	10.70	14.79					
11	11.22	14.63					

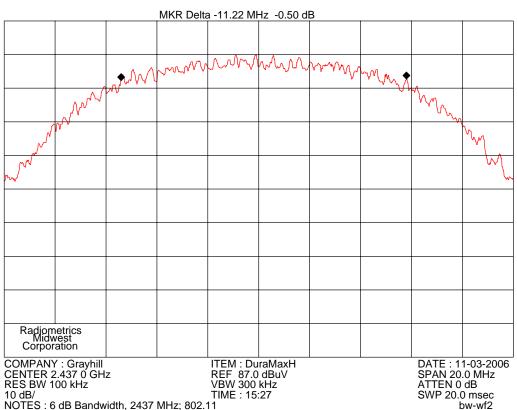
The spectrum analyzer was set to the MAX HOLD mode to record the worst case of the modulation. The EUT was transmitting at its maximum data rate. The trace was allowed to stabilize.

The marker-to-peak function was set to the peak of the emission. Then the marker-delta function was used to measure 20 dB down one side of the emission. The marker-delta function was reset and then moved to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth of the emission.

RP-6142B Rev. 3 Page 12 of 30

Testing of the Grayhill, Inc. Industrial Handheld Computer, Model M1YY1203-3

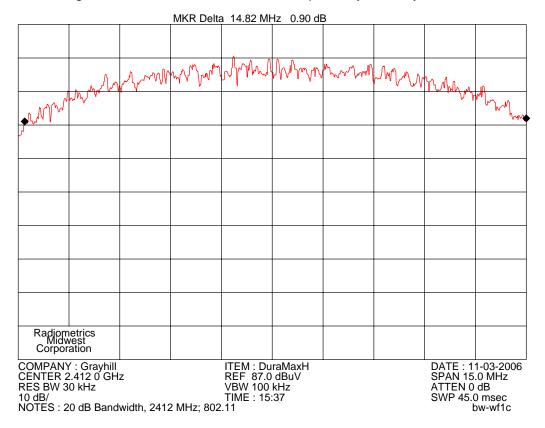


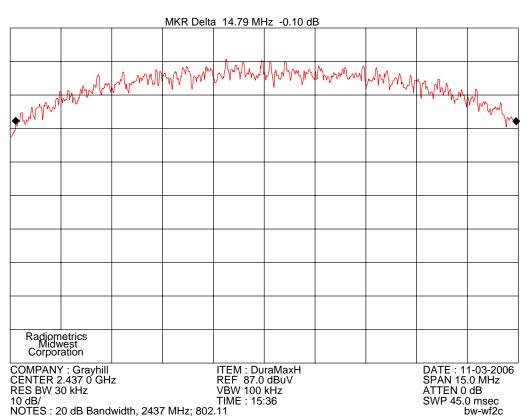

RES BW 100 kHz VBW 300 kHz TIME: 14:53 NOTES: 6 dB Bandwidth, 2412 MHz; 802.11

DATE : 11-03-2006 SPAN 20.0 MHz ATTEN 0 dB SWP 20.0 msec bw-wf1

RP-6142B Rev. 3 Page 13 of 30

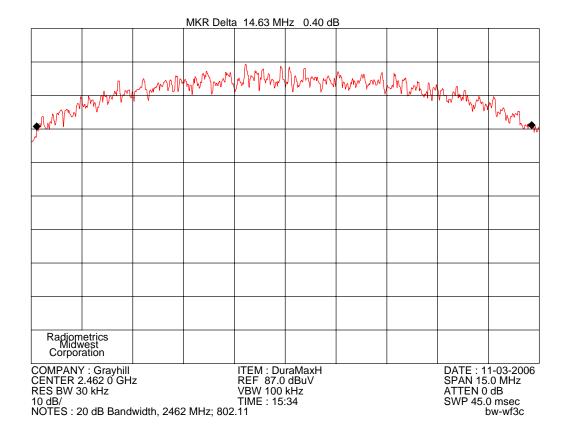
Testing of the Grayhill, Inc. Industrial Handheld Computer, Model M1YY1203-3





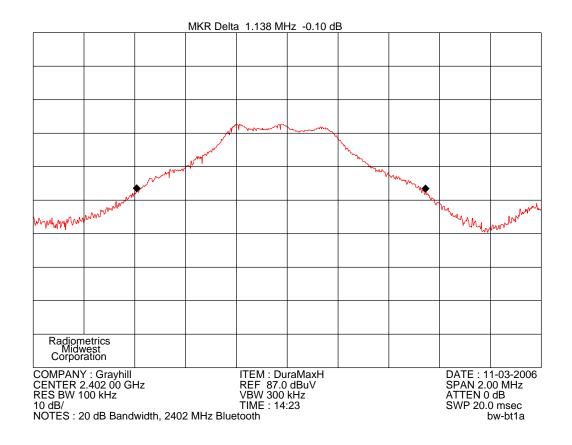
RP-6142B Rev. 3 Page 14 of 30

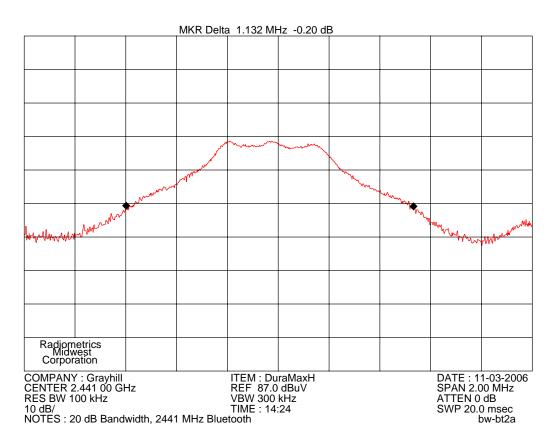
Testing of the Grayhill, Inc. Industrial Handheld Computer, Model M1YY1203-3


The following shows the 20 dB bandwidth as required by Industry Canada.

RP-6142B Rev. 3 Page 15 of 30

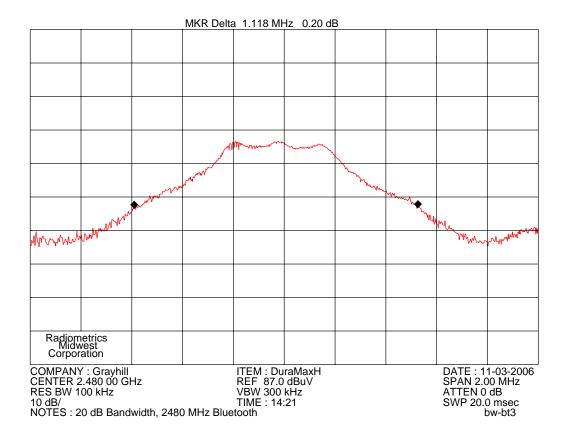
Testing of the Grayhill, Inc. Industrial Handheld Computer, Model M1YY1203-3




10.6 Occupied Bandwidth (Bluetooth)

Channel	20 dB EBW MHz
2402	1.138
2441	1.132
2480	1.118

RP-6142B Rev. 3 Page 16 of 30


Testing of the Grayhill, Inc. Industrial Handheld Computer, Model M1YY1203-3

RP-6142B Rev. 3 Page 17 of 30

Testing of the Grayhill, Inc. Industrial Handheld Computer, Model M1YY1203-3

10.7 Peak Output Power

10.7.1 Output Power (Bluetooth)

Since antenna conducted tests cannot be performed on the EUT, radiated tests were performed to show compliance with this requirement.

The transmitter's peak power was calculated using the following equation:

 $P = (E \times d)^2 / (30 \times G)$

Where: E = the measured maximum peak field strength in V/m.

G = The numeric gain of the transmitting antenna over an isotropic radiator.

d = Distance in meters from which the field strength was measured. (3 meters)

P = The EUT power in watts

The Field Strength was measured using the procedures described in section 10.9, with the exception of the resolution and video bandwidths. The spectrum analyzer was set to the following settings:

Span = 3 MHz; RBW = 3 MHz (> the 20 dB bandwidth of the emission being measured) VBW = 3 MHz; Sweep = auto; Detector function = peak; Trace = max hold

Since the gain of the antenna is always less than 6dB, the limit is not reduced.

RP-6142B Rev. 3 Page 18 of 30

Testing of the Grayhill, Inc. Industrial Handheld Computer, Model M1YY1203-3

								Peak Output	
					Test		power	power from	
	Freq	Peak Field Strength		Ant gain	Dist.	BW Corr.	EU	Т	Limit
Function	MHz	dBuV/m	V/m	Numeric	Meters	dB	Watts	dBm	dBm
Bluetooth	2402	96.8	0.0692	1	3	0	0.00144	1.6	0.0692
Bluetooth	2441	96.2	0.0646	1	3	0	0.00125	1.0	0.0646
Bluetooth	2480	95.4	0.0589	1	3	0	0.00104	0.2	0.0589

Overall Test result: Pass by 6.33 dB

10.7.2 Output Power (802.11)

BACL performed this test

Since the gain of the antenna is always less than 6dB, the limit is not reduced.

Equipment Used:

Manufacturer	Description	Model	Serial Number	Cal Date
Agilent	Spectrum Analyzer	E4446A	US44300386	04/26/07

Test Personnel : Dan Coronia	BACL Report # R0710046-SAR
------------------------------	----------------------------

Channel Number	Frequency (MHz)	Measured output power (dBm)	Measured output power (mW)	Limit (dBm)
1	2412	14.67	29.31	30
6	2437	15.26	33.56	30
11	2462	13.98	25.00	30

Overall Test result: Pass by 14.7 dB

10.8 Power Spectral Density (802.11)

Since antenna conducted tests cannot be performed on the EUT, radiated tests were performed to show compliance with this requirement. The FCC procedures from PSD option 1 was used. The power spectral density was measured as follows.

The field strength was measured using the procedures described in section 10.9, with the following exceptions: The analyzer was tuned to the highest point of the maximized fundamental emission. The analyzer was set to RBW = 3 kHz, VBW > RBW, span = 300 kHz and a sweep = 100 Sec. Using this peak level, the transmitter's power spectral density was calculated using the following equation:

 $P = (E \times d)^2 / (30 \times G)$

Where: E = the measured maximum peak field strength in V/m, using the bandwiths in this section.

G = The numeric gain of the transmitting antenna over an isotropic radiator.

d = Distance in meters from which the field strength was measured. (3 meters)

P = The EUT power in watts

RP-6142B Rev. 3 Page 19 of 30

Testing of the Grayhill, Inc. Industrial Handheld Computer, Model M1YY1203-3

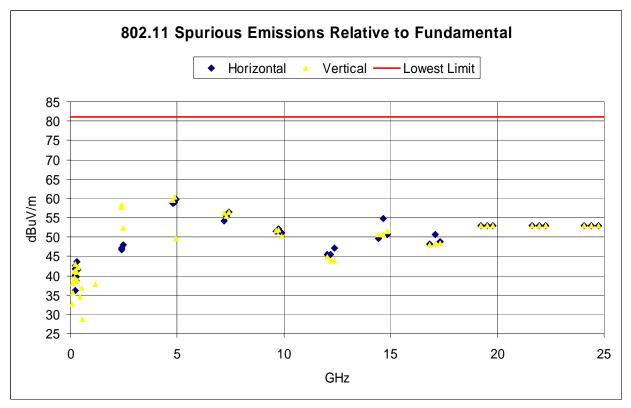
		3kHz PS	D Field		Test	3 kHz S	Limit	
	Freq	Strength		Ant gain	Distance	Density from EUT		
EUT	MHz	dBuV/m	V/m	Numeric	Meters	Watts	dBm	dBm
802.11	2412	84.2	0.01622	1	3	0.00008	-11.0	8
802.11	2437	82.1	0.01274	1	3	0.00005	-13.1	8
802.11	2462	83.5	0.01496	1	3	0.00007	-11.7	8

Overall Test result: Pass by 19.0 dB

10.9 Spurious RF Conducted Emissions

Antenna conducted tests were not performed on the EUT, since the RF connector on the EUT is not standard. Radiated tests were performed to show compliance with this requirement.

The EUT was tested in continuous mode and peak readings were made from the lowest frequency generated in the EUT up through the 10th harmonic. The limit is 20 dB lower than the peak of the fundamental. For each polarization and fundamental frequency, there is a separate limit. The data is shown graphically and in tabular form.


10.9.1 Spurious RF Conducted Emissions (802.11)

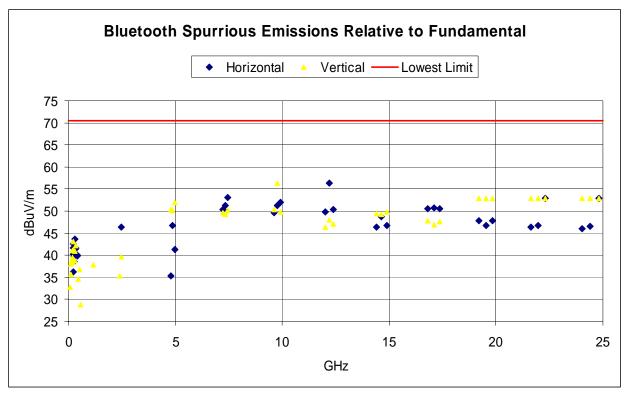
Since antenna conducted tests cannot be performed on the EUT, radiated tests were performed to show compliance with this requirement.

The 802.11 was tested in continuous mode and peak readings were made from the lowest frequency generated in the EUT up through the 10th harmonic. The red limit is 20 dB lower than the lowest peak reading of the fundamental.

RP-6142B Rev. 3 Page 20 of 30

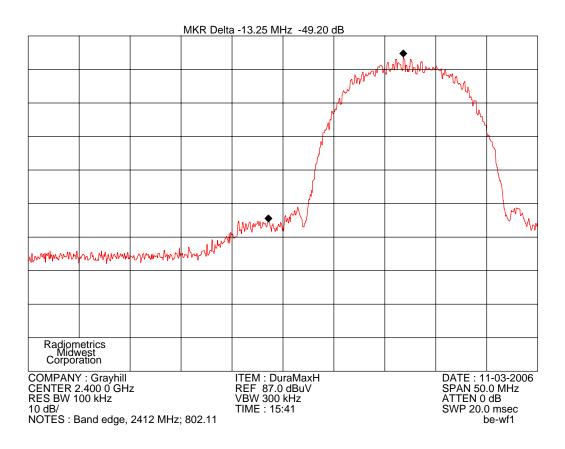
Testing of the Grayhill, Inc. Industrial Handheld Computer, Model M1YY1203-3

Judgement: Pass by 20.7 dB

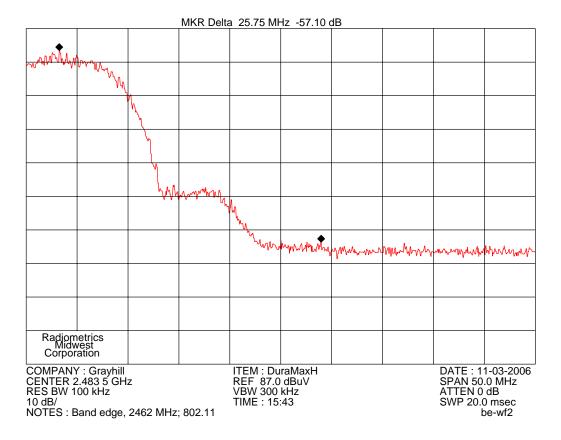

10.9.2 Spurious RF Conducted Emissions (Bluetooth)

Since antenna conducted tests cannot be performed on the EUT, radiated tests were performed to show compliance with this requirement.

The Bluetooth was tested in continous mode and peak readings were made from the lowest frequency generated in the EUT up through the 10th harmonic. The red limit is 20 dB lower than the lowest peak reading of the fundamental.

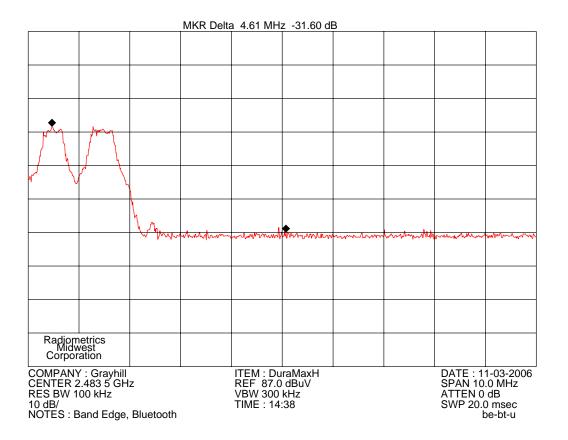

RP-6142B Rev. 3 Page 21 of 30

Testing of the Grayhill, Inc. Industrial Handheld Computer, Model M1YY1203-3

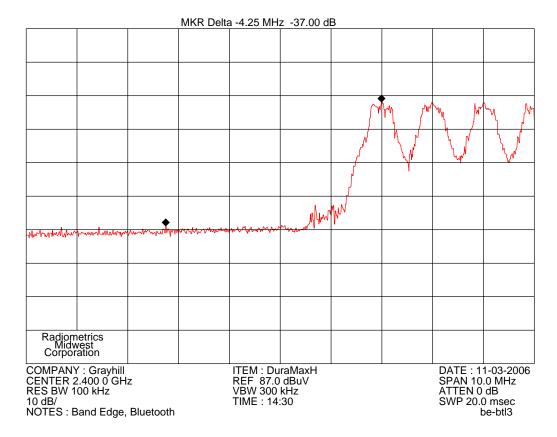

Judgement: Pass by 14.1 dB

10.9.3 Band edge emissions (802.11)

RP-6142B Rev. 3 Page 22 of 30


Testing of the Grayhill, Inc. Industrial Handheld Computer, Model M1YY1203-3

Judgement: pass by 29.2 dB


RP-6142B Rev. 3 Page 23 of 30

10.9.4 Band edge emissions (Bluetooth)

RP-6142B Rev. 3 Page 24 of 30

Testing of the Grayhill, Inc. Industrial Handheld Computer, Model M1YY1203-3

Judgement: pass by 11.6 dB

10.10 Spurious Radiated Emissions

Radiated emission measurements in the restricted bands were performed with linearly polarized broadband antennas. The results obtained with these antennas can be correlated with results obtained with a tuned dipole antenna. Below 1 GHz, when a radiated emission is detected approaching the specification limit, the measurement of the emission is repeated using a tuned dipole antenna with a Roberts Balun. A 10 dB linearity check is performed prior to start of testing in order to determine if an overload condition exists.

From 30 to 1000 MHz, an Anritsu spectrum analyzer and a preamplifier were used. The out of band emissions and the ambient emissions were below the level of input overload (80 dBuV).

For tests from 1 to 25 GHz, an HP8566A spectrum analyzer was used with a preamplifier. A harmonic mixer was used from 20 to 25 GHz. The out of band emissions and the ambient emissions were below the level of input overload (72 dBuV). In addition, a high pass filter was used to reduce the fundamental emission.

Radiated emission measurements are performed with linearly polarized broadband antennas. Measurements were performed using two antenna polarizations, (vertical and horizontal). The worst case emissions were recorded.

RP-6142B Rev. 3 Page 25 of 30

Testing of the Grayhill, Inc. Industrial Handheld Computer, Model M1YY1203-3

Final radiated emissions measurements were performed in Chamber E at a test distance of 3 meters. The entire frequency range from 30 MHz to 25 GHz was slowly scanned and the emissions in the restricted frequency bands were recorded. Measurements were performed using the peak detector function. The detected emission levels were maximized by rotating the EUT, adjusting the positions of all cables, and by scanning the measurement antenna from 1 to 4 meters above the ground. The anechoic test chamber has a metal ground screen.

The was device was rotated through three orthogonal axis as per 13.1.4.1 of ANSI C63.4 during the prescans and during final radiated tests.

10.10.1 Radiated Emissions Field Strength Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and by subtracting the Amplifier Gain from the measured reading. The basic equation is as follows:

FS = RA + AF + CF - AG

Where: FS = Field Strength

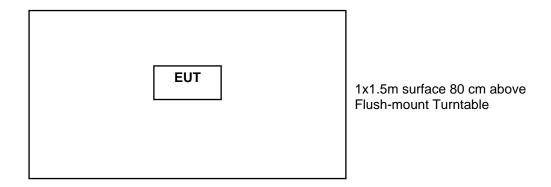
RA = Receiver Amplitude

AF = Antenna Factor

CF = Cable Attenuation Factor

AG = Amplifier Gain

HPF = High pass Filter Loss


PKA = Peak to Average Factor (This is used for Bluetooth Average measurements only. All other measurements, it was zero)

The Peak to average factor is used when average measurements are required. It is calculated by the highest duty cycle in percent over any 100mS transmission. The factor in dB is 20 * Log(Duty cycle/100).

RP-6142B Rev. 3 Page 26 of 30

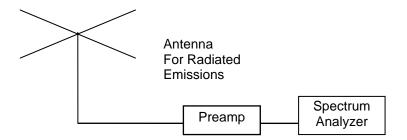

Testing of the Grayhill, Inc. Industrial Handheld Computer, Model M1YY1203-3

Figure 2. Drawing of Radiated Emissions Setup

Notes:

- AC outlet with low-pass filter at the base of the turntable
- Antenna height varied from 1 to 4 meters
- Distance from antenna to tested system is 3 meters
- Not to Scale

10.10.2 Spurious Radiated emissions results above 2 GHz

10.10.2.1 Spurious Radiated Emissions Test Results (802.11)

The following spectrum analyzer settings were used.

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz

 $VBW \ge RBW$

Sweep = auto

Detector function = peak

Trace = max hold

A Video Bandwidth of 10 Hz was used for Average measurements.

					Corr		Field Strength		Field Strength		Margin
			802.11b			EUT	from EUT		Limit		Under
hrm	Tx	Ant	Peak	Ave	Fact.	Emission	Peak	Ave	Peak	Ave	Limit
			Analyzer								
#	Freq	Pol.	RDG dBuV		dB	Freq MHz	dBu'	V/m	dBuV/m		dB
1	2412	V	97.2	91.6	4.4	2412	101.6	96.0	125.2	105.2	9.2

RP-6142B Rev. 3 Page 27 of 30

Testing of the Grayhill, Inc. Industrial Handheld Computer, Model M1YY1203-3

1	2412	Н	98.6	92.0	4.4	2412	103.0	96.4	125.2	105.2	8.8
BE	2412	V	42.7	33.5	4.4	2389	47.1	37.9	74.0	54.0	16.1
BE	2412	Н	42.4	33.1	4.4	2390	46.8	37.5	74.0	54.0	16.5
2	2412	V	46.3	34.8	13.4	4824	59.7	48.2	74.0	54.0	5.8
2	2412	Η	45.6	33.8	13.4	4824	59.0	47.2	74.0	54.0	6.8
3	2412	V	35.0	26.4	19.4	7236	54.4	45.8	74.0	54.0	8.2
3	2412	Η	35.0	26.4	19.4	7236	54.4	45.8	74.0	54.0	8.2
1	2437	V	97.0	90.9	4.6	2437	101.6	95.5	125.0	105.2	9.7
1	2437	Н	96.8	90.9	4.6	2437	101.4	95.5	125.0	105.2	9.7
2	2437	V	47.1	37.2	13.4	4874	60.5	50.6	74.0	54.0	3.4
2	2437	Τ	45.7	36.3	13.4	4874	59.1	49.7	74.0	54.0	4.3
3	2437	V	36.0	25.6	19.5	7311	55.5	45.1	74.0	54.0	8.9
3	2437	Τ	36.0	25.6	19.5	7311	55.5	45.1	74.0	54.0	8.9
1	2462	V	96.2	88.7	4.8	2462	101.0	93.5	125.0	105.2	11.7
1	2462	Ι	97.2	91.1	4.9	2462	102.1	96.0	125.0	105.2	9.2
BE	2462	٧	41.5	32.6	4.9	2483.5	46.4	37.5	74.0	105.2	27.6
BE	2462	Τ	43.2	33.7	4.9	2483.5	48.1	38.6	74.0	105.2	25.9
2	2462	V	45.8	36.0	13.7	4924	59.5	49.7	74.0	54.0	4.3
2	2462	Н	46.2	35.5	13.7	4924	59.9	49.2	74.0	54.0	4.8
3	2462	V	36.0	26.0	19.7	7386	55.7	45.7	74.0	54.0	8.3
3	2462	Н	35.0	26.0	19.7	7386	54.7	45.7	74.0	54.0	8.3

^{*} Noise Floor of analyzer; No detectable emission

Notes: 1. hrm = Harmonic; BE = Band Edge emissions; V = Vertical; H = Horizontal

- 2. The margin (last column) is the worst case margin under the peak or average limits for that row.
- 3. Corr. Factors = Cable Loss Preamp Gain + Antenna Factor

Judgment: Passed by 2.6 dB

No other emissions were detected in the restricted bands from 2 to 25 GHz.

10.10.2.2 Spurious Radiated Emissions Test Results (Bluetooth)

			Analyzer RDG		Corr	ГИТ	Γiο	/m)	Margin		
brm	Tv	∧ n+	dBuV		Corr.	EUT		Field Strength (dBuV/m)			Under
hrm	Tx	Ant.	5 .		Fact.	Emission	Peak	Ave	Peak	Ave	Limit
#	Freq	Pol.	Peak	Average	dB	Freq MHz	Total	Total	Limit	Limit	dB
1	2402	V	90.4	62.0	5.3	2402	95.7	67.3	125.2	105.2	29.5
1	2402	Н	91.5	63.1	5.3	2402	96.8	68.4	125.2	105.2	28.4
be	2402	V	30	1.6	5.3	2390	35.3	6.9	74	54	38.7
be	2402	Н	30	1.6	5.3	2390	35.3	6.9	74	54	38.7
2	2402	V	38.1	9.7	12.3	4804	50.4	22	74	54	23.6
2	2402	Н	36	7.6	12.3	4804	48.3	19.9	74	54	25.7
3	2402	V	34.3	5.9	15.3	7206	49.6	21.2	74	54	24.4
3	2402	Н	31.8	3.4	15.3	7206	47.1	18.7	74	54	26.9
1	2441	V	90.6	62.2	5.6	2441	96.2	67.8	125.2	105.2	29.0
1	2441	Н	90.4	60.6	5.6	2441	96	66.2	125.2	105.2	29.2
2	2441	V	37.9	9.5	12.3	4882	50.2	21.8	74	54	23.8
2	2441	Н	33.7	2.8	12.3	4882	46	15.1	74	54	28.0
3	2441	V	34	5.1	15.7	7323	49.7	20.8	74	54	24.3

RP-6142B Rev. 3 Page 28 of 30

Testing of the Grayhill, Inc. Industrial Handheld Computer, Model M1YY1203-3

			Analyzer RDG								Margin
			dBuV		Corr.	EUT	Field Strength (dBuV/m)			Under	
hrm	Tx	Ant.			Fact.	Emission	Peak	Ave	Peak	Ave	Limit
#	Freq	Pol.	Peak	Average	dB	Freq MHz	Total	Total	Limit	Limit	dB
3	2441	Н	34.2	4.4	15.7	7323	49.9	20.1	74	54	24.1
1	2480	V	89.7	61.3	5.7	2480	95.4	67	125.2	105.2	29.8
1	2480	Н	87	58.1	5.7	2475	92.7	63.8	125.2	105.2	32.5
be	2480	V	30	1.6	5.7	2483.5	35.7	7.3	125.2	105.2	89.5
be	2480	Н	30	1.6	5.7	2483.5	35.7	7.3	125.2	105.2	89.5
2	2480	V	39.2	10.8	12.8	4960	52	23.6	74	54	22.0
2	2480	Н	31.8	3.2	12.8	4960	44.6	16	74	54	29.4
3	2480	V	33.6	2.1	16.5	7440	50.1	18.6	74	54	23.9
3	2480	Н	32.1	2.6	16.5	7440	48.6	19.1	74	54	25.4

Notes: 1. hrm = Harmonic; BE = Band Edge emissions; V = Vertical; H = Horizontal

- 2. The margin (last column) is the worst case margin under the peak or average limits for that row.
- 3. Corr. Factors = Cable Loss Preamp Gain + Antenna Factor
- 4. The Average reading is the peak reading PKA (Peak to average factor) as defined in section 10.4 herein

Judgment: Passed by 20.8 dB

No other emissions were detected in the restricted bands from 2 to 25 GHz.

10.10.3 Spurious Radiated Emissions Below 2 GHz (Bluetooth and 802.11)

Manufacturer	Grayhill, Inc.	Specification	FCC Part 15 Subpart C & RSS-210				
Model	M1YY1203-3	Test Date	09-13-2007				
Serial Number	M1YY1021-2QVGA	Test Distance	3 Meters				
Abbreviations	Pol = Antenna Polarization; V = Vertical; H = Horizontal; BC = Biconical (ANT-3);						
	LP = Log-Periodic (ANT-6); HN = Horn (ANT-13) P = peak; Q = QP						
Notes	Corr. Factors = Cable Loss -	Preamp Gain					

The following is the worst case emissions from EUT below 2.3 GHz. The results include intentional and unintentional emissions.

	Meter Reading	Antenna Factor Pol/		Corr. Factors	Field S dBu	Margin Under Limit	
Freq. MHz	dBuV	dB	Туре	dB	EUT	Limit	dB
48.0	38.9 Q	17.6	H/44	-19.3	37.2	40.0	2.8
48.4	30.4 P	17.5	H/44	-19.3	28.6	40.0	11.4
66.7	37.7 P	8.4	H/44	-19.1	27.0	40.0	13.0
96.3	44.6 P	9.2	H/44	-18.8	34.9	43.5	8.6
108.2	41.8 P	12.8	H/44	-18.7	35.9	43.5	7.6
120.1	40.0 P	14.9	H/44	-18.6	36.3	43.5	7.2
159.5	43.1 P	9.9	H/44	-18.0	34.9	43.5	8.6
168.4	41.1 P	9.4	H/44	-18.0	32.4	43.5	11.1
178.6	46.0 P	9.4	H/44	-18.0	37.4	43.5	6.1

RP-6142B Rev. 3 Page 29 of 30

Testing of the Grayhill, Inc. Industrial Handheld Computer, Model M1YY1203-3

	Meter	Ante		Corr. Factors	Field S	Margin		
	Reading	Factor	Pol/			ıV/m	Under Limit	
Freq. MHz	dBuV	dB	Type	dB	EUT	Limit	dB	
182.7	42.1 P	9.9	H/44	-17.9	34.1	43.5	9.4	
187.1	42.0 P	10.0	H/44	-17.9	34.1	43.5	9.4	
190.5	47.2 P	10.1	H/44	-17.8	39.5	43.5	4.0	
192.9	42.5 P	10.3	H/44	-17.8	35.0	43.5	8.5	
214.1	42.9 P	11.0	H/44	-17.7	36.2	43.5	7.3	
240.5	47.8 P	12.2	H/44	-17.4	42.6	46.0	3.4	
240.5	46.9 P	12.2	H/44	-17.4	41.7	46.0	4.3	
240.5	45.4 P	12.2	H/44	-17.4	40.2	46.0	5.8	
252.4	43.6 P	12.4	H/44	-17.4	38.6	46.0	7.4	
276.6	43.9 P	13.0	H/44	-17.3	39.6	46.0	6.4	
312.0	46.7 Q	14.0	H/44	-17.0	43.7	46.0	2.3	
320.1	44.4 P	14.2	H/44	-17.0	41.6	46.0	4.4	
336.0	42.9 P	15.4	H/44	-16.9	41.4	46.0	4.6	
416.0	40.5 Q	16.1	H/44	-16.5	40.1	46.0	5.9	
426.4	40.0 P	16.3	H/44	-16.4	39.9	46.0	6.1	
520.0	29.8 P	18.3	H/44	-16.0	32.1	46.0	13.9	
63.1	40.7 Q	11.1	V/44	-19.1	32.7	40.0	7.3	
96.0	46.0 Q	10.9	V/44	-18.8	38.0	43.5	5.5	
120.1	39.2 P	15.0	V/44	-18.6	35.6	43.5	7.9	
155.8	46.2 P	10.7	V/44	-18.2	38.7	43.5	4.8	
180.0	47.5 Q	9.9	V/44	-17.9	39.5	43.5	4.0	
181.3	46.5 Q	9.8	V/44	-17.9	38.4	43.5	5.1	
202.3	48.4 Q	10.4	V/44	-17.7	41.1	43.5	2.4	
213.7	47.1 Q	11.7	V/44	-17.7	41.1	43.5	2.4	
240.0	47.7 Q	12.8	V/44	-17.4	43.1	46.0	2.9	
259.6	43.1 P	13.1	V/44	-17.4	38.9	46.0	7.1	
300.8	41.9 P	13.9	V/44	-17.1	38.8	46.0	7.2	
312.0	44.0 Q	14.0	V/44	-17.0	41.0	46.0	5.0	
320.8	44.7 P	14.5	V/44	-17.0	42.2	46.0	3.8	
444.0	34.1 P	16.7	V/44	-16.2	34.6	46.0	11.4	
519.8	34.8 P	18.0	V/44	-16.0	36.8	46.0	9.2	
543.7	26.3 P	18.3	V/44	-15.8	28.8	46.0	17.2	
1144.0	27.2 P	23.5	V/44	-12.8	37.9	54.0	16.1	

Judgment: Passed by 2.3 dB No other emissions were detected in the restricted bands.

Page 30 of 30 RP-6142B Rev. 3