

CLASS II PERMISSIVE CHANGE

TEST REPORT

Equipment under test Wireless Baby Camera

Model name SEB-101ARW

FCC ID NLMSEB1019RW

Applicant Hanwha Techwin Co., Ltd.

Manufacturer Tianjin Samsung Techwin Opto-Electronic Co., Ltd.

Date of test(s) 2016.01.13 ~ 2016.01.15

Date of issue 2016.02.12

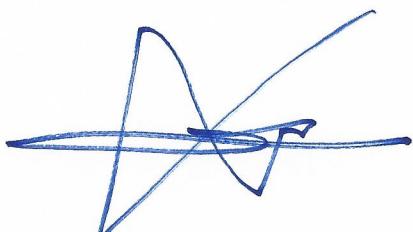
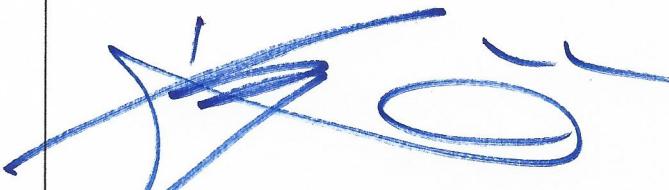
Issued to

Hanwha Techwin Co., Ltd.

1204, Changwon-daero, Seongsan-gu, Changwon-si,

Gyeongsangnam-do, South Korea

Tel: +82-70-7147-8361 / Fax: +82-31-8108-3717



Issued by

KES Co., Ltd.

C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea

473-29, Gayeo-ro, Yeoju-si, Gyeonggi-do, 12658, Korea

Tel: +82-31-425-6200 / Fax: +82-31-424-0450

Test and report completed by :	Report approval by :
Kwon-se Kim Test engineer	Jeff Do Technical manager

Revision history

Revision	Date of issue	Test report No.	Description
-	2016.02.12	KES-RF-16T0016	Initial

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd.
The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

1.	General information	4
1.1.	EUT description.....	4
1.2.	Test configuration.....	4
1.3.	Frequency/channel operations	4
1.4.	Information about Class II Permissive change	5
2.	Summary of tests.....	6
3.	Test results.....	7
3.1.	Radiated restricted band and emissions.....	7
3.2.	AC conducted emissions	14
Appendix A.	Measurement equipment	17
Appendix B.	Test setup photo.....	18

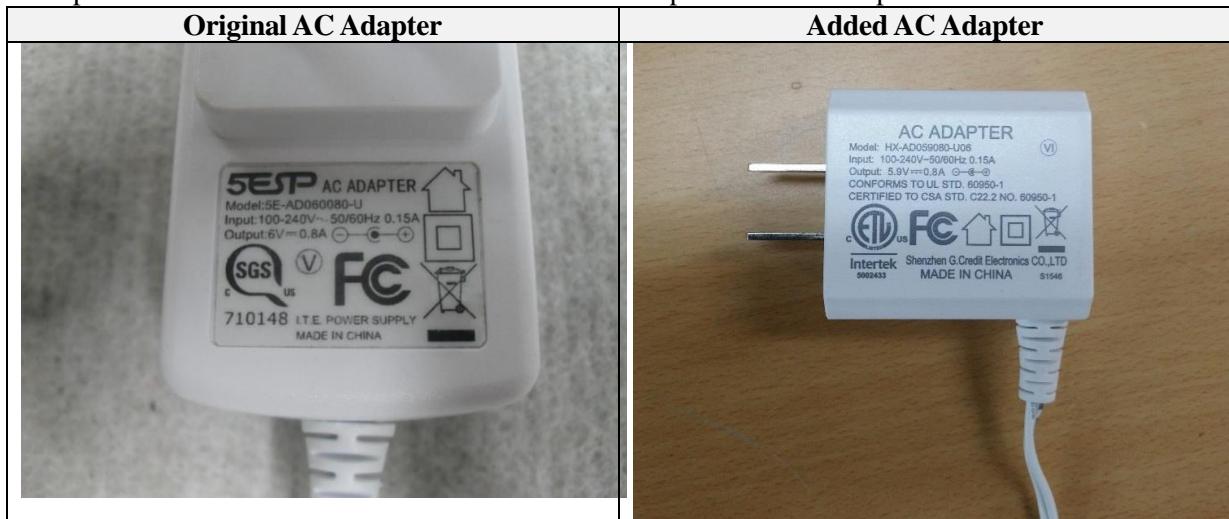
1. General information

Applicant: Hanwha Techwin Co., Ltd.
Applicant address: 1204, Changwon-daero, Seongsan-gu, Changwon-si
Gyeongsangnam-do, South Korea
Test site: KES Co., Ltd.
Test site address: C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea
473-29, Gayeo-ro, Yeoju-si, Gyeonggi-do, 12658, Korea
FCC rule part(s): 15.247
Test device serial No.: Production Pre-production Engineering
Application purpose: Original grant Class I permissive change Class II permissive change

1.1. EUT description

Equipment under test Wireless Baby Camera
Frequency range 2410.875 MHz ~ 2471.625 MHz
Model SEB-101ARW
Modulation technique FHSS
Type of Modulation GFSK
Number of channels 19
Antenna specification Antenna type: Wire, Peak gain: 2.0 dBi
Power source AC 120V Adaptor (Output : DC 5.9V)

1.2. Test configuration


The Wireless Baby Camera FCC ID: NLMSEB1019RW was tested per the guidance of ANSI C63.10-2009 and DA 00-705. ANSI C63.10-2009 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing.

1.3. Frequency/channel operations

Ch.	Frequency (MHz)
01	2410.875
.	.
10	2441.250
.	.
19	2471.625

1.4. Information about Class II Permissive change

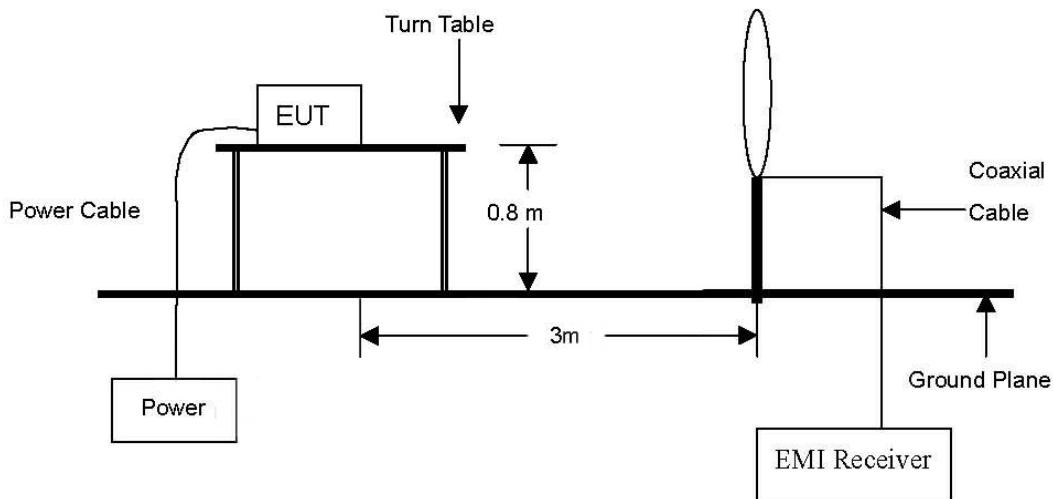
The product is no hardware modifications. Added to the product is AC adapter

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd.
The test results in the report only apply to the tested sample.

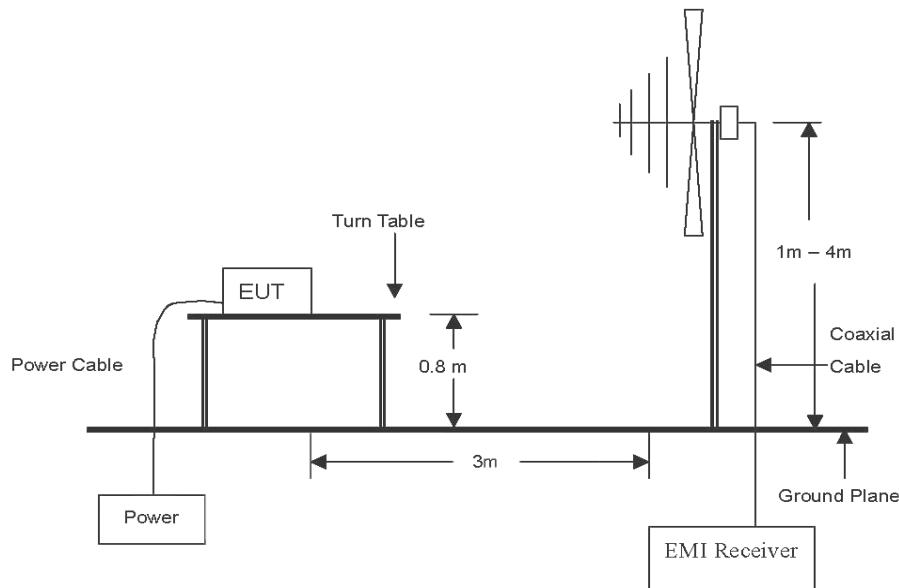
2. Summary of tests

Section in FCC Part 15	Test description	Test results
15.205, 15.209	Radiated restricted band and emission	Pass
15.207	AC conducted emissions	Pass

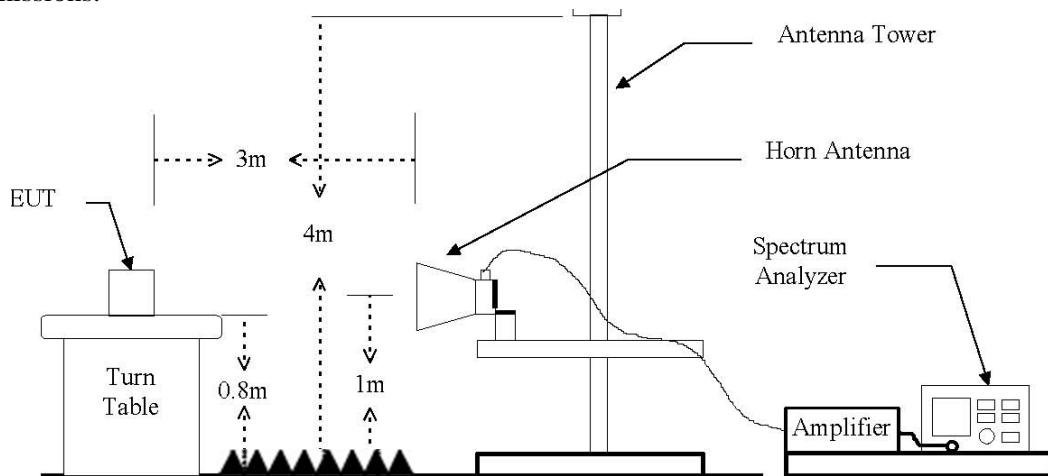
Note:


1. The EUT was tested per the guidance of DA 00-705. ANSI C63.10-2009 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing.

3. Test results


3.1. Radiated restricted band and emissions

Test setup


The diagram below shows the test setup that is utilized to make the measurements for emission from 9 kHz to 30 MHz Emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 MHz to 1 GHz emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 1 GHz to 24 GHz emissions.

Test procedure

1. The EUT is placed on a turntable, which is 0.8 m above ground plane.
2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
3. EUT is set 3 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
6. Repeat above procedures until the measurements for all frequencies are complete.
7. Spectrum analyzer settings:

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz for $f \geq 1$ GHz, 100 kHz for $f < 1$ GHz

VBW \geq RBW

Sweep = auto

Detector function = peak and/or average for $f \geq 1$ GHz, quasi peak for $f < 1$ GHz

Trace = max hold

8. Now set the VBW to 10 Hz while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from $20\log(\text{dwell time}/100 \text{ ms})$, in an effort to demonstrate compliance with the 15.209 limit. Submit this data.

Note:

1. The spectrum is measured from 9 kHz to the 10th harmonic of the fundamental frequency of the transmitter using CISPR quasi peak detector below 1 GHz. Above 1 GHz, average and peak measurements were taken using linearly polarized horn antennas. The worst-case emissions are reported however emissions whose levels were not within 20 dB of the respective limits were not reported.
2. When Average result is different from peak result over 20 dB (over-averaging), according to 15.35 (c), as a "duty cycle correction factor", pulse averaging with $20 \log(\text{duty cycle})$ has to be used.
Duty cycle correction factor = $20\log(\text{dwell time}/100 \text{ ms})$
3. Emissions below 18 GHz were measured at a 3 meter test distance while emissions above 18 GHz were measured at a 1 meter test distance with the application of a distance correction factor.
4. Average test would be performed if the peak result were greater than the average limit.
5. Field strength(dB μ V/m) = Level(dB μ V) + Correction factors(dB/m) + Cable loss(dB) + or F_d (dB)
6. Correction factors(dB/m) = Antenna factor(dB/m) + Cable loss(dB) + or Amp. gain(dB)
7. Margin(dB) = Limit(dB μ V/m) - Field strength(dB μ V/m)
8. To get a maximum emission level from the EUT, the EUT was moved throughout the XY, XZ and YZ planes.
9. $f < 30$ MHz, extrapolation factor of 40 dB/decade of distance. $F_d = 40\log(D_m / D_s)$
- $f \geq 30$ MHz, extrapolation factor of 20 dB/decade of distance. $F_d = 20\log(D_m / D_s)$

Where:

F_d = Distance factor in dB

D_m = Measurement distance in meters

D_s = Specification distance in meters

Limit

According to 15.209(a), for an intentional radiator devices, the general required of field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values :

Frequency (MHz)	Distance (Meters)	Radiated (μ V/m)
0.009 ~ 0.490	300	2 400 / F(kHz)
0.490 ~ 1.705	30	24 000 / F(kHz)
1.705 ~ 30.0	30	30
30 ~ 88	3	100**
88 ~ 216	3	150**
216 ~ 960	3	200**
Above 960	3	500

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54 ~ 72 MHz, 76 ~ 88 MHz, 174 ~ 216 MHz or 470 ~ 806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

Test results (Below 30 MHz)

Mode: GFSK
 Distance of measurement: 3 meter
 Operating frequency: 2 410.875 MHz (Worst case)
 Channel: 01

Frequency (MHz)	Level (dB μ N)	Ant. Pol. (H/V)	Correction factors (dB/m)	F _d (dB)	Field strength (dB μ N/m)	Limit (dB μ N/m)	Margin (dB)
No signal detected							

Test results (Below 1 000 MHz)

Mode: GFSK
 Distance of measurement: 3 meter
 Operating frequency: 2 410.875 MHz (Worst case)
 Channel: 01

Frequency (MHz)	Level (dB μ N)	Ant. Pol. (H/V)	Correction factors		Field strength (dB μ N/m)	Limit (dB μ N/m)	Margin (dB)
			Ant. factor (dB/m)	Cable loss (dB)			
288.02	13.17	H	13.38	1.57	28.12	46.00	17.88
336.52	13.32	H	14.65	1.64	29.61	46.00	16.39
384.05	14.72	H	15.72	1.78	32.22	46.00	13.78
480.08	15.46	H	17.86	2.09	35.41	46.00	10.59
480.08	13.89	V	17.86	2.09	33.84	46.00	12.16
558.65	14.71	V	19.51	2.34	36.56	46.00	9.44
570.29	15.86	V	19.76	2.38	38.00	46.00	8.00
576.11	14.68	H	19.88	2.40	36.96	46.00	9.04
576.11	18.51	V	19.88	2.40	40.79	46.00	5.21
672.14	16.49	V	21.14	2.54	40.17	46.00	5.83

Note.

1. All spurious emission at channels are almost the same below 1 GHz, so that low channel was chosen at representative in final test.

Test results (Above 1 000 MHz)

Mode: GFSK
Distance of measurement: 3 meter
Operating frequency: 2 410.875 MHz
Channel: 01

Frequency (MHz)	Level (dB μ N)	Detect mode	Ant. Pol. (H/V)	Correction factors		Field strength (dB μ N/m)	Limit (dB μ N/m)	Margin (dB)
				AFCL(dB)	DCF(dB)			
2388.24	57.99	Peak	H	-0.96	-	57.03	74.00	16.97
2389.97	46.34	Average	H	-0.95	-	45.39	54.00	8.61
2389.67	57.19	Peak	V	-0.95	-	56.24	74.00	17.76
2389.99	46.51	Average	V	-0.95	-	45.56	54.00	8.44
4819.00	45.23	Peak	H	8.18	-	53.41	74.00	20.59
4819.00	42.02	Peak	V	8.18	-	50.20	74.00	23.80

Mode: GFSK
Distance of measurement: 3 meter
Operating frequency: 2 441.25 MHz
Channel: 10

Frequency (MHz)	Level (dB μ N)	Detect mode	Ant. Pol. (H/V)	Correction factors		Field strength (dB μ N/m)	Limit (dB μ N/m)	Margin (dB)
				AFCL(dB)	DCF(dB)			
4877.00	41.24	Peak	H	8.59	-	49.83	74.00	24.17
4877.00	41.40	Peak	V	8.59	-	49.99	74.00	24.01

Mode: GFSK
Distance of measurement: 3 meter
Operating frequency: 2 471.625 MHz
Channel: 19

Frequency (MHz)	Level (dBμN)	Detect mode	Ant. Pol. (H/V)	Correction factors		Field strength (dBμN/m)	Limit (dBμN/m)	Margin (dB)
				AFCL(dB)	DCF(dB)			
2483.80	60.53	Peak	H	-0.45	-	60.08	74.00	13.92
2483.72	50.33	Average	H	-0.45	-	49.88	54.00	4.12
2483.80	63.52	Peak	V	-0.45	-	63.07	74.00	10.93
2483.52	53.90	Average	V	-0.45	-	53.45	54.00	0.55
4946.00	44.78	Peak	H	9.08	-	53.86	74.00	20.14
4946.00	40.18	Peak	V	9.08	-	49.26	74.00	24.74

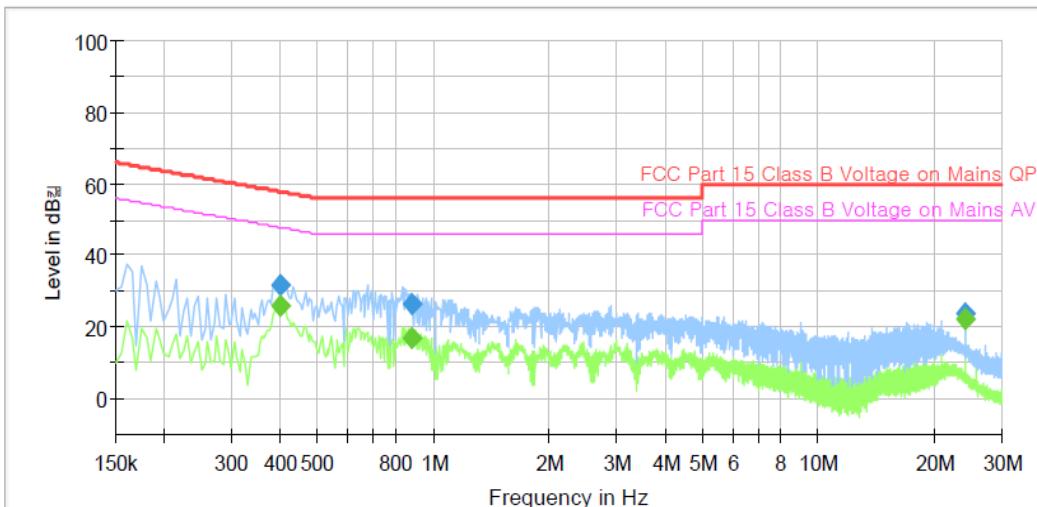
3.2. AC conducted emissions

Limit

According to 15.207(a), for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50uH/50 ohm line impedance stabilization network (LISN). Compliance with the provision of this paragraph shall be on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequencies ranges.

Frequency of Emission (MHz)	Conducted limit (dB μ V/m)	
	Quasi-peak	Average
0.15 – 0.50	66 - 56*	56 - 46*
0.50 – 5.00	56	46
5.00 – 30.0	60	50

Note:


1. All modes of operation, data rates, and test channels were investigated and the worst-case emissions are reported in GFSK mode Channel 01. The emissions found were not affected by the choice of channel used during testing.
2. The limit for Class B device(s) from 150 kHz to 30 MHz are specified in Section 15.207 of the Title 47 CFR.
3. Both Cable loss and LISN factor are included in measurement level(QP Level or AV Level).
4. Deviations to the Specifications: None.

Test results

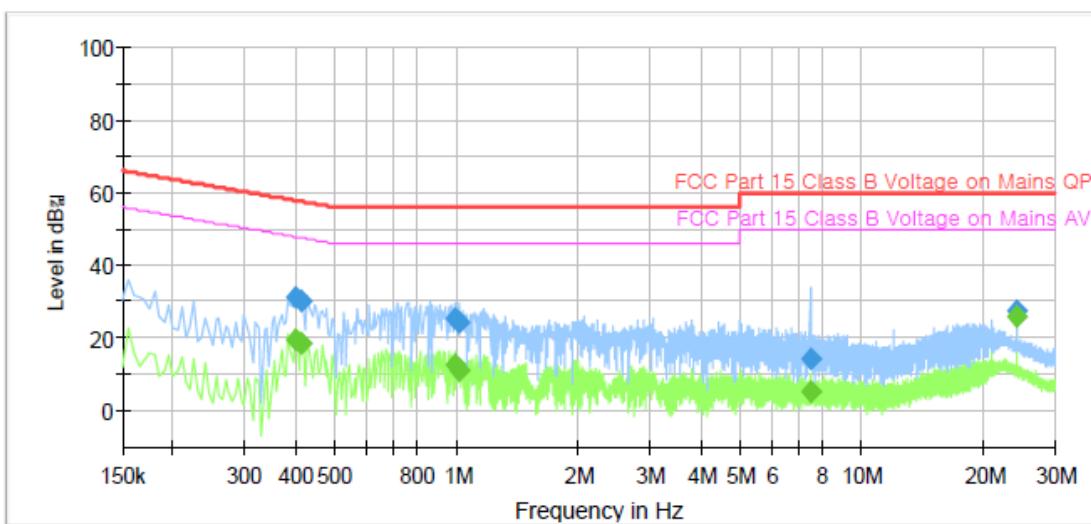
Test Report

Common Information

Test Description:	Conducted Emission
Model No.:	SEB-101ARW
Mode	TX
Operator Name:	KES

Final Result

Frequency (MHz)	QuasiPeak (dB μ V)	CAverage (dB μ V)	Limit (dB μ V)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)
0.400000	---	26.14	47.85	21.71	1000.0	9.000	L1	9.7
0.400000	31.96	---	57.85	25.89	1000.0	9.000	L1	9.7
0.880000	---	16.95	46.00	29.05	1000.0	9.000	L1	9.7
0.880000	26.30	---	56.00	29.70	1000.0	9.000	L1	9.7
24.000000	---	22.34	50.00	27.66	1000.0	9.000	L1	10.1
24.000000	23.83	---	60.00	36.17	1000.0	9.000	L1	10.1


Note; Hot Line

Both Cable loss and LISN factor are included in measurement level(QP Level or AV Level).

Test Report

Common Information

Test Description:	Conducted Emission
Model No.:	SEB-101ARW
Mode	TX
Operator Name:	KES

Final Result

Frequency (MHz)	QuasiPeak (dB μ V)	CAverage (dB μ V)	Limit (dB μ V)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)
0.400000	---	19.82	47.85	28.03	1000.0	9.000	N	9.7
0.400000	31.02	---	57.85	26.83	1000.0	9.000	N	9.7
0.415000	---	18.40	47.55	29.15	1000.0	9.000	N	9.7
0.415000	30.18	---	57.55	27.37	1000.0	9.000	N	9.7
0.990000	---	12.49	46.00	33.51	1000.0	9.000	N	9.7
0.990000	25.46	---	56.00	30.54	1000.0	9.000	N	9.7
1.020000	---	11.04	46.00	34.96	1000.0	9.000	N	9.7
1.020000	24.50	---	56.00	31.50	1000.0	9.000	N	9.7
7.455000	---	5.52	50.00	44.48	1000.0	9.000	N	9.9
7.455000	14.09	---	60.00	45.91	1000.0	9.000	N	9.9
24.000000	---	26.00	50.00	24.00	1000.0	9.000	N	10.0
24.000000	27.68	---	60.00	32.32	1000.0	9.000	N	10.0

Note; Neutral Line

Both Cable loss and LISN factor are included in measurement level(QP Level or AV Level).

Appendix A. Measurement equipment

Equipment	Manufacturer	Model	Serial No.	Calibration interval	Calibration due date
Spectrum Analyzer	R&S	FSV40	101002	1 year	2016.07.25
Loop Antenna	R&S	HFH2-Z2.335.4711.52	826532	2 years	2017.03.03
Trilog-Broadband Antenna	SCHWARZBECK	VULB 9168	9168-461	2 years	2017.04.03
Horn Antenna	A.H. System	SAS-571	414	2 years	2017.02.09
Horn Antenna	Schwarzbeck	BBHA9170	BBHA9170550	2 years	2017.04.30
Low Pass Filter	Wainwright Instrument	WLK1.0/18G-10TT	1	1 year	2016.07.24
High Pass Filter	Wainwright Instrument	WHJS3000-10TT	1	1 year	2016.07.24
Preamplifier	SCHWARZBECK	BBV-9718	9718-246	1 year	2016.10.23
Broadband Amplifier	SCHWARZBECK	BBV-9721	PS9721-003	1 year	2017.01.25
EMI Test Receiver	R & S	ESR3	101781	1 year	2016.05.06
EMI Test Receiver	R & S	ESR3	101783	1 year	2016.05.06
LISN	R & S	ENV216	101137	1 year	2017.02.04

Peripheral devices

Device	Manufacturer	Model No.	Serial No.
-	-	-	-