Date: December 18, 1998

Re: FCC Application Questions

3. What is the EUT's theoretical processing gain (i.e., spreading to data rate ratio)? Please provide a theory of operation.

Attached is a document outlining the measurement of the processing gain (PG). The theoretical processing gain from bandwidth (BW) vs. data rate (DR) is complicated by the coding gain (CG) of the Forward Error Correction (FEC). The FEC increases the data rate from T1 (1.544 Mbps) to 4/3 T1 (2.059 Mbps). This rate is then carried in a 20.59 MHz band at RF. Identifying the total gain (TG) as the sum of PG plus CG, and the "customer" data rate (CDR) as the T1 rate,

TG = BW / CDR = 20.59 MHz / 1.544 Mbps = 13.33 dB

PG = BW / DR = 20.59 MHz / 2.059 Mbps = 10 dB

(Note: the number of chips per bit used for spreading is 10.)

CG = TG - PG = 3.33 dB

The Processing Gain measurements described in the accompanying document were performed without the FEC encoding/decoding to remove the Coding Gain component.

Theory of Operation.

The ioLink 1 is a full-duplex T1 rate radio operating in the 5.8 GHz ISM band. The data transmitted through the ioLink 1 is processed in the following sequence:

 $LIU \Leftrightarrow FEC \Leftrightarrow Baseband (DSSS) \Leftrightarrow IF \Leftrightarrow RF \Leftarrow RF \Leftrightarrow IF \Leftrightarrow Baseband \Leftrightarrow FEC \Leftrightarrow LIU$

Below, TX indicates the data stream toward the antenna and RX indicates the data stream from the antenna.

Line Interface Unit

TX:

The LIU converts the *tip and ring* input from the external device to *clock and data* (RCLK and RPOS) which are passed to the FEC. The data from the connections, RJ-48 and BNC, pass through a transformer, fuses, lightning protection and voltage limiting diodes on the input lines.

RX:

The data received from the link is converted to tip and ring. The data to the output connections, RJ-48 and BNC, pass through a transformer, fuses, lightning protection and voltage limiting diodes on the output lines.

FORWARD EFFOR COFFECTION

TX:

RCLK and RPOS pass from the LIU to the FEC ASIC. The data is encoded using Rate 3/4 punctured convolutional coding which increases the data rate from T1 (1.544 Mbps) to 4/3 T1 (2.059 Mbps). The data is passed to the Spread Spectrum ASIC.

RX:

The received data from the DSSS ASIC is decoded using a Viterbi decoder.

Baseband

TX:

The baseband processing is performed by a Spread Spectrum ASIC and an A/D. The data bits from the FEC (encoded RPOS) are processed as pairs of bits, one bit for the in-phase channel (I) and one for the quadrature channel (Q); thus, two bits make one QPSK symbol and the symbol rate is half the encoded data rate. The QPSK symbols are then processed sequentially by the differential encoder, the PN code modulator and the QPSK modulator. The result is a digitized IF signal which has been spread by the PN code modulator. A 10 chip/symbol PN code is used. The I and Q channels for the symbols are passed to the IF section.

RX:

The received signals from the IF section, RXI and RXQ, are first processed by the A/D which samples at a rate equal to the data rate * code length * 2 = 41.173 MHz. The digitized signal is then passed to the Spread Spectrum ASIC and processed by the digital downconverter which converts it to baseband. This is followed by the matched filter which samples I and Q twice per chip to compute the cross-correlation and then the symbol tracking processor which detects the optimal de-spread I and Q symbols. The de-spread I and Q symbols are sent to the differential demodulator, where the current and previous symbols are processed in order to identify the encoded bits. The bits are processed by the output data processor to produce a serial bit stream which is transmitted to the FEC on RXOUT.

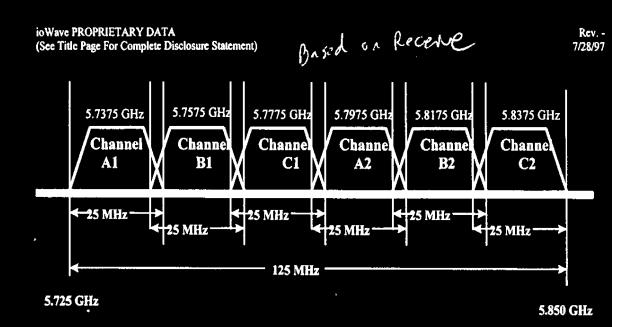
Intermediate Frequency

TX:

The symbols from the Baseband are sent to the IF section as TXI and TXQ. These are mixed with a 110 MHz oscillator (with a 90 degree phase difference for I and Q) to bring them up to the IF frequency. Then, I and Q are summed and the resultant signal is passed through an AGC and filter (25 MHz bandpass) before being sent to the RF unit for upconverting to the 5.8GHz transmission frequency.

RX:

The down-converted 70 MHz signal is passed through an AGC and bandpass filter, then decomposed into I and Q. The analog symbols, RXI and RXQ, are passed through the A/D as described above.


Radio Frequency Unit

TX:

The 110 MHz IF signal is passed through an AGC circuit, then up-converted to 5.8GHz. This is then amplified to ~+25 dBm and passed through a filter to the antenna.

RX:

The signal received from the antenna is passed through an AGC circuit, then down-converted to 70 MHz and filtered before being passed to the IF cable.

Frequency Plan

6 25MHz Bands from	5.725 to 5.	لب _{يل} 85GHz	MD		Hizh		
	<u>A1</u>	<u>A2</u>	<u>B1</u>	<u>B2</u>	<u>C1</u> ′	<u>C2</u>	
Tunable Synthesizer	5.9075	5.6275	5.9275	5.6475	5.9475	5.6675	
Receive Input	5.7375	5.7975	5. <u>75</u> 75	5.8175	5.7775	5.8375	
Transmit Output	5.7975	(5.7375)	0.8175)	32575	(5.8375)	5.7775	
1st Receive IF	.170	.170	.170	.170	.170	.170	
Receive Fixed LO	.240	.240	.240	.240	.240	.240	
2nd Receive IF	.070	.070	.070	.070	.070	.070	
1st Transmit IF	.110	.110	.110	.110	.110	.110	
							In GHz

Detailed Frequency Plan

The 5.8 GHz RF unit can be utilized in either the ioLink 1.5 T1 Wireless Modem Unit or ioLink 6 T2 Wireless Modem Unit. The RF unit shall be connected to the modem unit via coaxial cables which contain the following information: the transmitted IF signal, the receive IF signal, the receive signal strength indicator (RSSI) signal, and a DTMF status/control signal. In addition to passing information between the modem and RF units, the coaxial cable also carries power to the RF unit from the power supply in the modem unit box. The RF unit shall be housed in a weather proof NEMA-4 enclosure which can be mounted outside, directly behind the antenna or at the base of the antenna tower.

Kut Armann - pager