

TIMCO ENGINEERING INC.

849 NW State Road 45
Newberry, Florida 32669
<http://www.timcoengr.com>
888.472.2424 F 352.472.2030 email: sid@timcoengr.com

Test Report

Product Name: 49 MHz TRANSMITTER

FCC ID: NLB49009TX

Applicant:

**DICKIE-SPIELZEUG GmbH & CO KG
WERKSTRABE 1
D-90765 FUERTH D-90765
GERMANY**

Date Receipt: 10/12/2005

Date Tested: 10/12/2005

**APPLICANT: DICKIE-SPIELZEUG GmbH & CO KG
FCC ID: NLB49009TX
REPORT #: D\Dickie\2100UT5\2100UT5TestReport.doc**

COVER SHEET

TIMCO ENGINEERING INC.

849 NW State Road 45
Newberry, Florida 32669
<http://www.timcoengr.com>
888.472.2424 F 352.472.2030 email: sid@timcoengr.com

TABLE OF CONTENTS LIST

APPLICANT: DICKIE-SPIELZEUG GmbH & CO KG

FCC ID: NLB49009TX

TEST REPORT CONTAINING:

PAGE 1.....TEST EQUIPMENT LIST
PAGE 2.....TEST PROCEDURE
PAGE 3.....RADIATION INTERFERENCE TEST DATA
PAGE 4.....OCCUPIED BANDWIDTH
PAGE 5.....OCCUPIED BANDWIDTH PLOT

EXHIBITS INCLUDING:

BLOCK DIAGRAM
SCHEMATIC
INSTRUCTION MANUAL
LABEL SAMPLE
LABEL LOCATION
EXTERNAL PHOTOGRAPHS
INTERNAL PHOTOGRAPHS
CIRCUIT DESCRIPTION
TEST SET UP PHOTOGRAPH

APPLICANT: DICKIE-SPIELZEUG GmbH & CO KG
FCC ID: NLB49009TX
REPORT #: D\Dickie\2100UT5\2100UT5TestReport.doc

TABLE OF CONTENTS

TIMCO ENGINEERING INC.

849 NW State Road 45
Newberry, Florida 32669
<http://www.timcoengr.com>
888.472.2424 F 352.472.2030 email: sid@timcoengr.com

Equipment List

Device	Manufacturer	Model	Serial Number	Cal/Char Date	Due Date
3/10-Meter OATS	TEI	N/A	N/A	Listed 3/27/04	3/26/07
3-Meter OATS	TEI	N/A	N/A	Listed 1/13/03	1/12/06
Biconnical Antenna	Eaton	94455-1	1057	CAL 3/18/03	3/18/05
Biconnical Antenna	Eaton	94455-1	1096	CAL 8/17/04	8/17/06
Biconnical Antenna	Electro-Metrics	BIA-25	1171	CAL 4/29/05	4/29/07
Blue Tower Quasi-Peak Adapter	HP	85650A	2811A01279	CAL 4/13/05	4/13/07
Blue Tower RF Preselector	HP	85685A	2926A00983	CAL 8/3/05	8/3/07
Blue Tower Spectrum Analyzer	HP	8568B	2928A04729 2848A18049	CAL 4/13/05	4/13/07
LISN	Electro-Metrics	ANS-25/2	2604	CAL 8/27/04	8/27/06
LISN	Electro-Metrics	EM-7820	2682	CAL 4/28/05	4/28/07
Log-Periodic Antenna	Eaton	96005	1243	CAL 5/8/03	5/8/05

TIMCO ENGINEERING INC.

849 NW State Road 45
Newberry, Florida 32669
<http://www.timcoengr.com>
888.472.2424 F 352.472.2030 email: sid@timcoengr.com

TEST PROCEDURE

GENERAL: This report shall NOT be reproduced except in full without the written approval of TIMCO ENGINEERING, INC.

RADIATION INTERFERENCE: The test procedure used was ANSI STANDARD C63.4-2003 using a HEWLETT PACKARD spectrum analyzer with a pre-selector. The bandwidth of the spectrum analyzer was 100 kHz with an appropriate sweep speed. The analyzer was calibrated in dB above a microvolt at the output of the antenna. The resolution bandwidth was 100 kHz and the video bandwidth was 300 kHz. The ambient temperature of the UUT was 80°C with a humidity of 76%.

FORMULA OF CONVERSION FACTORS: The Field Strength at 3m was established by adding the meter reading of the spectrum analyzer (which is set to read in units of dBuV) to the antenna correction factor supplied by the antenna manufacturer. The antenna correction factors are stated in terms of dB. The gain of the Pre-selector was accounted for in the Spectrum Analyzer Meter Reading.

Example:

Freq (MHz) METER READING + ACF = FS
33 20 dBuV + 10.36 dB = 30.36 dBuV/m @ 3m

ANSI STANDARD C63.4-2003 10.1.7 MEASUREMENT PROCEDURES: The unit under test was placed on a table 80 cm high and with dimensions of 1m by 1.5m. The table used for radiated measurements is capable of continuous rotation.

When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and vertical planes.

TIMCO ENGINEERING INC.

849 NW State Road 45
Newberry, Florida 32669
<http://www.timcoengr.com>
888.472.2424 F 352.472.2030 email: sid@timcoengr.com

APPLICANT: DICKIE-SPIELZEUG GmbH & CO KG

FCC ID: NLB49009TX

NAME OF TEST: RADIATION INTERFERENCE

RULES PART NO.: 15.235

REQUIREMENTS: CARRIER FREQUENCY WILL NOT EXCEEDS 80 dBuV/m AT 3M.
OUT-OF-BAND EMISSIONS SHALL NOT EXCEED:

30 - 88 MHz	40.0 dBuV/M MEASURED AT 3 METERS
88 - 216 MHz	43.5 dBuV/M
216 - 960 MHz	46.0 dBuV/M
ABOVE 960 MHz	54.0 dBuV/M

TEST DATA:

Tuned Frequency MHz	Emission Frequency MHz	Meter Reading dBuV	Ant. Polarity	Coax Loss dB	Correcti on Factor dB	Field Strength dBuV/m	Margin dB
49.9	49.86	47.1	H	0.97	11.63	59.70	20.30
49.9	49.86	60.2	V	0.97	10.71	71.88	8.12
49.9	99.72	19.2	H	1.40	10.89	31.49	12.01
49.9	99.72	21.3	V	1.40	11.42	34.12	9.38
49.9	149.58	7.0	V	1.75	16.86	25.61	17.89
49.9	149.58	11.7	H	1.75	16.16	29.61	13.89
49.9	199.44	10.2	H	2.10	17.10	29.40	14.10
49.9	199.44	12.0	V	2.10	17.70	31.80	11.70
49.9	249.30	6.5	H	2.35	12.37	21.22	24.78
49.9	249.30	8.1	V	2.35	12.46	22.91	23.09
49.9	299.16	7.6	V	2.60	14.29	24.49	21.51
49.9	349.02	5.0	V	2.85	14.43	22.28	23.72

SAMPLE CALCULATION: FSdBuV/m = MR (dBuV) + ACFdB.

TEST PROCEDURE: The procedure used was ANSI STANDARD C63.4-1992. The spectrum was scanned from 30 MHz to 1000 MHz. When an emission was found, the table was rotated to produce the maximum signal strength. The antenna was placed in both the horizontal and vertical planes and the worse case emissions were reported. The UUT was tested in 3 orthogonal planes.

TEST RESULTS: THE UNIT DOES MEET THE FCC REQUIREMENTS.

PERFORMED BY: MARIO R. de ARANZETA

DATE: 10/12/2005

APPLICANT: DICKIE-SPIELZEUG GmbH & CO KG
FCC ID: NLB49009TX
REPORT #: D\Dickie\2100UT5\2100UT5TestReport.doc

TIMCO ENGINEERING INC.

849 NW State Road 45
Newberry, Florida 32669
<http://www.timcoengr.com>
888.472.2424 F 352.472.2030 email: sid@timcoengr.com

APPLICANT: DICKIE-SPIELZEUG GmbH & CO KG

FCC ID: NLB49009TX

NAME OF TEST: Occupied Bandwidth

RULES PART NO.: 15.235

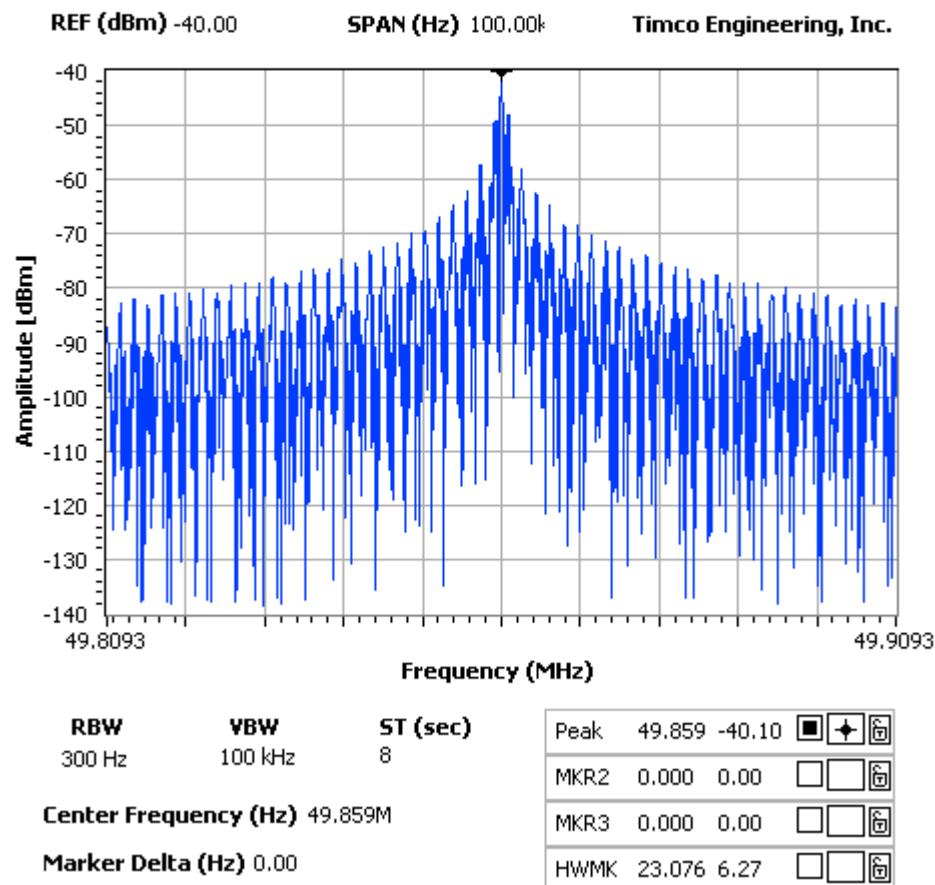
REQUIREMENTS: The field strength of any emissions appearing between the band edges and up to 10 kHz above and below the band edges shall be attenuated at least 26 dB below the level of the un-modulated carrier or to the general limits of 15.209, whichever permits the higher emission levels.

THE GRAPH ON THE NEXT PAGE REPRESENTS THE EMISSIONS TAKEN FOR THE DEVICE.

METHOD OF MEASUREMENT: A small sample of the transmitter output was fed into the spectrum analyzer and the attached plot was taken. The vertical scale is set to 10 dB per division.

TEST RESULTS: The unit DOES meet the FCC requirements.

PERFORMED BY: JOSEPH SGOGLIO **DATE:**


APPLICANT: DICKIE-SPIELZEUG GmbH & CO KG
FCC ID: NLB49009TX
REPORT #: D\Dickie\2100UT5\2100UT5TestReport.doc

TIMCO ENGINEERING INC.

849 NW State Road 45
Newberry, Florida 32669
<http://www.timcoengr.com>
888.472.2424 F 352.472.2030 email: sid@timcoengr.com

NOTES:

DICKIE-SPIELZEUG GmbH & CO KG - FCC ID: NLB49009TX
OCCUPIED BANDWIDTH PLOT

APPLICANT: DICKIE-SPIELZEUG GmbH & CO KG
FCC ID: NLB49009TX
REPORT #: D:\DICKIE\2100UT5\2100UT5TestReport.doc