

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0026 Page (1) of (25)

# TEST REPORT Part 15 Subpart C 15.249

Equipment under test Station Hub

Model name SNS-R0810W

FCC ID NLMSNSR0810W

**Applicant** Hanwha Techwin Co., Ltd.

Manufacturer Hanwha Techwin(Tianjin) Co., Ltd

**Date of test(s)**  $2017.02.09 \sim 2017.02.21$ 

**Date of issue** 2017.02.22

# Issued to Hanwha Techwin Co., Ltd.

1204, Changwon-daero, Seongsan-gu Changwon-si, Gyeongsangnam-do, South Korea Tel: +82-70-7147-8361/ Fax: +82-31-8108-3717

# Issued by KES Co., Ltd.

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea

473-21, Gayeo-ro, Yeoju-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450

| Test and report completed by: | Report approval by: |
|-------------------------------|---------------------|
| 7/2                           |                     |
| Hyeon-su Jang                 | Jeff Do             |
| Test engineer                 | Technical manager   |



KES Co., Ltd.
C-3701, 40, Simin-daero 365beon-gil,
Dongan-gu, Anyang-si, Gyeonggi-do, Korea
Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test report No.: KES-RF-17T0026 Page (2) of (25)

**Revision history** 

| Revision | Date of issue | Test report No. | Description |
|----------|---------------|-----------------|-------------|
| -        | 2017.02.22    | KES-RF-17T0026  | Initial     |



KES Co., Ltd.
C-3701, 40, Simin-daero 365beon-gil,
Dongan-gu, Anyang-si, Gyeonggi-do, Korea
Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test report No.: KES-RF-17T0026 Page (3) of (25)

## TABLE OF CONTENTS

| 1.  | General i | nformation                                                                        | 4  |
|-----|-----------|-----------------------------------------------------------------------------------|----|
|     | 1.1.      | EUT description                                                                   | 4  |
|     | 1.2.      | Test configuration                                                                | 5  |
|     | 1.3.      | Device modifications                                                              |    |
|     | 1.4.      | Information about derivative model                                                | 5  |
|     | 1.5.      | Frequency/channel operations                                                      | 5  |
|     | 1.6.      | Accessory information                                                             |    |
| 2.  | Summary   | y of tests                                                                        | 6  |
| 3.  | Test resu | lts                                                                               | 7  |
|     | 3.1.      | 20 dB bandwidth                                                                   | 7  |
|     | 3.2.      | Field strength of fundamental & Radiated spurious emission & Out-of-band emission | 10 |
|     | 3.3.      | AC conducted emissions                                                            | 22 |
| Apr | endix A.  | Measurement equipment                                                             | 24 |
|     |           | Test setup photos                                                                 |    |



C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0026 Page (4) of (25)

#### 1. General information

Applicant: Hanwha Techwin Co., Ltd.

Applicant address: 1204, Changwon-daero, Seongsan-gu, Changwon-si

Gyeongsangnam-do, South Korea

Test site: KES Co., Ltd.

Test site address: C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea

473-21, Gayeo-ro, Yeoju-si, Gyeonggi-do, Korea

FCC rule part(s): 15.249

FCC ID: NLMSNSR0810W

Test device serial No.: Production Pre-production Engineering

#### 1.1. EUT description

Equipment under test

Station Hub

Frequency range

| Station Truo          |          |                                                |
|-----------------------|----------|------------------------------------------------|
| Single band           | 2.4 GHz  | 2 412 MHz ~ 2 462 MHz (11b/g/n_HT20)           |
| module                | 2.4 GHZ  | 2 422 MHz ~ 2 452 MHz (11n_HT40)               |
|                       | 2.4 GHz  | 2 412 MHz ~ 2 462 MHz (11b/g/n_HT20)           |
|                       | 2.4 0112 | 2 422 MHz ~ 2 452 MHz (11n_HT40)               |
|                       |          | 5 180 MHz ~ 5 240 MHz (11a/n_HT20, 11ac_VHT20) |
|                       | UNII-1   | 5 190 MHz ~ 5 230 MHz (11n_HT40, 11ac_VHT40)   |
|                       |          | 5 210 Mz (11ac_VHT80)                          |
|                       | UNII-2A  | 5 260 MHz ~ 5 320 MHz (11a/n_HT20, 11ac_VHT20) |
| Dual band             |          | 5 270 MHz ~ 5 310 MHz (11n_HT40, 11ac_VHT40)   |
| module                |          | 5 290 Mbz (11ac_VHT80)                         |
|                       | UNII-2C  | 5 500 MHz ~ 5 720 MHz (11a/n_HT20, 11ac_VHT20) |
|                       |          | 5 510 MHz ~ 5 710 MHz (11n_HT40, 11ac_VHT40)   |
|                       |          | 5 530 MHz ~ 5 690 MHz (11ac_VHT80)             |
|                       |          | 5 745 MHz ~ 5 825 MHz (11a/n_HT20, 11ac_VHT20) |
|                       | UNII-3   | 5 755 Mb ~ 5 795 Mb (11n_HT40, 11ac_VHT40)     |
|                       |          | 5 775 MHz (11ac_VHT80)                         |
| 900MHz band<br>module | 900 MHz  | 920.6 MHz ~922.0 MHz                           |

Model: SNS-R0810W

Modulation technique DSSS, OFDM, FSK

Number of channels 11ch:  $2412 \text{ MHz} \sim 2462 \text{ MHz}$ ,  $7 \text{ ch}: 2422 \text{ MHz} \sim 2452 \text{ MHz}$ 

4ch:  $5\ 180\ \text{MHz}\ \sim 5\ 240\ \text{MHz},\quad 2\text{ch}: 5\ 190\ \text{MHz}\ \sim 5\ 230\ \text{MHz},\quad 1\text{ch}: 5\ 210\ \text{MHz}$ 4ch:  $5\ 260\ \text{MHz}\ \sim 5\ 320\ \text{MHz},\quad 2\text{ch}: 5\ 270\ \text{MHz}\ \sim 5\ 310\ \text{MHz},\quad 1\text{ch}: 5\ 290\ \text{MHz}$ 

12ch:  $5\,500\,\text{ MHz} \sim 5\,720\,\text{ MHz}$ ,  $6\text{ch}: 5\,510\,\text{ MHz} \sim 5\,710\,\text{ MHz}$ ,  $3\text{ch}: 5\,530\,\text{ MHz} \sim 5\,690\,\text{ MHz}$ 

5ch: 5745 MHz  $\sim$  5825 MHz, 2ch: 5755 MHz  $\sim$  5795 MHz, 1ch: 5775 MHz

 $8ch:920.6~\textrm{MHz}~\sim\!922.0~\textrm{MHz}$ 



C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0026 Page (5) of (25)

Antenna type 11b/g/n\_HT20/40 : PCB antenna & 3.4 dBi (Single band)

11b/g/n\_HT20/40 : PCB antenna & 2.9 dBi (Dual band)

 UNII-1
 : PCB antenna & 0.6 dBi

 UNII-2A
 : PCB antenna & 0.6 dBi

 UNII-2C
 : PCB antenna & 0.6 dBi

 UNII-3
 : PCB antenna & 0.6 dBi

 900 Mb
 : Chip antenna & -1.7 dBi

Power source AC 120V Adapter (Output : DC 12V / 1.5 A)

#### 1.2. Test configuration

The <u>Hanwha Techwin Co., Ltd. Station Hub FCC ID: NLMSNSR0810W</u> was tested per the guidance of ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing.

#### 1.3. Device modifications

N/A

#### 1.4. Information about derivative model

N/A

#### 1.5. Frequency/channel operations

| Ch. | Frequency (Mb) |
|-----|----------------|
| 1   | 920.6          |
|     |                |
| 4   | 921.2          |
|     |                |
| 8   | 922.0          |

#### 1.6. Accessory information

| Applicant | Equipment | Manufacturer | Model | Power source |  |
|-----------|-----------|--------------|-------|--------------|--|
| -         | -         | -            | -     | -            |  |



KES Co., Ltd.
C-3701, 40, Simin-daero 365beon-gil,
Dongan-gu, Anyang-si, Gyeonggi-do, Korea
Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test report No.: KES-RF-17T0026 Page (6) of (25)

#### **Summary of tests** 2.

| Reference                     | Parameter                                        | Test results |
|-------------------------------|--------------------------------------------------|--------------|
| 15.249(a)                     | Field strength of fundamental                    | Pass         |
| 15.205<br>15.209<br>15.249(d) | Radiated spurious emission, Out-of-band emission | Pass         |
| 15.215(c)                     | 20 dB bandwidth                                  | Pass         |



C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0026 Page (7) of (25)

#### 3. Test results

#### 3.1. 20 dB bandwidth

Test procedure ANSI C63.10-2013

#### Section 6.9.3

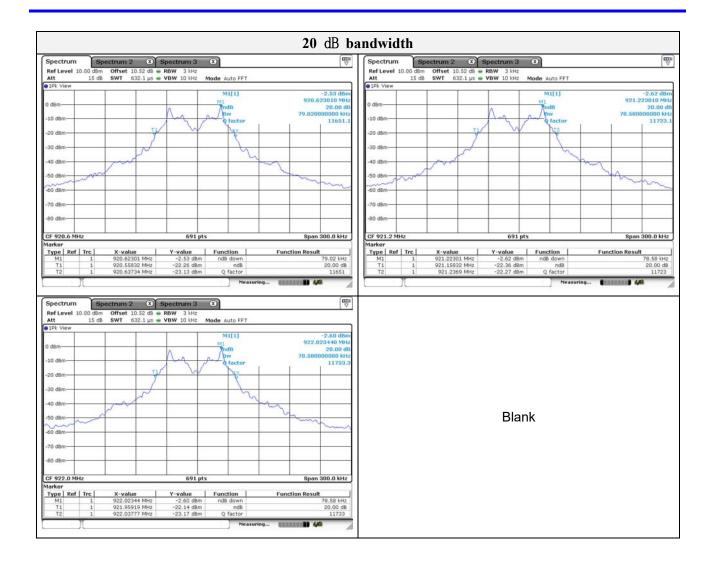
- 1. Use the following spectrum analyzer setting
- 2. Center frequency: Lowest, middle and highest channels
- 3. Span = approximately 2 to 3 times the 20dB bandwidth
- 4. RBW  $\geq$  1 % of the 20dB bandwidth
- 5.  $VBW \ge 3 \times RBW$
- 6. Sweep = auto
- 7. Detector function = peak
- 8. Trace =  $\max$  hold
- 9. Measure the maximum width of the emission that is constrained by the frequencies associat ed with the two outermost amplitude points (upper and lower frequencies) that are attenuate d by 20 dB relative to the maximum level measured in the fundamental emission.

#### Limit

Not applicable



KES Co., Ltd.
C-3701, 40, Simin-daero 365beon-gil,
Dongan-gu, Anyang-si, Gyeonggi-do, Korea
Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

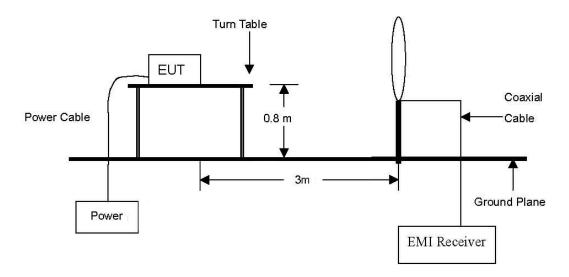

Test report No.: KES-RF-17T0026 Page (8) of (25)

#### **Test results**

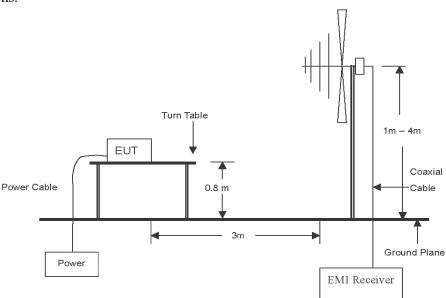
| Frequency(Mtz) | 20 dB bandwidth(Mbz) | Limit(Mb) |
|----------------|----------------------|-----------|
| 920.6          | 0.079                |           |
| 921.2          | 0.079                | -         |
| 922.0          | 0.079                |           |



C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0026 Page (9) of (25)



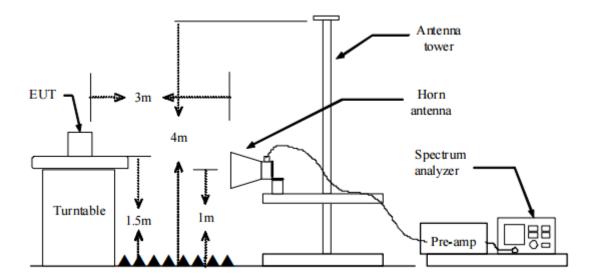




C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0026 Page (10) of (25)

## $\textbf{3.2.} \qquad \textbf{Field strength of fundamental \& Radiated spurious emission \& Out-of-band emission} \\ \textbf{Test setup}$

The diagram below shows the test setup that is utilized to make the measurements for emission from 9 kHz to 30 MHz Emissions.




The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mz to 1 Gz emissions.





C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0026 Page (11) of (25)

The diagram below shows the test setup that is utilized to make the measurements for emission from 1 GHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz emissions, whichever is lower.



#### Test procedure below 30 Mbz

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. Then antenna is a loop antenna is fixed at one meter above the ground to determine the maximum value of the field strength. Both parallel and perpendicular of the antenna are set to make the measurement.
- 3. For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 4. The test-receiver system was set to average or quasi peak detect function and Specified Bandwidth with Maximum hold mode.

#### Test procedure above 30 MHz

- 1. Spectrum analyzer settings for f < 1 GHz:
  - ① Span = wide enough to fully capture the emission being measured
  - (2) RBW = 100 kHz
  - $3 \text{ VBW} \geq \text{RBW}$
  - 4 Detector = quasi peak
  - ⑤ Sweep time = auto
  - $\bigcirc$  Trace = max hold
- 2. Spectrum analyzer settings for  $f \ge 1$  GHz: Peak
  - ① Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
  - ② RBW = 1 Mbz
  - $\bigcirc$  VBW  $\geq$  3 Mz
  - $\bigcirc$  etector = peak
  - ⑤ Sweep time = auto
  - 6 Trace = max hold
  - 7 Trace was allowed to stabilize



C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0026 Page (12) of (25)

- 3. Spectrum analyzer settings for  $f \ge 1$  GHz: Average
  - ① Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
  - $\bigcirc$  RBW = 1 Mbz
  - $\bigcirc$  VBW  $\geq$  3 × RBW
  - ① Detector = RMS, if span/(# of points in sweep)  $\leq$  (RBW/2). Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If this condition cannot be satisfied, then the detector mode shall be set to peak.
  - (5) Averaging type = power(i.e., RMS)
    - 1) As an alternative, the detector and averaging type may be set for linear voltage averaging.
    - 2) Some instruments require linear display mode in order to use linear voltage averaging. Log or dB averaging shall not be used.
  - $\bigcirc$  Sweep = auto
  - $\bigcirc$  Trace = max hold
  - 8 Perform a trace average of at least 100 traces.
  - A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:
    - 1) If power averaging (RMS) mode was used in step  $\bigcirc$ 5, then the applicable correction factor is  $10 \log(1/x)$ , where x is the duty cycle.
    - 2) If linear voltage averaging mode was used in step  $\bigcirc$ 5, then the applicable correction factor is  $20 \log(1/x)$ , where x is the duty cycle.
    - 3) If a specific emission is demonstrated to be continuous (≥ 98 percent duty cycle) rather than turning on and off with the transmit cycle, then no duty cycle correction is required for that emission.

#### Note.

1. f < 30 MHz, extrapolation factor of 40 dB/decade of distance.  $F_d = 40 log(D_m/Ds)$   $f \ge 30$  MHz, extrapolation factor of 20 dB/decade of distance.  $F_d = 20 log(D_m/Ds)$  Where:

 $F_d$  = Distance factor in dB

 $D_{\rm m}$  = Measurement distance in meters

D<sub>s</sub> = Specification distance in meters

- 3. CF(Correction factors(dB)) = Antenna factor(dB/m) + Cable loss(dB) + or Amp. gain(dB) + or F<sub>d</sub>(dB)
- 4. Field strength( $dB\mu V/m$ ) = Level( $dB\mu V$ ) + CF (dB) + or DCF(dB)
- 5. Margin(dB) = Limit(dB $\mu$ V/m) Field strength(dB $\mu$ V/m)
- 6. Emissions below 18 © were measured at a 3 meter test distance while emissions above 18 © were measured at a 1 meter test distance with the application of a distance correction factor.
- 7. The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z, it was determined that **X orientation** was worst-case orientation; therefore, all final radiated testing was performed with the EUT in **X orientation**.
- 8. The worst-case emissions are reported however emissions whose levels were not within 20 dB of respective limits were not reported.



C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0026 Page (13) of (25)

#### Limit

According to 15.209(a), for an intentional radiator devices, the general required of field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

| Frequency (Mz) | Distance (Meters) | Radiated (µV/m) |
|----------------|-------------------|-----------------|
| 0.009 ~ 0.490  | 300               | 2400/F(kllz)    |
| 0.490 ~ 1.705  | 30                | 24000/F(kHz)    |
| 1.705 ~ 30.0   | 30                | 30              |
| 30 ~ 88        | 3                 | 100**           |
| 88 ~ 216       | 3                 | 150**           |
| 216 ~ 960      | 3                 | 200**           |
| Above 960      | 3                 | 500             |

<sup>\*\*</sup>Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands  $54 \sim 72\,$  Mb,  $76 \sim 88\,$  Mb,  $174 \sim 216\,$  Mb or  $470 \sim 806\,$  Mb. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections  $15.231\,$  and  $15.241.\,$ 

#### According to 15.249(a)

| Fundamental     | Field strength | of fundamental | Field strength of harmonics |        |  |
|-----------------|----------------|----------------|-----------------------------|--------|--|
| frequency       | mV/m           | dBuV/m         | uV/m                        | dBuV/m |  |
| 902-928 MHz     | 50             | 94             | 500                         | 54     |  |
| 2400-2483.5 MHz | 50             | 94             | 500                         | 54     |  |
| 5725-5875 MHz   | 50             | 94             | 500                         | 54     |  |
| 24.0-24.25 GHz  | 250            | 108            | 2500                        | 68     |  |

#### According to 15.249(d)

Emission radiated outside of the specified frequency bands, except harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated limit in FCC part 15C, Section 15.209, whichever is the lesser attenuation.



C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0026 Page (14) of (25)

#### **Test result (Fundamental)**

Operating Frequency: 920.6 Mbz

| Frequency (MHz) | Level<br>(dBµV) | Detect mode | Ant. Pol.<br>(H/V) | CF<br>(dB) | DCF<br>(dB) | Field strength (dBµV/m) | Limit (dBµV/m) | Margin<br>(dB) |
|-----------------|-----------------|-------------|--------------------|------------|-------------|-------------------------|----------------|----------------|
| 920.58          | 60.15           | Peak        | Н                  | 25.56      | -           | 85.71                   | 94.00          | 8.29           |
| 920.62          | 60.07           | Peak        | V                  | 25.56      | -           | 85.63                   | 94.00          | 8.37           |

Operating Frequency: 921.2 Mbz

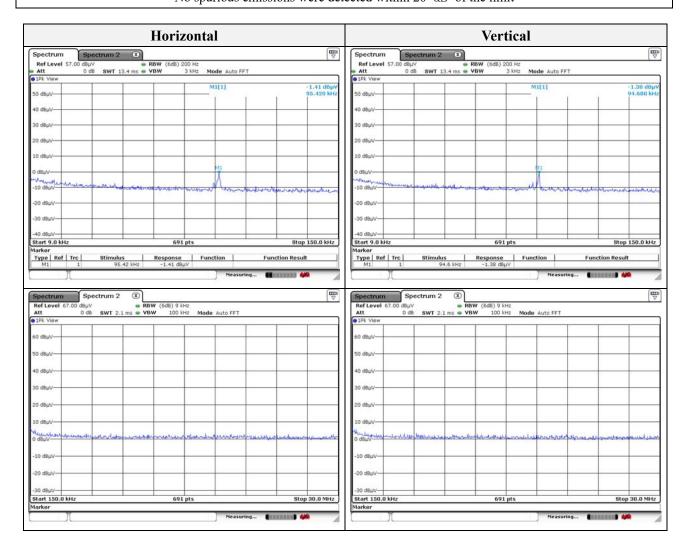
| Frequency (Mz) | Level<br>(dBµV) | Detect mode | Ant. Pol.<br>(H/V) | CF<br>(dB) | DCF<br>(dB) | Field strength (dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) |
|----------------|-----------------|-------------|--------------------|------------|-------------|-------------------------|-------------------|----------------|
| 921.21         | 60.04           | Peak        | Н                  | 25.56      | -           | 85.60                   | 94.00             | 8.40           |
| 921.22         | 60.05           | Peak        | V                  | 25.56      | -           | 85.61                   | 94.00             | 8.39           |

Operating Frequency: 922.0 Mbz

| Frequency (MHz) | Level<br>(dBµV) | Detect mode | Ant. Pol.<br>(H/V) | CF<br>(dB) | DCF<br>(dB) | Field strength (dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) |
|-----------------|-----------------|-------------|--------------------|------------|-------------|-------------------------|-------------------|----------------|
| 921.99          | 59.72           | Peak        | Н                  | 25.58      | -           | 85.30                   | 94.00             | 8.70           |
| 922.02          | 59.69           | Peak        | V                  | 25.58      | -           | 85.27                   | 94.00             | 8.73           |



C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0026 Page (15) of (25)


Test results (Below 30 Mb)

Distance of measurement: 3 meter

Channel: 1 (Worst case)

Frequency: 920.6 Mb

| Frequency (MHz) | Level<br>(dBµV) | Ant. Pol.<br>(H/V) | CF<br>(dB)      | F <sub>d</sub><br>(dB) | Field strength (dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) |
|-----------------|-----------------|--------------------|-----------------|------------------------|-------------------------|-------------------|----------------|
|                 |                 | No spurious er     | nissions were d | letected within        | 20 dB of the limi       | t                 | ·              |





C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0026 Page (16) of (25)

## Test results (Below 1 000 Mb)

Distance of measurement: 3 meter

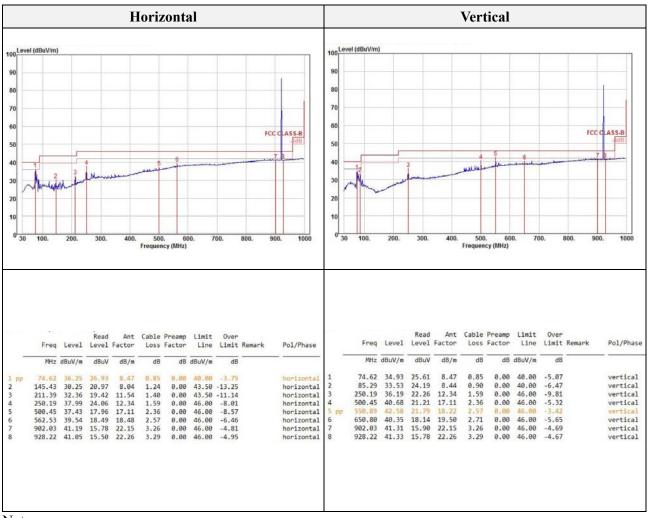
Channel: 1

Frequency: 920.6 Mb

|                       |                                                             |                                                    |                                                                     | Н                                                         | loriz                                              | zonta                                                | al                                                                       |                                                   |        |                                                                    |                       |                                                                |                                                             |                                                                     |                                                            | Vert                                               | ical                                                 |                                                             |                                                              |        |                                      |                                         |
|-----------------------|-------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------|--------|--------------------------------------------------------------------|-----------------------|----------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|--------|--------------------------------------|-----------------------------------------|
| 0 Level (d            | fBuV/m)                                                     |                                                    |                                                                     |                                                           |                                                    |                                                      |                                                                          |                                                   |        |                                                                    | Lev                   | vel (dBuV/m                                                    | )                                                           |                                                                     |                                                            |                                                    |                                                      |                                                             |                                                              |        |                                      |                                         |
| 0                     | Τ.                                                          |                                                    |                                                                     |                                                           |                                                    |                                                      |                                                                          |                                                   |        |                                                                    | 100                   |                                                                | ,                                                           |                                                                     |                                                            |                                                    |                                                      |                                                             |                                                              |        |                                      |                                         |
| 0                     | +                                                           | -                                                  |                                                                     | -                                                         | _                                                  |                                                      |                                                                          | -                                                 | _      |                                                                    | 90                    | -                                                              | -                                                           | -                                                                   |                                                            |                                                    |                                                      |                                                             | +                                                            |        | -                                    | -                                       |
| 0                     |                                                             |                                                    |                                                                     |                                                           |                                                    |                                                      |                                                                          | ļ                                                 |        |                                                                    | 80                    |                                                                |                                                             |                                                                     |                                                            |                                                    |                                                      |                                                             |                                                              |        |                                      |                                         |
|                       |                                                             |                                                    |                                                                     |                                                           |                                                    |                                                      |                                                                          | 1                                                 |        | 1                                                                  | 70                    |                                                                |                                                             |                                                                     |                                                            |                                                    |                                                      |                                                             |                                                              |        |                                      |                                         |
|                       |                                                             |                                                    |                                                                     |                                                           |                                                    |                                                      |                                                                          |                                                   |        |                                                                    | 00                    |                                                                |                                                             |                                                                     |                                                            |                                                    |                                                      |                                                             |                                                              |        |                                      |                                         |
|                       |                                                             |                                                    |                                                                     |                                                           |                                                    |                                                      |                                                                          |                                                   | 1      | FCC CLASS-B                                                        | 60                    |                                                                |                                                             |                                                                     |                                                            |                                                    |                                                      |                                                             |                                                              |        | FCC CLASS                            | В                                       |
|                       | +                                                           |                                                    |                                                                     |                                                           |                                                    |                                                      |                                                                          |                                                   |        | -AdB                                                               | 50                    |                                                                |                                                             |                                                                     |                                                            |                                                    |                                                      |                                                             |                                                              |        |                                      | dB                                      |
| 1                     | 2                                                           |                                                    | 4                                                                   |                                                           |                                                    |                                                      |                                                                          |                                                   |        | 7.8                                                                | 40                    | 4                                                              |                                                             |                                                                     |                                                            | 3 4                                                | - 5                                                  |                                                             |                                                              |        | 67 B                                 |                                         |
|                       | 1                                                           | 3                                                  | 5                                                                   |                                                           | - Malania                                          | and a second                                         |                                                                          | -                                                 |        |                                                                    | 40                    | MI.                                                            |                                                             | 1                                                                   |                                                            | a belle belle a                                    | and the same                                         | - Landing                                                   |                                                              |        |                                      |                                         |
| 1                     | May                                                         | - Allen                                            | -                                                                   | pat, plant ( to       |                                                    |                                                      |                                                                          | _                                                 | _      |                                                                    | 30                    | pd' h                                                          | -                                                           | -                                                                   |                                                            |                                                    |                                                      |                                                             |                                                              |        |                                      |                                         |
|                       | ~                                                           |                                                    |                                                                     |                                                           |                                                    |                                                      |                                                                          |                                                   |        |                                                                    | 20                    | 1                                                              |                                                             |                                                                     |                                                            |                                                    |                                                      |                                                             | 1                                                            |        |                                      |                                         |
|                       |                                                             |                                                    |                                                                     |                                                           |                                                    |                                                      |                                                                          |                                                   |        |                                                                    |                       |                                                                |                                                             |                                                                     |                                                            |                                                    |                                                      |                                                             |                                                              |        |                                      |                                         |
|                       |                                                             |                                                    |                                                                     |                                                           |                                                    |                                                      |                                                                          | +                                                 | _      |                                                                    | 10                    |                                                                |                                                             |                                                                     |                                                            |                                                    |                                                      |                                                             |                                                              |        |                                      |                                         |
|                       |                                                             |                                                    |                                                                     |                                                           |                                                    |                                                      |                                                                          |                                                   |        |                                                                    |                       |                                                                |                                                             |                                                                     |                                                            |                                                    |                                                      |                                                             |                                                              |        |                                      |                                         |
|                       |                                                             |                                                    | Read                                                                |                                                           |                                                    | Preamp                                               |                                                                          | 0ver                                              |        |                                                                    |                       | F===                                                           | Laval                                                       | Read                                                                |                                                            |                                                    |                                                      | Limit                                                       |                                                              |        | D-1                                  | /DL                                     |
| 4                     |                                                             | Level                                              | Level                                                               | Factor                                                    | Loss                                               | Factor                                               | Line                                                                     | Limit                                             | Remark | Pol/Phase                                                          | -                     |                                                                | Level                                                       | Level                                                               | Factor                                                     | Loss                                               | Factor                                               | Line                                                        | Limit                                                        | Remark | Pol/                                 | Ph                                      |
| 4                     |                                                             | Level                                              |                                                                     |                                                           |                                                    | Factor                                               |                                                                          |                                                   | Remark | Pol/Phase                                                          | -                     |                                                                | Level                                                       |                                                                     |                                                            |                                                    | Factor                                               |                                                             |                                                              | Remark | Pol/                                 | Ph                                      |
|                       | MHz<br>74.62                                                | dBuV/m<br>38.35                                    | dBuV                                                                | dB/m 8.47                                                 | dB 0.85                                            | dB 0.00                                              | Line<br>dBuV/m                                                           | dB<br>-1.65                                       | Remark | horizontal                                                         | 1 pp                  | MHz<br>85,29                                                   | dBuV/m<br>38.78                                             | dBuV                                                                | dB/m<br>8.44                                               | dB<br>0.90                                         | Factor<br>dB                                         | Line<br>dBuV/m                                              | dB                                                           | Remark | vert                                 | ic                                      |
|                       | MHz<br>74.62<br>81.41                                       | dBuV/m<br>38.35<br>38.33                           | dBuV<br>29.03<br>30.02                                              | dB/m 8.47 7.43                                            | dB 0.85 0.88                                       | ## B ##                | dBuV/m<br>40.00<br>40.00                                                 | dB<br>-1.65<br>-1.67                              | Remark | horizontal<br>horizontal                                           | 1 pp 2 3              | MHz<br>85,29<br>250,19                                         | dBuV/m<br>38.78                                             | dBuV<br>29.44<br>22.06                                              | dB/m<br>8.44<br>12.34                                      | Loss                                               | Factor<br>dB                                         | Line<br>dBuV/m<br>40.00<br>46.00                            | dB<br>-1.22<br>-10.01                                        | Remark |                                      | ic                                      |
| 2                     | 74.62<br>81.41<br>11.39<br>50.19                            | 38.35<br>38.33<br>31.14<br>38.45                   | dBuV<br>29.03<br>30.02<br>18.20<br>24.52                            | 8.47<br>7.43<br>11.54<br>12.34                            | dB<br>0.85<br>0.88<br>1.40<br>1.59                 | 0.00<br>0.00<br>0.00<br>0.00                         | He dBuV/m 40.00 43.50 46.00                                              | dB<br>-1.65<br>-1.67<br>-12.36<br>-7.55           | Remark | horizontal<br>horizontal<br>horizontal<br>horizontal               | 2<br>3<br>4           | 85.29<br>250.19<br>467.47<br>500.45                            | 38.78<br>35.99<br>38.78<br>40.68                            | dBuV<br>29.44<br>22.06<br>19.90<br>21.21                            | 8.44<br>12.34<br>16.64<br>17.11                            | dB<br>8.90<br>1.59<br>2.24<br>2.36                 | 8.88<br>0.00<br>0.00<br>0.00                         | dBuV/m<br>40.00<br>46.00<br>46.00<br>46.00                  | dB<br>-1.22<br>-10.01<br>-7.22<br>-5.32                      | Remark | vert<br>vert<br>vert                 | icic                                    |
| 2 2 2                 | 74.62<br>81.41<br>11.39<br>50.19<br>76.38                   | 38.35<br>38.33<br>31.14<br>38.45<br>34.15          | dBuV<br>29.03<br>30.02<br>18.20<br>24.52<br>19.53                   | 8.47<br>7.43<br>11.54<br>12.34<br>12.89                   | dB<br>0.85<br>0.88<br>1.40<br>1.59<br>1.73         | 8.88<br>8.88<br>8.80<br>8.80<br>8.80<br>8.80<br>8.80 | He dBuV/m 40.00 40.00 43.50 46.00 46.00                                  | dB<br>-1.65<br>-1.67<br>-12.36<br>-7.55<br>-11.85 | Remark | horizontal<br>horizontal<br>horizontal<br>horizontal<br>horizontal | 2<br>3<br>4<br>5      | MHz<br>85.29<br>250.19<br>467.47<br>500.45<br>550.89           | 38.78<br>35.99<br>38.78<br>40.68<br>40.06                   | dBuV<br>29.44<br>22.06<br>19.90<br>21.21<br>19.27                   | 8.44<br>12.34<br>16.64<br>17.11<br>18.22                   | dB<br>8.90<br>1.59<br>2.24<br>2.36<br>2.57         | 8.88<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00         | Hine dBuV/m 40.00 46.00 46.00 46.00 46.00                   | -1.22<br>-10.01<br>-7.22<br>-5.32<br>-5.94                   | Remark | vert<br>vert<br>vert<br>vert         | ic<br>ic<br>ic                          |
| 2<br>2<br>2<br>5      | 74.62<br>81.41<br>11.39<br>50.19<br>76.38<br>00.45          | 38.35<br>38.33<br>31.14<br>38.45<br>34.15<br>37.45 | dBuV<br>29.03<br>30.02<br>18.20<br>24.52<br>19.53<br>17.98          | 8.47<br>7.43<br>11.54<br>12.34<br>12.89<br>17.11          | dB<br>0.85<br>0.88<br>1.40<br>1.59                 | 8.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | dBuV/m<br>40.00<br>40.00<br>43.50<br>46.00<br>46.00<br>46.00             | dB<br>-1.65<br>-1.67<br>-12.36<br>-7.55           | Remark | horizontal<br>horizontal<br>horizontal<br>horizontal               | 2<br>3<br>4           | MHz<br>85.29<br>250.19<br>467.47<br>500.45<br>550.89           | 38.78<br>35.99<br>38.78<br>40.68<br>40.06<br>42.38          | dBuV<br>29.44<br>22.06<br>19.90<br>21.21<br>19.27<br>17.11          | 8.44<br>12.34<br>16.64<br>17.11<br>18.22<br>22.02          | dB<br>8.90<br>1.59<br>2.24<br>2.36                 | 8.88<br>0.00<br>0.00<br>0.00                         | Here dBuV/m 40.00 46.00 46.00 46.00 46.00                   | -1.22<br>-10.01<br>-7.22<br>-5.32<br>-5.94<br>-3.62          | Remark | vert<br>vert<br>vert                 | ic<br>ic<br>ic<br>ic                    |
| 2<br>2<br>2<br>5<br>9 | 74.62<br>81.41<br>11.39<br>50.19<br>76.38<br>00.45<br>02.03 | 38.35<br>38.33<br>31.14<br>38.45<br>34.15          | dBuV<br>29.03<br>30.02<br>18.20<br>24.52<br>19.53<br>17.98<br>15.84 | 8.47<br>7.43<br>11.54<br>12.34<br>12.89<br>17.11<br>22.15 | dB<br>0.85<br>0.88<br>1.40<br>1.59<br>1.73<br>2.36 | 8.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | He dBuV/m<br>40.00<br>40.00<br>43.50<br>46.00<br>46.00<br>46.00<br>46.00 | d8 -1.65 -1.67 -12.36 -7.55 -11.85 -8.55          | Remark | horizontal<br>horizontal<br>horizontal<br>horizontal<br>horizontal | 2<br>3<br>4<br>5<br>6 | MHz<br>85.29<br>250.19<br>467.47<br>500.45<br>550.89<br>891.36 | 38.78<br>35.99<br>38.78<br>40.68<br>40.06<br>42.38<br>41.24 | dBuV<br>29.44<br>22.06<br>19.90<br>21.21<br>19.27<br>17.11<br>15.83 | 8.44<br>12.34<br>16.64<br>17.11<br>18.22<br>22.02<br>22.15 | dB<br>8.90<br>1.59<br>2.24<br>2.36<br>2.57<br>3.25 | 8.88<br>9.89<br>9.89<br>9.89<br>9.89<br>9.89<br>9.89 | Here dBuV/m 48.88 46.00 46.00 46.00 46.00 46.00 46.00 46.00 | -1.22<br>-10.01<br>-7.22<br>-5.32<br>-5.94<br>-3.62<br>-4.76 | Remark | vert<br>vert<br>vert<br>vert<br>vert | icionicionicionicionicionicionicionicio |

Note.

1. 902 Mb, 928 Mb − Band edge markers.




C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0026 Page (17) of (25)

Distance of measurement: 3 meter

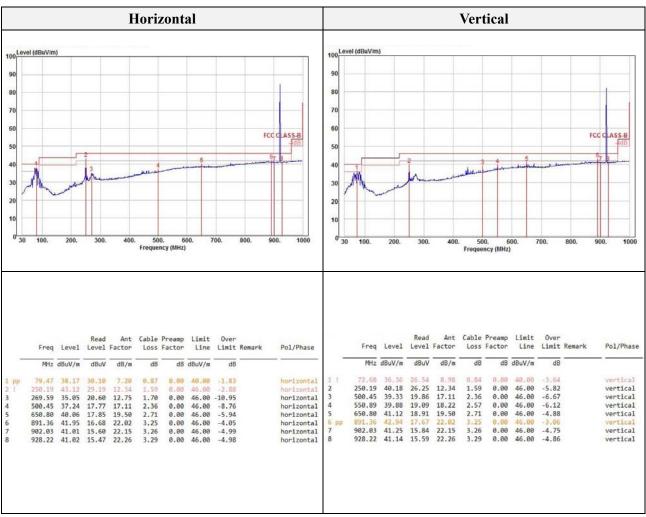
Channel: 4

Frequency: 921.2 Mbz



Note

1. 902Mb, 928Mb - Band edge markers.




C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0026 Page (18) of (25)

Distance of measurement: 3 meter

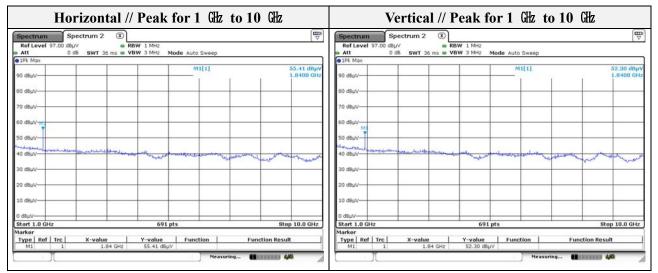
Channel: 8

Frequency: 922.0 Mbz



Note

1. 902Mb, 928Mb – Band edge markers.




C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0026 Page (19) of (25)

#### Test results (Above 1 000 Mb)

Distance of measurement: 3 meter
Channel: 1
Frequency: 920.6 Mbz

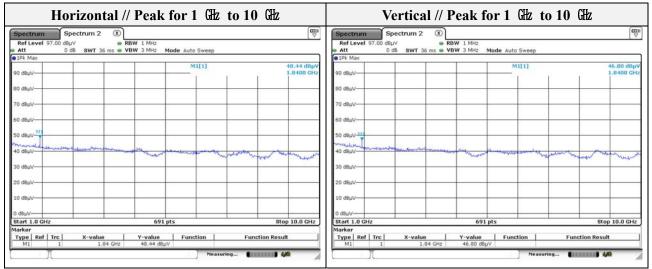
| Frequency (MHz) | Level<br>(dBµV) | Detect mode | Ant. Pol.<br>(H/V) | CF<br>(dB) | DCF<br>(dB) | Field strength (dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) |
|-----------------|-----------------|-------------|--------------------|------------|-------------|-------------------------|-------------------|----------------|
| 1840.00         | 55.41           | Peak        | Н                  | -5.48      | -           | 49.93                   | 74.00             | 24.07          |
| 1840.00         | 52.30           | Peak        | V                  | -5.48      | -           | 46.82                   | 74.00             | 27.18          |



Note.

1. Average test would be performed if the peak result were greater than the average limit.




C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0026 Page (20) of (25)

Distance of measurement: 3 meter

Channel: 4

Frequency: 921.2 Mbz

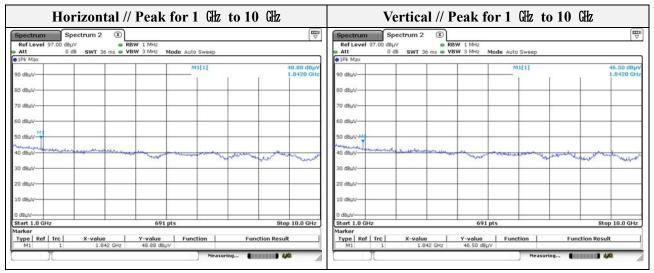
| Frequency (MHz) | Level<br>(dBµV) | Detect mode | Ant. Pol.<br>(H/V) | CF<br>(dB) | DCF<br>(dB) | Field strength (dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) |
|-----------------|-----------------|-------------|--------------------|------------|-------------|-------------------------|-------------------|----------------|
| 1840.00         | 48.44           | Peak        | Н                  | -5.48      | -           | 42.96                   | 74.00             | 31.04          |
| 1840.00         | 46.80           | Peak        | V                  | -5.48      | -           | 41.32                   | 74.00             | 32.68          |



Note.

1. Average test would be performed if the peak result were greater than the average limit.




C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0026 Page (21) of (25)

Distance of measurement: 3 meter

Channel: 8

Frequency: 922.0 Mbz

| Frequency (MHz) | Level<br>(dBµV) | Detect mode | Ant. Pol.<br>(H/V) | CF<br>(dB) | DCF<br>(dB) | Field strength (dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) |
|-----------------|-----------------|-------------|--------------------|------------|-------------|-------------------------|-------------------|----------------|
| 1842.00         | 48.88           | Peak        | Н                  | -5.46      | -           | 43.42                   | 74.00             | 30.58          |
| 1842.00         | 46.50           | Peak        | V                  | -5.46      | -           | 41.04                   | 74.00             | 32.96          |



Note.

1. Average test would be performed if the peak result were greater than the average limit.



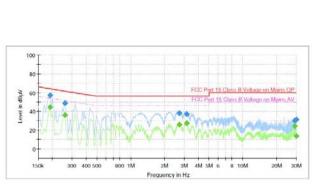
C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0026 Page (22) of (25)

#### 3.3. AC conducted emissions

#### Limit

According to 15.207(a), for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50uH/50 ohm line impedance stabilization network (LISN). Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequencies ranges.

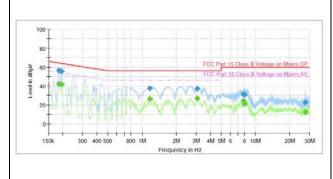
| Enguera, of Emission (Mg)  | Conducted li | mit (dBµV/m) |
|----------------------------|--------------|--------------|
| Frequency of Emission (Mb) | Quasi-peak   | Average      |
| 0.15 - 0.50                | 66 - 56*     | 56 - 46*     |
| 0.50 - 5.00                | 56           | 46           |
| 5.00 – 30.0                | 60           | 50           |


#### Note.

- 1. All AC line conducted spurious emission are measured with a receiver connected to a grounded LISN while the EUT is operating at its maximum duty cycle, at maximum power, and the appropriate frequencies. All data rates and modes were investigated for conducted spurious emission. Only the conducted emissions of the configuration that produced the worst case emissions are reported in this section.
- 3. Both Cable loss and LISN factor are included in measurement level(QP Level or AV Level).



C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0026 Page (23) of (25)


#### Test results



**Hot Line** 

| Frequency<br>(MHz) | QuasiPeak<br>(dBµV) | CAverage<br>(dBµV) | Limit<br>(dBµV) | Margin<br>(dB) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Line | Corr.<br>(dB) |
|--------------------|---------------------|--------------------|-----------------|----------------|-----------------------|--------------------|------|---------------|
| 0.190000           | 57.22               |                    | 64.04           | 6.82           | 1000.0                | 9.000              | L1   | 20.9          |
| 0.190000           |                     | 44.64              | 54.04           | 9.40           | 1000.0                | 9.000              | L1   | 20.9          |
| 0.260000           |                     | 35.87              | 51.43           | 15.56          | 1000.0                | 9.000              | L1   | 20.8          |
| 0.260000           | 48.76               |                    | 61.43           | 12.67          | 1000.0                | 9.000              | L1   | 20.8          |
| 2.700000           | 37.91               |                    | 56.00           | 18.09          | 1000.0                | 9.000              | L1   | 19.8          |
| 2.700000           |                     | 26.08              | 46.00           | 19.92          | 1000.0                | 9.000              | L1   | 19.8          |
| 3.145000           |                     | 27.39              | 46.00           | 18.61          | 1000.0                | 9.000              | L1   | 19.7          |
| 3.145000           | 37.32               |                    | 56.00           | 18.68          | 1000.0                | 9.000              | L1   | 19.7          |
| 28.885000          | 30.12               |                    | 60.00           | 29.88          | 1000.0                | 9.000              | L1   | 20.3          |
| 28.885000          |                     | 24.62              | 50.00           | 25.38          | 1000.0                | 9.000              | L1   | 20.3          |
| 29.980000          | 31.00               |                    | 60.00           | 29.00          | 1000.0                | 9.000              | L1   | 20.3          |
| 29.980000          |                     | 13.94              | 50.00           | 36.06          | 1000.0                | 9.000              | L1   | 20.3          |

#### **Neutral Line**



#### Final\_Result

| Frequency<br>(MHz) | QuasiPeak<br>(dBµV) | CAverage<br>(dBµV) | Limit<br>(dBµV) | Margin<br>(dB) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Line | Corr.<br>(dB) |
|--------------------|---------------------|--------------------|-----------------|----------------|-----------------------|--------------------|------|---------------|
| 0.185000           | 56.80               |                    | 64.26           | 7.46           | 1000.0                | 9.000              | N    | 20.9          |
| 0.185000           |                     | 42.32              | 54.26           | 11.94          | 1000.0                | 9.000              | N    | 20.9          |
| 0.195000           |                     | 41.94              | 53.82           | 11.88          | 1000.0                | 9.000              | N    | 20.8          |
| 0.195000           | 55.74               |                    | 63.82           | 8.08           | 1000.0                | 9.000              | N    | 20.8          |
| 1.170000           | 37.59               |                    | 56.00           | 18.41          | 1000.0                | 9.000              | N    | 20.1          |
| 1.170000           |                     | 26.25              | 46.00           | 19.75          | 1000.0                | 9.000              | N    | 20.1          |
| 3.075000           |                     | 26.96              | 46.00           | 19.04          | 1000.0                | 9.000              | N    | 19.7          |
| 3.075000           | 37.07               |                    | 56.00           | 18.93          | 1000.0                | 9.000              | N    | 19.7          |
| 7.815000           | 31.20               |                    | 60.00           | 28.80          | 1000.0                | 9.000              | N    | 19.8          |
| 7.815000           |                     | 24.18              | 50.00           | 25.82          | 1000.0                | 9.000              | N    | 19.8          |
| 8.035000           |                     | 21.13              | 50.00           | 28.87          | 1000.0                | 9.000              | N    | 19.8          |
| 8.035000           | 30.90               |                    | 60.00           | 29.10          | 1000.0                | 9.000              | N    | 19.8          |
| 27.540000          |                     | 12.59              | 50.00           | 37.41          | 1000.0                | 9.000              | N    | 20.3          |
| 27.540000          | 22.59               |                    | 60.00           | 37.41          | 1000.0                | 9.000              | N    | 20.3          |



C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0026 Page (24) of (25)

Appendix A. Measurement equipment

| Equipment                              | Manufacturer             | Model                   | Serial No. | Calibration interval | Calibration due. |
|----------------------------------------|--------------------------|-------------------------|------------|----------------------|------------------|
| Spectrum Analyzer                      | R&S                      | FSV30                   | 100736     | 1 year               | 2017.07.06       |
| Spectrum Analyzer                      | R&S                      | FSV40                   | 101002     | 1 year               | 2017.07.06       |
| 8360B Series Swept<br>Signal Generator | НР                       | 83630B                  | 3844A00786 | 1 year               | 2018.01.23       |
| Attenuator                             | Keysight                 | 8493C                   | 82506      | 1 year               | 2018.01.23       |
| Loop Antenna                           | R&S                      | HFH2-<br>Z2.335.4711.52 | 826532     | 2 years              | 2017.03.03       |
| Trilog-broadband<br>antenna            | SCHWARZBECK              | VULB 9163               | 9168-713   | 2 years              | 2017.05.15       |
| Horn Antenna                           | E/L                      | 3117                    | 135889     | 2 years              | 2018.10.25       |
| High Pass Filter                       | WAINWRIGHT<br>INSTRUMENT | WHJS3000-10TT           | 1          | 1 year               | 2017.07.04       |
| Low Pass Filter                        | WEINSCHEL                | WLK1.0/18G-10TT         | 1          | 1 year               | 2017.07.04       |
| Preamplifier                           | HP                       | 8449B                   | 3008A00538 | 1 year               | 2017.07.05       |
| Preamplifier                           | SCHWARZBECK              | BBV-9718                | 9718-246   | 1 year               | 2017.10.14       |
| EMI Test Receiver                      | R&S                      | ESR3                    | 101781     | 1 year               | 2017.05.03       |
| EMI Test Receiver                      | R&S                      | ESU26                   | 100552     | 1 year               | 2017.04.24       |
| EMI Test Receiver                      | R&S                      | ESR3                    | 101783     | 1 year               | 2017.05.03       |
| Pulse Limiter                          | R&S                      | ESH3-Z2<br>0357.8810.54 | 101914     | 1 year               | 2017.12.13       |
| LISN                                   | R&S                      | ENV216                  | 101137     | 1 year               | 2018.02.03       |

Peripheral devices

| Device            | Manufacturer                  | Model No. | Serial No.      |
|-------------------|-------------------------------|-----------|-----------------|
| Notebook Computer | Samsung Electronics Co., Ltd. | NP-QX411L | HJV993BB905283V |
| Test Board        | N/A                           | N/A       | N/A             |