

FCC TEST REPORT

for

47 CFR, Part 2, Part 15 Subpart B and CISPR PUB. 22

Equipment : Disk Array

Model No. : Fidy

FCC ID : NKF-FIDY

Filing Type : Certification

Applicant : **MaxTronic International Co., Ltd.**

4F, No. 529, Chung Cheng Rd., Hsin Tien City, Taipei Hsien,
Taiwan, R.O.C.

- The test result refers exclusively to the test presented test model / sample.
- Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.
- Certificate or Test Report must not be used by the applicant to claim the product in this test report endorsement by NVLAP or any agency of U.S. government.

SPORTON International Inc.

6F, No.106, Sec. 1, Hsin Tai Wu Rd., Hsi Chih, Taipei Hsien, Taiwan, R.O.C.

Table of Contents

History of this test report.....	ii
CERTIFICATE OF COMPLIANCE.....	1
1. General Description of Equipment under Test.....	2
1.1 Applicant.....	2
1.2 Manufacturer.....	2
1.3 Basic Description of Equipment under Test.....	2
1.4 Feature of Equipment under Test.....	3
2. Test Configuration of Equipment under Test	4
2.1 Test Manner.....	4
2.2 Description of Test System.....	4
2.3 Connection Diagram of Test System.....	6
3. Test Software	7
4. General Information of Test	8
4.1 Test Facility	8
4.2 Standard for Methods of Measurement.....	8
4.3 Test in Compliance with.....	8
4.4 Frequency Range Investigated.....	8
4.5 Test Distance.....	8
5. Test of Conducted Powerline.....	9
5.1 Major Measuring Instruments.....	9
5.2 Test Procedures	10
5.3 Typical Test Setup Layout of Conducted Powerline.....	11
5.4 Test Result of AC Powerline Conducted Emission.....	12
6. Test of Radiated Emission	13
6.1 Major Measuring Instruments.....	13
6.2 Test Procedures	14
6.3 Typical Test Setup Layout of Radiated Emission	15
6.4 Test Result of Radiated Emission	16
7. EMI Suppression Component List	17
8. Antenna Factor & Cable Loss	18
9. List of Measuring Equipment Used	19
10. Uncertainty of Test Site.....	20
Appendix A. Photographs of EUT	A1 ~ A14

History of this test report

Original Report Issue Date: May 15, 2002

No additional attachment.

Additional attachment were issued as following record:

Certificate No. : F250810

CERTIFICATE OF COMPLIANCE

for

47 CFR, Part 2, Part 15 Subpart B and CISPR PUB. 22

Equipment : Disk Array

Model No. : Fidy

FCC ID : NKF-FIDY

Applicant : **MaxTronic International Co., Ltd.**
4F, No. 529, Chung Cheng Rd., Hsin Tien City, Taipei Hsien,
Taiwan, R.O.C.

I **HEREBY** CERTIFY THAT :

The measurements shown in this test report were made in accordance with the procedures given in **ANSI C63.4 - 1992** and the energy emitted by this equipment was **passed** both radiated and conducted emission limits. Testing was carried out on **May 08, 2002** at **SPORTON International Inc.** LAB.

10. J. Lin May 20, 2002

K. J. Lin
Manager

SPORTON International Inc.

6F, No.106, Sec. 1, Hsin Tai Wu Rd., Hsi Chih, Taipei Hsien, Taiwan, R.O.C.

1. General Description of Equipment under Test

1.1 Applicant

MaxTronic International Co., Ltd.
4F, No. 529, Chung Cheng Rd., Hsin Tien City,
Taipei Hsien, Taiwan, R.O.C.

1.2 Manufacturer

Same as 1.1.

1.3 Basic Description of Equipment under Test

Equipment	: Disk Array
Model No.	: Fidy
FCC ID	: NKF-FIDY
Trade Name	: Arena
1394 Cable	: Shielded, 1.8m
RS232 Cable	: Shielded, 1.15m
Power Supply Type	: Switching
AC Power Input	: Non-Shielded, 1.8m, 3 pin

1.4 Feature of Equipment under Test

Microprocessor: Intel i960RM RISC processor

Cache Memory: 64MB

Maximum 512MB

-- DRAM Slots: One

-- Module Type: 144 Pin DIMM

-- DRAM Type: SDRAM

-- DRAM Speed: PC100/133

Firmware: Flash EEPROM, 256K x 8

IEEE 1394 I/O Processor: TI TSB43AB22

Serial Port: 1x RS232 (Asynchronous) Port, only for setting, not for usual use.

-- Baud Rate: 115,200 (Bits Per Second)

-- Data Bits: 8

-- Stop Bit: 1

-- Parity: None

RAID Levels: 0, 1, 0+1, 3 or 5

Data Transfer Rate: Up to 400Mbits

Interface: Host Channel: 1 IEEE 1394A Firewire

Disk Channels: 4 EIDE ATA-100

POWER SUPPLY: SH-200SATX/ 200W

HDD: Seagate/ ST36422A/ 6400MB

2. Test Configuration of Equipment under Test

2.1 Test Manner

- a. The EUT has been associated with personal computer and peripherals pursuant to ANSI C63.4-1992 and configuration operated in a manner which tended to maximize its emission characteristics in a typical application.
- b. The complete test system included HP PC, HITACHI Monitor, GENUINE PS/2 Keyboard, LOGITECH PS/2 Mouse, HP Printer, ACEEX Modem, FUJITSU 1394 MO and EUT for EMI test.
- c. Frequency range investigated: conduction 150 KHz to 30 MHz, radiation 30 MHz to 1000MHz.

2.2 Description of Test System

Support Unit 1. -- Personal Computer (HP)

FCC ID	: N/A
Model No.	: VECTRA VL420 DT
Power Supply Type	: Switching
Power Cord	: Non-Shielded
Serial No.	: SP0037
Data Cable	: Shielded
Remark	: This support device was tested to comply with FCC standards and authorized under a declaration of conformity.

Support Unit 2. -- Monitor (HITACHI)

FCC ID	: N/A
Model No.	: CM753ET
Power Supply Type	: Switching
Power Cord	: Non-Shielded
Serial No.	: SP0180
Data Cable	: Shielded, 1.15m

Support Unit 3. -- PS/2 Keyboard (GENUINE)

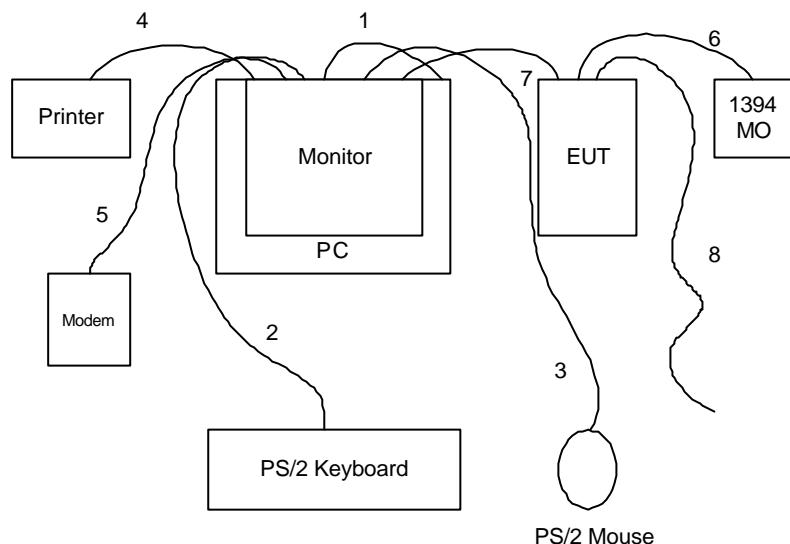
FCC ID	: N/A
Model No.	: B388P
Serial No.	: SP0054
Data Cable	: Non-Shielded, 360 degree via metal backshells, 1.2m

Support Unit 4. -- Printer (HP)

FCC ID	: B94C2642X
Model No.	: DeskJet 400
Power Supply Type	: Linear
Power Cord	: Non-Shielded
Serial No.	: SP0048
Data Cable	: Braided-Shielded, 360 degree via metal backshells, 1.35m

Support Unit 5. -- PS/2 Mouse (LOGITECH)

FCC ID	: DZL211029
Model No.	: M-S34
Serial No.	: SP0108
Data Cable	: Shielded, 1.7m


Support Unit 6. -- Modem (ACEEX)

FCC ID	: IFAXDM1414
Model No.	: DM1414
Power Supply Type	: Linear
Power Cord	: Non-Shielded
Serial No.	: SP0015
Data Cable	: Shielded, 360 degree via metal backshells, 1.1m

Support Unit 7. – 1394 MO (FUJITSU)

FCC ID	: N/A
Model No.	: 640FE
Serial No.	: SP0126
Data Cable	: Shielded, 1.8m
Remark	: This support device was tested to comply with FCC standards and authorized under a declaration of conformity.

2.3 Connection Diagram of Test System

1. The I/O cable is connected from PC to the support unit 2.
2. The I/O cable is connected from PC to the support unit 3.
3. The I/O cable is connected from PC to the support unit 5.
4. The I/O cable is connected from PC to the support unit 4.
5. The I/O cable is connected from PC to the support unit 6.
6. The 1394 cable is connected from EUT to the support unit 7.
7. The 1394 cable is connected from PC to the EUT.
8. The RS232 cable is floating.

3. Test Software

An executive programs, EMITEST.EXE under WIN 2000, which generate a complete line of continuously repeating " H " pattern was used as the test software.

The program was executed as follows :

- a. Turn on the power of all equipment.
- b. The PC reads the test program from the hard disk drive and runs it.
- c. The PC sends " H " messages to the monitor, and the monitor displays " H " patterns on the screen.
- d. The PC sends " H " messages to the printer, then the printer prints them on the paper.
- e. The PC sends " H " messages to the modem.
- f. The PC sends " H " messages to the internal Hard Disk, and the Hard Disk reads and writes the message.
- g. Repeat the steps from c to f.

At the same time, "b.bat" was executed to read and write data from 1394 MO and EUT.

4. General Information of Test

4.1 Test Facility

Test Site Location : No. 30-2, Lin 6, Diing-Fwu Tsuen, Lin-Kou-Hsiang,
Taipei Hsien, Taiwan, R.O.C.
TEL : 886-2-2601-1640
FAX : 886-2-2601-1695
Test Site No. : CL01, OL05

4.2 Standard for Methods of Measurement

ANSI C63.4-1992

4.3 Test in Compliance with

CISPR PUB. 22 and FCC Part 15, Subpart B Class B

4.4 Frequency Range Investigated

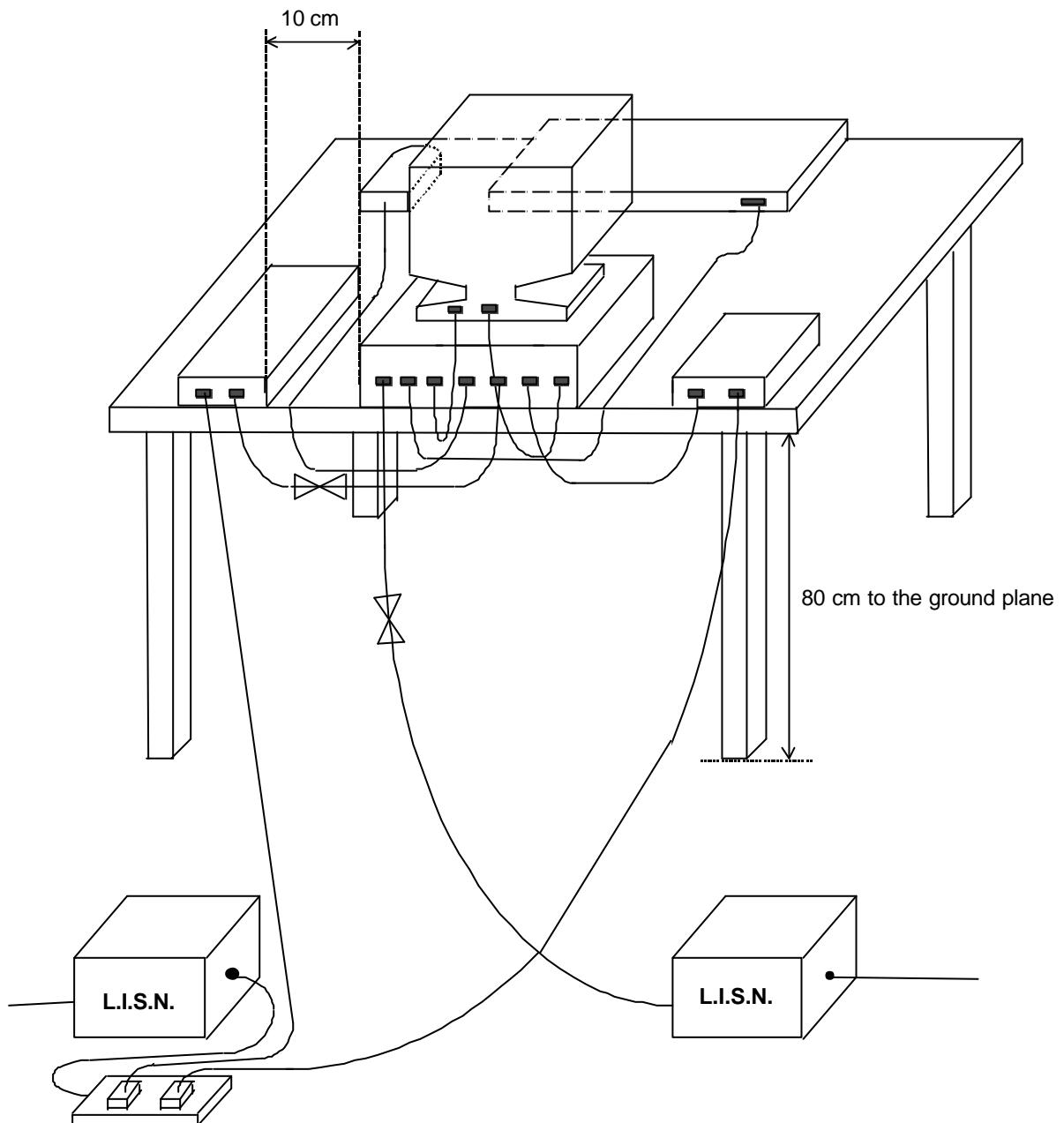
- a. Conduction: from 150 kHz to 30 MHz
- b. Radiation : from 30 MHz to 1000 MHz

4.5 Test Distance

The test distance of radiated emission from antenna to EUT is 10 M.

5. Test of Conducted Powerline

Conducted Emissions were measured from 150 kHz to 30 MHz with a bandwidth of 9 KHz on the 115 VAC power and return leads of the EUT according to the methods defined in ANSI C63.4-1992 Section 3.1. The EUT was placed on a nonmetallic stand in a shielded room 0.8 meters above the ground plane as shown in section 5.3. The interface cables and equipment positioning were varied within limits of reasonable applications to determine the position produced maximum conducted emissions.


5.1 Major Measuring Instruments

Measurement	(HP 8591EM)
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

5.2 Test Procedures

- a. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- b. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- c. All the support units are connect to the other LISN.
- d. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- e. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- f. Both sides of AC line were checked for maximum conducted interference.
- g. The frequency range from 150 kHz to 30 MHz was searched.
- h. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- i. If the emission level of the EUT in peak mode was 6 dB lower than the limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 6 dB margin will be retested one by one using the quasi-peak method and reported.

5.3 Typical Test Setup Layout of Conducted Powerline

5.4 Test Result of AC Powerline Conducted Emission

- ☒ Frequency Range of Test : from 0.15 MHz to 30 MHz
- ☒ Temperature : 23°C
- ☒ Relative Humidity : 49%
- ☒ Test Date : May 08, 2002
- ☒ All emissions not reported here are more than 10 dB below the prescribed limit.

The Conducted Emission test was passed at minimum margin LINE 0.500 MHz / 42.20 dBuV.

Freq. (MHz)	Line or Neutral	Meter Reading				Limits				Margin	
		Q.P. (dBuV)	A.V. (dBuV)	Q.P. (uV)	A.V. (uV)	Q.P. (dBuV)	A.V. (dBuV)	Q.P. (uV)	A.V. (uV)	Q.P. (dB)	A.V. (dB)
0.200	L	52.50	49.50	421.70	298.54	63.62	53.62	1516.24	479.48	-11.12	-4.12
0.300	L	47.00	44.90	223.87	175.79	60.24	50.24	1028.38	325.20	-13.24	-5.34
0.500	L	43.40	42.20	147.91	128.82	56.00	46.00	631.13	199.58	-12.60	-3.80
0.200	N	52.40	49.30	416.87	291.74	63.62	53.62	1516.25	479.48	-11.22	-4.32
0.300	N	46.60	44.40	213.80	165.96	60.24	50.24	1028.37	325.20	-13.64	-5.84
0.500	N	42.70	41.30	136.46	116.14	56.00	46.00	631.14	199.58	-13.30	-4.70

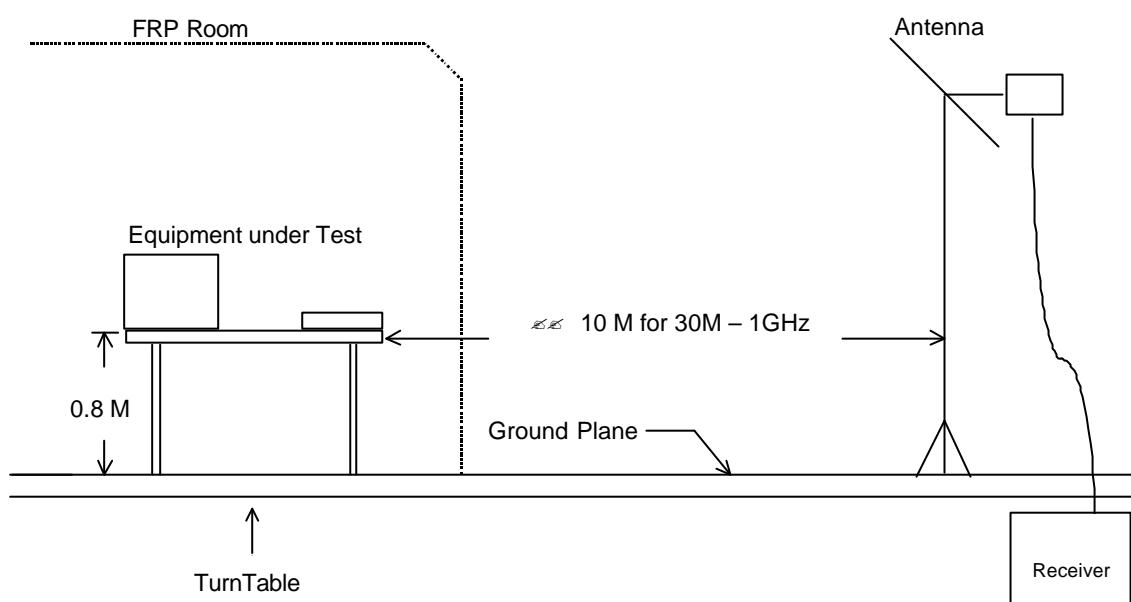
Test Engineer :

Jason

Jason Chang

6. Test of Radiated Emission

Radiated emissions from 30 MHz to 1,000 MHz were measured with a bandwidth of 120 kHz according to the methods defines in ANSI C63.4-1992. The EUT was placed on a nonmetallic stand in the open-field site, 0.8 meter above the ground plane, as shown in section 6.3. The interface cables and equipment positions were varied within limits of reasonable applications to determine the positions producing maximum radiated emissions.


6.1 Major Measuring Instruments

<u>Amplifier</u>	(HP 8447D)
Attenuation	10 dB
RF Gain	25 dB
Signal Input	0.1 MHz to 1.3 GHz
<u>Spectrum Analyzer</u>	(ADVANTEST R3261C)
Attenuation	10 dB
Start Frequency	30 MHz
Stop Frequency	1000 MHz
Signal Input	9 KHz to 2.6 GHz

6.2 Test Procedures

- a. The EUT was placed on a rotatable table top 0.8 meter above ground.
- b. The EUT was set 10 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- c. The table was rotated 360 degrees to determine the position of the highest radiation.
- d. The antenna is a half wave dipole and its height is varied between one meter and four meters above ground to find the maximum value of the field strength both horizontal polarization and vertical polarization of the antenna are set to make the measurement.
- e. For each suspected emission the EUT was arranged to its worst case and then tune the antenna tower (from 1 M to 4 M) and turn table (from 0 degree to 360 degrees) to find the maximum reading.
- f. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 6 dB lower than the limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 6 dB margin will be repeated one by one using the quasi-peak method and reported.

6.3 Typical Test Setup Layout of Radiated Emission

6.4 Test Result of Radiated Emission

- ✓ Frequency Range of Test : from 30 MHz to 1000 MHz
- ✓ Test Distance : 10 M
- ✓ Temperature : 23°C
- ✓ Relative Humidity : 52 %
- ✓ Test Date : May 08, 2002
- ✓ Emission level (dBuV/m) = 20 log Emission level (uV/m)
- ✓ Corrected Reading : Antenna Factor + Cable Loss + Reading = Emission

The Radiated Emission test was passed at minimum margin:

HORIZONTAL 661.000 MHz / 34.65 dBuV/m Antenna Height 1 Meter , Turntable Degree 148 °.

Frequency (MHz)	Polarity	Antenna Factor (dB/m)	Cable Loss (dB)	Reading (dBuV)	Limits		Emission (dBuV/m)	Level (uV/m)	Margin (dB)
					(dBuV/m)	(uV/m)			
131.300	H	11.80	1.63	13.23	30.00	31.62	26.66	21.53	-3.34
225.600	H	11.55	2.17	13.45	30.00	31.62	27.17	22.83	-2.83
661.000	H	19.40	3.82	11.43	37.00	70.79	34.65	54.01	-2.35
48.900	V	8.38	1.15	17.40	30.00	31.62	26.93	22.21	-3.07
53.000	V	7.05	1.18	18.01	30.00	31.62	26.24	20.51	-3.76
143.700	V	11.18	1.70	14.08	30.00	31.62	26.96	22.28	-3.04

Test Engineer :
Jackson Huang

7. EMI Suppression Component List

1. The housing was coated with copper.

(As the Internal photo No.2)

2. Add a ferrite core on the LCD cable.

(As the Internal photo No.2)

8. Antenna Factor & Cable Loss

Frequency (MHz)	Antenna Factor (dB)	Cable Loss (dB)
30	17.0	0.9
35	16.0	1.0
40	13.5	1.1
45	9.9	1.1
50	7.4	1.2
55	6.8	1.2
60	6.3	1.2
65	6.3	1.2
70	6.3	1.2
75	6.9	1.3
80	7.5	1.5
85	8.9	1.5
90	10.2	1.4
95	11.0	1.4
100	11.8	1.5
110	11.9	1.5
120	12.0	1.6
130	11.9	1.6
140	11.4	1.6
150	10.9	1.8
160	10.3	1.8
170	9.6	1.9
180	9.5	1.9
190	9.7	1.9
200	9.9	2.0
220	11.2	2.2
240	12.5	2.2
260	13.4	2.4
280	13.8	2.3
300	14.2	2.4
320	14.5	2.5
340	14.8	2.6
360	15.2	2.7
380	15.5	2.8
400	15.8	2.8
450	16.8	3.1
500	17.9	3.3
550	18.9	3.5
600	19.7	3.6
650	19.5	3.8
700	19.2	3.9
750	19.4	4.1
800	19.7	4.2
850	20.4	4.6
900	21.1	4.9
950	22.0	5.0
1000	22.9	5.0

LKOP7

9. List of Measuring Equipment Used

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Spectrum (CL01)	HP	8591EM	3710A01187	9KHz ~ 1.8GHz	Sep. 21, 2001	Conduction
LISN (CL01)	Rolf Heine	NNB-2/16Z	98009	9KHz ~ 30MHz	Dec. 17, 2001	Conduction
LISN(CL01)	Rolf Heine	NNB-2/16Z	980877	9KHz ~ 30MHz	Dec. 17, 2001	Conduction
Spectrum Analyzer (OL05)	ADVANTEST	R3261C	71720606	9KHz – 2.6GHz	Apr. 11, 2001	Radiation
Amplifier (OL05)	HP	8447D	2944A09068	100KHz –1.3GHz	Oct. 03, 2001	Radiation
Bilog Antenna (OL05)	CHASE	CBL6112A	2287	30MHz -2GHz	Feb. 08, 2002	Radiation
Half-wave dipole antenna (OL05)	EMCO	3121C	9705-1285	28 M - 1GHz	May 17, 2001	Radiation
Antenna Mast (OL05)	EMCO	2075	9806-2160	1MHz – 4MHz	N/A	Radiation
Turn Table (OL05)	EMCO	2080	9806-2070	0° ? 360°	N/A	Radiation
Controller (OL05)	EMCO	2090	9804-1328	N/A	N/A	Radiation

* Calibration Interval of instruments listed above is one year.

10.Uncertainty of Test Site

Uncertainty of Conducted Emission Measurement

Contribution	Probability Distribution	150KHz – 30MHz
Cable and I/P attenuator calibration	normal(k=2)	± 0.3
RCV/SPA specification	rectangular	± 2.5
LISN coupling specification	rectangular	± 1.5
Transducer factor frequency interpolation	rectangular	± 0.2
Mismatch Receiver VSWR ?1=0.09 LISN VSWR ?2=0.33 Uncertainty=20log(1-?1*?2)	U-shaped	0.2
combined standard uncertainty $U_e(y)$	normal	± 1.7
Measuring uncertainty for a level of confidence of 95% $U=2U_e(y)$	normal (k=2)	± 3.4

$$U = \sqrt{((0.3/2)^2 + (2.5^2 + 1.5^2 + 0.2^2)/3 + (0.2)^2/2)} = 1.7$$

Uncertainty of Radiated Emission Measurement

Contribution	Probability Distribution	3m	10m
Antenna factor calibration	normal(k=2)	± 1.6	± 1.6
cable loss calibration	normal(k=2)	± 0.3	± 0.3
RCV/SPA specification	rectangular	± 2.5	± 2.5
Antenna Directivity	rectangular	± 3	± 0.5
Antenna Factor V.S. Height	rectangular	± 2	± 2
Antenna Factor Interpolation for Frequency	rectangular	± 0.25	± 0.25
site imperfection	rectangular	± 2	± 2
Mismatch Receiver VSWR ?1=0.09 Antenna VSWR ?2=0.67 Uncertainty=20log(1-?1*?2)	U-shaped	± 0.54	± 0.54
combined standard uncertainty $U_e(y)$	normal	± 2.9	± 2.4
Measuring uncertainty for a level of confidence of 95% $U=2U_e(y)$	normal (k=2)	± 5.8	± 4.8

$$U = \sqrt{(1.6/2)^2 + (0.3/2)^2 + (3^2 + 0.5^2 + 2^2 + 0.25^2 + 2^2)/3 + (0.54)^2/2} = 2.4 \text{ for 10m test distance}$$

$$U = \sqrt{(1.6/2)^2 + (0.3/2)^2 + (3^2 + 3^2 + 2^2 + 0.25^2 + 2^2)/3 + (0.54)^2/2} = 2.9 \text{ for 3m test distance}$$

