Report No.: ES/2007/60014

Page: 215 of 253

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

ConF

TSL NORMx,y,z tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z

DCP Polarization o diode compression point

φ rotation around probe axis

Polarization 9

 ϑ rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., ϑ = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx.v.z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,v,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,v,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Report No.: ES/2007/60014

Page: 216 of 253

EX3DV3 SN:3526

August 29, 2007

Probe EX3DV3

SN:3526

Manufactured:

March 19, 2004

Last calibrated:

August 25, 2006

Recalibrated:

August 29, 2007

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Report No.: ES/2007/60014

Page: 217 of 253

EX3DV3 SN:3526

August 29, 2007

DASY - Parameters of Probe: EX3DV3 SN:3526

Sensitivity in Fre	Diode Compression ^B				
NormX	0.991 ± 10.1%	$\mu V/(V/m)^2$	DCP X	97 mV	
NormY	0.807 ± 10.1%	$\mu V/(V/m)^2$	DCP Y	96 mV	
NormZ	0.876 ± 10.1%	$\mu V/(V/m)^2$	DCP Z	97 mV	

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL	900 MHz	Typical SAR gradient: 5 % per mm

Sensor Center to Phantom Surface Distance		2.0 mm	3.0 mm	
SAR _{be} [%]	Without Correction Algorithm	1.5	0.5	
SAR _{be} [%]	With Correction Algorithm	0.3	0.4	

TSL 1810 MHz Typical SAR gradient: 10 % per mm

Sensor Center to	o Phantom Surface Distance	2.0 mm	3.0 mm
SAR _{be} [%]	Without Correction Algorithm	3.0	1.5
SAR _{be} [%]	With Correction Algorithm	0.2	0.1

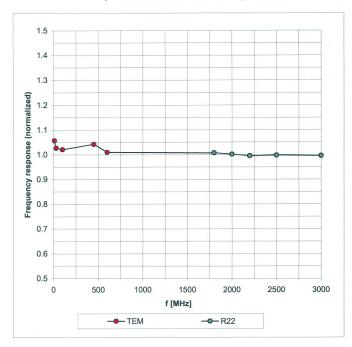
Sensor Offset

Probe Tip to Sensor Center 1.0 mm

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

 $^{^{\}rm A}$ The uncertainties of NormX,Y,Z do not affect the E $^{\rm 2}\text{-field}$ uncertainty inside TSL (see Page 8).

^B Numerical linearization parameter: uncertainty not required.

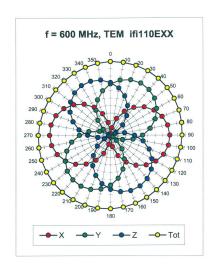

Report No. : ES/2007/60014 Page : 218 of 253

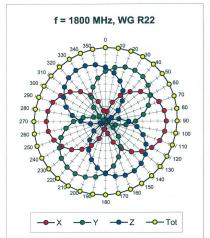
EX3DV3 SN:3526

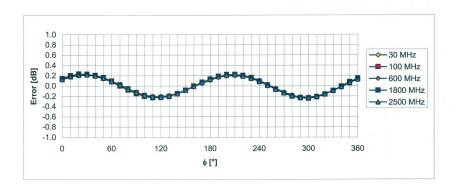
August 29, 2007

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

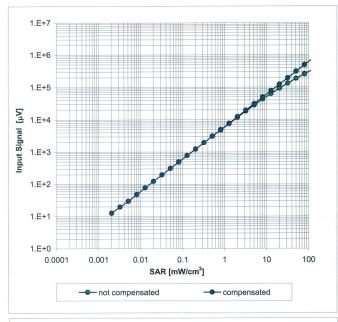

Report No. : ES/2007/60014 Page : 219 of 253

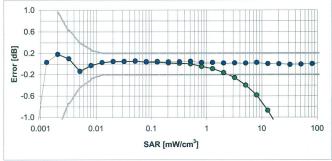

EX3DV3 SN:3526

August 29, 2007

Receiving Pattern (ϕ), ϑ = 0°

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Report No. : ES/2007/60014 Page : 220 of 253


EX3DV3 SN:3526

August 29, 2007

Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)