

NATIONAL CERTIFICATION LABORATORY
8370 Court Avenue, Suite B-1
Ellicott City MD 21043
(410) 461-5548

FCC REPORT OF CLASS II CHANGE

for

io Wave, Inc.
1010 Wisconsin Ave., NW Suite 215
Washington, DC 20007

FCC ID: NK4-400011

May 10, 2001

TABLE OF CONTENTS

Application Form 731
FCC Label Drawing and Location

- 1.0** Introduction
- 1.1** Summary
- 2.0** Description of Equipment Under Test (EUT)
- 3.0** Test Program
- 4.0** Test Configuration
- 5.0** Conducted Emissions Scheme
- 6.0** Radiated Emissions Scheme

TABLES

- Table 1. Support Equipment
- Table 2. Interface Cables
- Table 3. Measurement Equipment

EXHIBITS

- Exhibit 1. EUT Photographs
- Exhibit 2. Schematic Diagram
- Exhibit 3. User Manual

1.0 Introduction

This report has been prepared on behalf of io Wave, Inc., to support the Application for a Class II Permissive Change of a Part 15 Spread Spectrum Transmitter. The Equipment Under Test was the **5.8 GHz ioStar Wireless Modem Transceiver**.

Radio-Noise Emissions tests were performed according to **FCC Public Notice 54797, titled "Guidance on Measurements for Direct Sequence SST"**. The measuring equipment conforms to ANSI C63.2 Specifications for Electromagnetic Noise and Field Strength Instrumentation.

Testing was performed at National Certification Laboratory in Ellicott City, MD. Site description and site attenuation data have been placed on file with the FCC's Sampling and Measurements Branch. FCC acceptance was granted on May 26, 1993.

1.1 Summary

The io Wave, Inc. **5.8 GHz ioStar Wireless Modem Transceiver** complies with the FCC limits (15.247) for a Direct Sequence SST.

2.0 Description of Equipment Under Test (EUT)

The EUT Features:

+ 25 dBm RF Output
5737.5 to 5837.5 MHz Freq. Range
25 MHz Channel Bandwidth
3-Channel Sets - Full Duplex Operation
DQPSK6-SS Modulation
Data Rate - (T1, E1)

3.0 Test Program

This report contains measurement charts and data as evidence for the following tests performed:

1. (15.247) Peak RF output power.
2. (15.247) Power Spectral Density (3kHz Bandwidth).
3. (15.247) Field strength of harmonics and spurious out-of-band emissions.
4. (15.247) RF Antenna Conducted of harmonics and spurious out-of-band.
5. (15.247) 6 dB Channel Bandwidth.
6. (15.247) Processing Gain.
7. (15.207) Power Line Conducted Emissions.

4.0 Test Configuration

RF antenna output tests such as Bandwidth, Spurious/Harmonics, Power output, Power Spectral Density, and Processing Gain, were taken with the transmitter antenna connector feeding directly into the spectrum analyzer or power meter. No external attenuators were used, however the analyzer's internal attenuator was adusted to prevent overloading of the front end.

Field strength measurements were taken with the transmitter feeding a 28 dBi gain parabolic dish antenna aimed at the receiving antenna. Full power was developed at the output since a duplex link was not established.

The E1 data rate was used for all testing in order to show worse-case emissions.

PEAK POWER TEST RESULTS

Limit: 1 watt (30 dBm)

Readings from RF peak power meter (Carrier Modulated):

5737 MHz - +25.1 dBm

5817 MHz - +25.0 dBm

5837 MHz - +25.2 dBm

POWER SPECTRAL DENSITY

Limit: 8 dBm

Resolution Bandwidth: 3 kHz

Average Time Interval: 1 second/3 kHz

Actual Time Interval used

for testing: 1.5 seconds/3 kHz

Readings from spectrum analyzer:

5737 MHz - +5.4 dBm

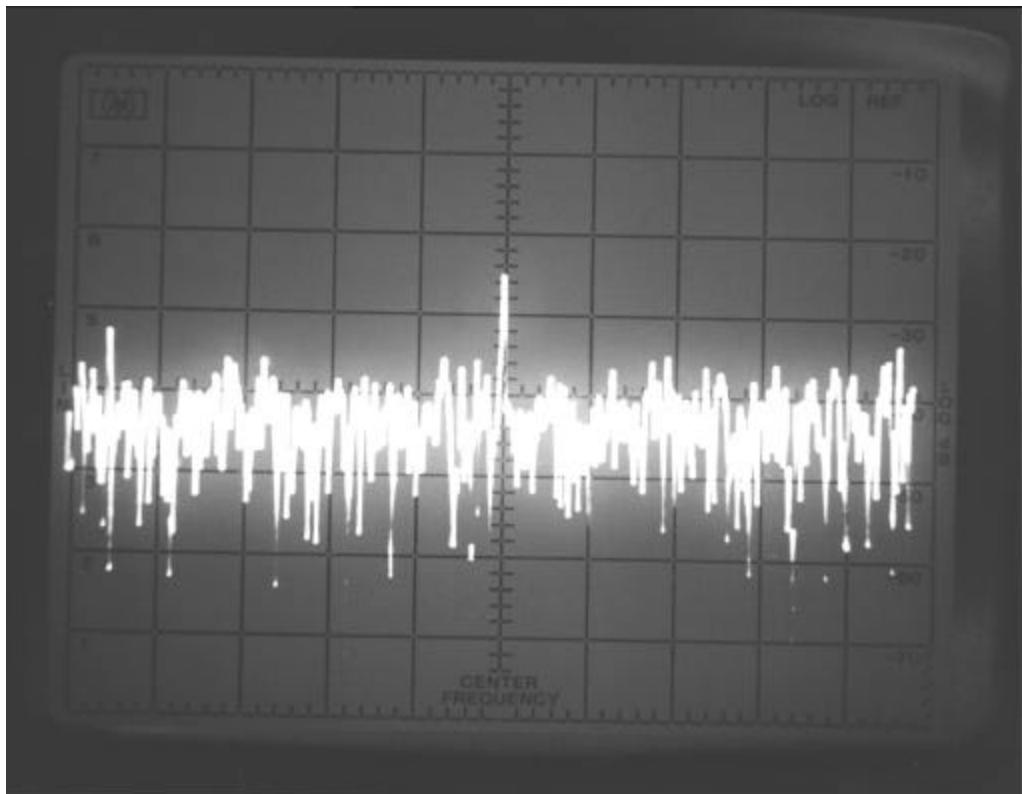
5817 MHz - +5.2 dBm

5837 MHz - +5.1 dBm

SEE FOLLOWING 3 PLOTS

POWER SPECTRAL DENSITY PLOT

TOP REFERENCE LEVEL: 30 dBm


RESOLUTION BW: 3 kHz

CENTER FREQUENCY: 5737.5 MHZ

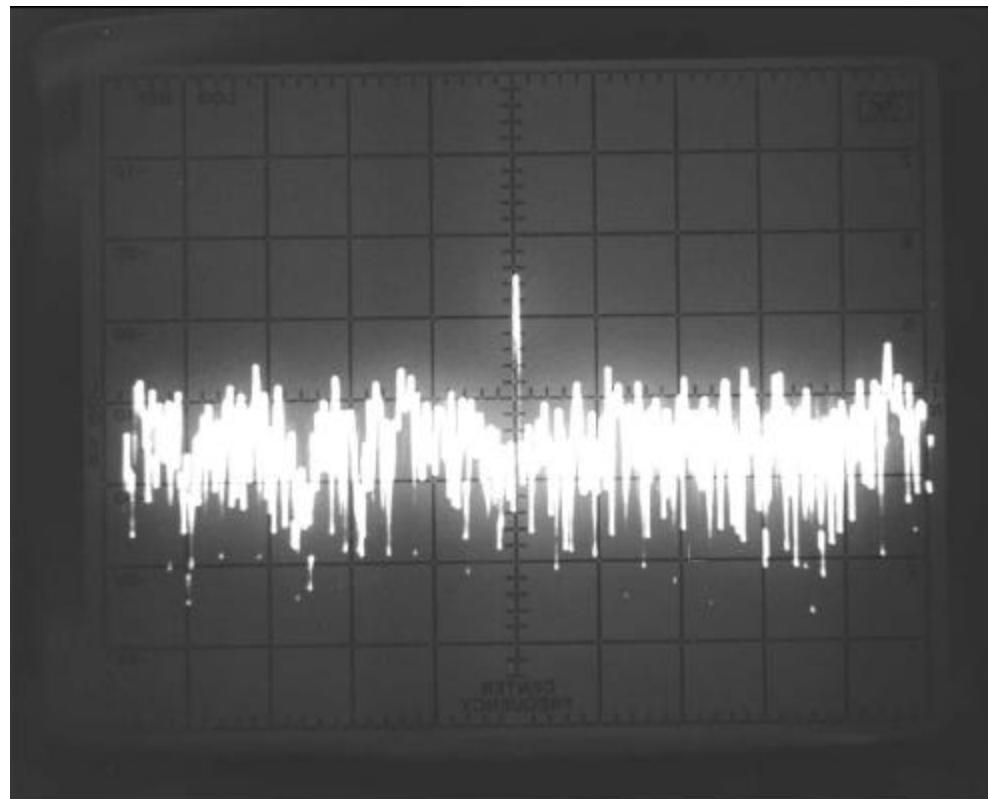
FREQUENCY SPAN: 2 MHZ

SWEEP TIME: 100 SEC/DIV

PEAK LEVEL: 5.4 dBm

POWER SPECTRAL DENSITY PLOT

TOP REFERENCE LEVEL: 30 dBm


RESOLUTION BW: 3 kHz

CENTER FREQUENCY: 5817.5 MHZ

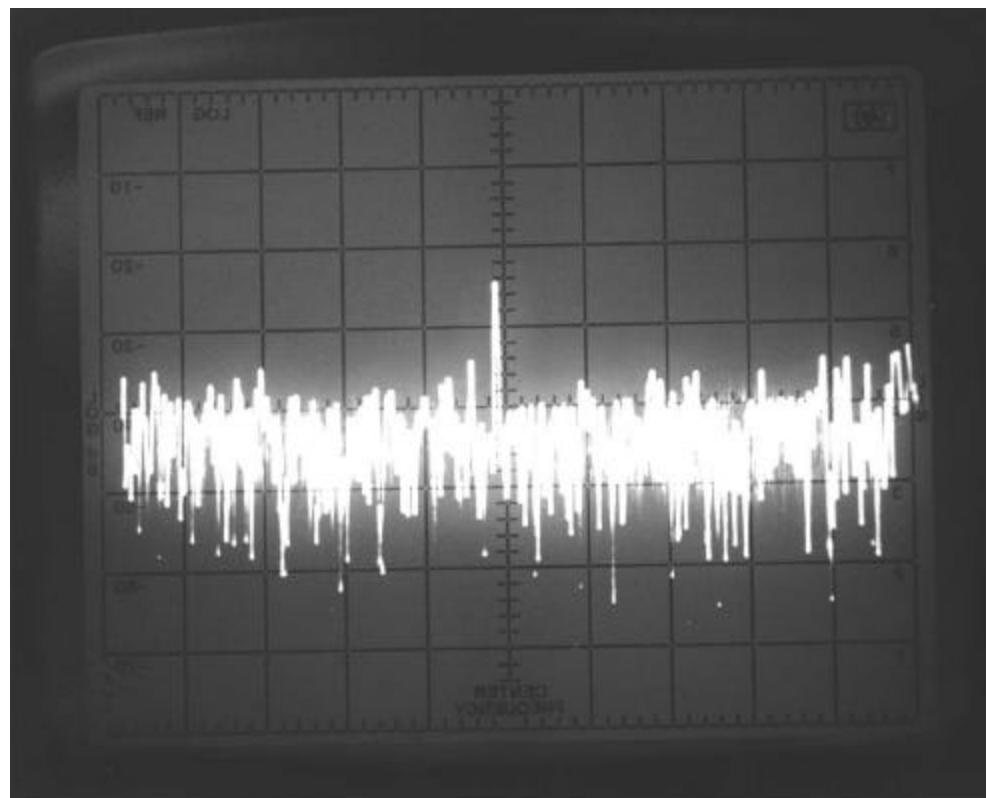
FREQUENCY SPAN: 2 MHZ

SWEEP TIME: 100 SEC/DIV

PEAK LEVEL: 5.2 dBm

POWER SPECTRAL DENSITY PLOT

TOP REFERENCE LEVEL: 30 dBm


RESOLUTION BW: 3 kHz

CENTER FREQUENCY: 5837.5 MHZ

FREQUENCY SPAN: 2 MHZ

SWEEP TIME: 100 SEC/DIV

PEAK LEVEL: 5.1 dBm

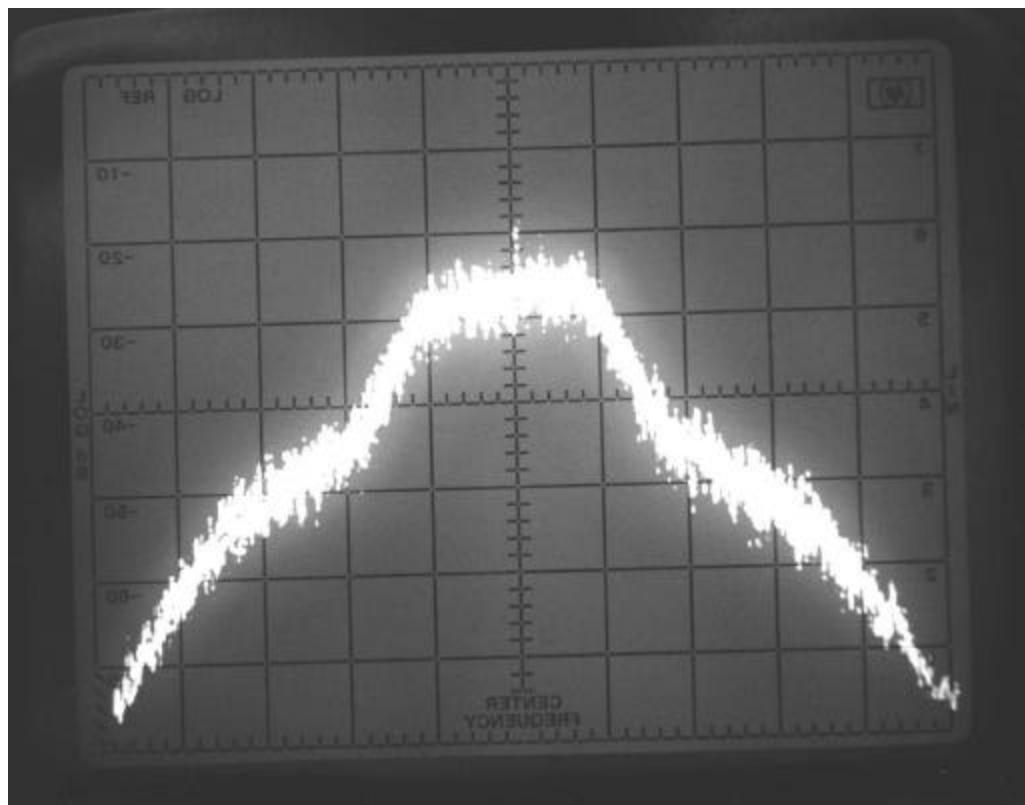
6 dB Channel Bandwidth

Minimum 6 dB BW: 500 kHz
RBW Setting on S.A.: 100 kHz

Readings from spectrum analyzer:

5737 MHz - 10.9 MHz

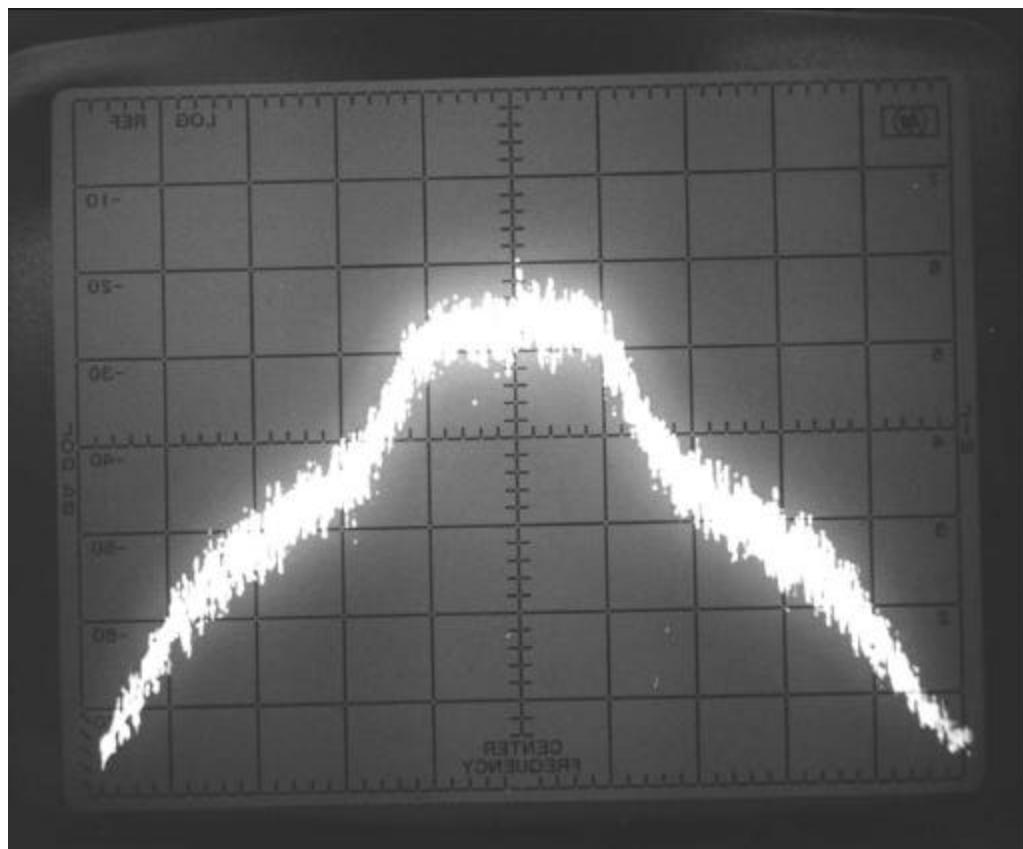
5817 MHz - 10.6 MHz


5837 MHz - 10.7 MHz

SEE FOLLOWING 3 PLOTS

6 dB CHANNEL BANDWIDTH PLOT

TOP REFERENCE LEVEL: 30 dBm
RESOLUTION BW: 100 KHZ
CENTER FREQUENCY: 5737.5 MHZ
FREQUENCY SPAN: 50 MHZ (5 MHZ/DIV)


MEASURED BANDWIDTH: 10.9 MHZ

6 dB CHANNEL BANDWIDTH PLOT

TOP REFERENCE LEVEL: 30 dBm
RESOLUTION BW: 100 KHZ
CENTER FREQUENCY: 5817.5 MHZ
FREQUENCY SPAN: 50 MHZ (5 MHZ/DIV)

MEASURED BANDWIDTH: 10.6 MHZ

6 dB CHANNEL BANDWIDTH PLOT

TOP REFERENCE LEVEL: 30 dBm
RESOLUTION BW: 100 KHZ
CENTER FREQUENCY: 5837.5 MHZ
FREQUENCY SPAN: 50 MHZ (5 MHZ/DIV)

MEASURED BANDWIDTH: 10.7 MHZ

RF ANTENNA CONDUCTED SPURIOUS/HARMONICS EMISSIONS

Limit: 20 dB below Carrier Level
RBW Setting on S.A.: 100 kHz

SEE FOLLOWING DATA TABLES

FCC PART 15.247 – ANTENNA CONDUCTED SPURIOUS EMISSIONS**Frequency of Carrier = 5737.5 MHz****Limit = 20 dBc****TEST RESULTS**

LIMIT: -20 dB FROM PEAK CARRIER

<u>COMPONENT</u>	<u>FREQUENCY (MHZ)</u>	<u>RESULT (dB FROM PEAK)</u>
HARMONIC	11475.00	- 47
HARMONIC	17212.50	- 65
HARMONIC	22950.00	- 67
HARMONIC	28687.50	- 72
HARMONIC	34425.00	- 74

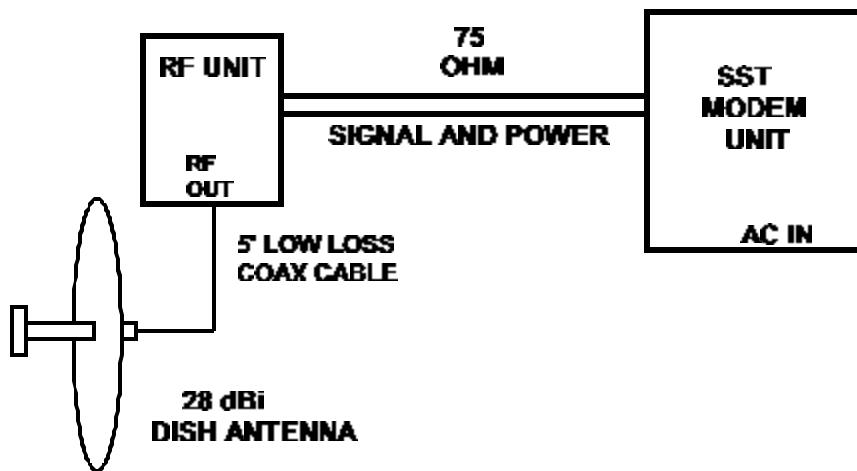
FCC PART 15.247 – ANTENNA CONDUCTED SPURIOUS EMISSIONS**Frequency of Carrier = 5817.5 MHz****Limit = 20 dBc****TEST RESULTS**

LIMIT: -20 dB FROM PEAK CARRIER

<u>COMPONENT</u>	<u>FREQUENCY (MHZ)</u>	<u>RESULT (dB FROM PEAK)</u>
HARMONIC	11635.0	- 46
HARMONIC	17452.5	- 57
HARMONIC	23270.0	- 68
HARMONIC	29087.5	- 73
HARMONIC	34905.0	- 74

FCC PART 15.247 – ANTENNA CONDUCTED SPURIOUS EMISSIONS**Frequency of Carrier = 5837.5 MHz****Limit = 20 dBc****TEST RESULTS**

LIMIT: -20 dB FROM PEAK CARRIER


<u>COMPONENT</u>	<u>FREQUENCY (MHZ)</u>	<u>RESULT (dB FROM PEAK)</u>
HARMONIC	11675.0	- 48
HARMONIC	17512.5	- 63
HARMONIC	23350.0	- 67
HARMONIC	29187.5	- 71
HARMONIC	35025.0	- 74

4.0 Test Configuration

RADIATED EMISSIONS

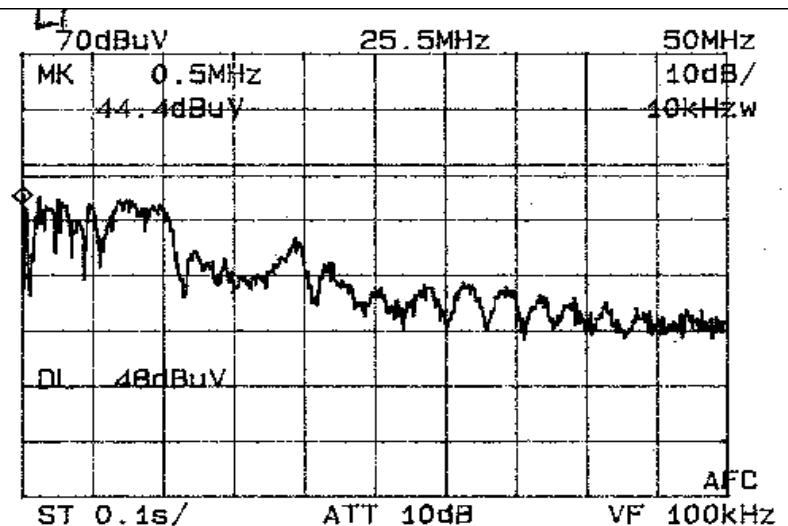
The EUT was set up on the center of the test table, in a manner which follows the general guidelines of ANSI C63.4, Section 6 "General Operating Conditions and Configurations".

This is described below:

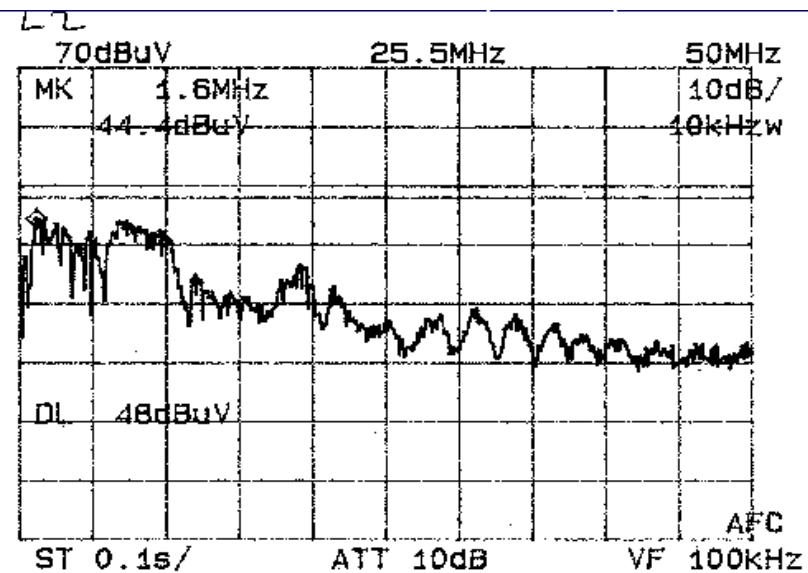
5.0 Conducted Emissions Scheme

The EUT is placed on an 80 cm high 1 X 1.5 m non-conductive table. Power to the CPU is provided through a Solar Corporation 50 ohm/50 uH Line Impedance Stabilization Network bonded to a 2.2 X 2 meter horizontal ground plane, and a 2.2 X 2 meter vertical ground plane. The LISN has its AC input supplied from a filtered AC power source. A separate LISN provides AC power to the peripheral equipment. I/O cables are moved about to obtain maximum emissions.

The 50 ohm output of the LISN is connected to the input of the spectrum analyzer and emissions in the frequency range of 450 kHz to 30 MHz are searched. The detector function is set to quasi-peak and the resolution bandwidth is set at 9 kHz, with all post-detector filtering no less than 10 times the resolution bandwidth for final measurements. All emissions within 20 dB of the limit are recorded in the data tables.


FCC CLASS B CONDUCTED EMISSIONS DATA

FCC ID: NK4-400011


CLIENT: IO WAVE, INC.
EUT: ioStar TX

LINE 1 - NEUTRAL				
FREQ	VOLTAGE	VOLTAGE	FCC LIMIT	MARGIN
MHz	dBuV	uV	uV	dB
0.513	44	166.0	250	-3.6
1.7	44	160.3	250	-3.9
3.1	44	151.4	250	-4.4
7.4	43	147.9	250	-4.6
19.8	37	67.6	250	-11.4
LINE 2 - PHASE				
FREQ	VOLTAGE	VOLTAGE	FCC LIMIT	MARGIN
MHz	dBuV	uV	uV	dB
0.515	41	109.6	250	-7.2
1.6	44	166.0	250	-3.6
3.1	43	147.9	250	-4.6
7.5	44	151.4	250	-4.4
19.8	37	67.6	250	-11.4

ioStar A.C. LINE-CONDUCTED EMISSIONS – L1

ioStar A.C. LINE-CONDUCTED EMISSIONS – L2

6.0 Radiated Emissions Scheme

The EUT is placed on an 80 cm high 1 X 1.5 meter non-conductive motorized turntable for radiated testing on the 3-meter open area test site. The emissions from the EUT are measured continuously at every azimuth by rotating the turntable. Guided horn and log periodic broadband antennas are mounted on an antenna mast to determine the height of maximum emissions. The height of the antenna is varied between 1 and 4 meters. Both the horizontal and vertical field components are measured.

The RF spectrum is searched from 30 MHz - 40.000 GHz.

The output from the antenna is connected to the input of the preamplifier. The preamp out is connected to the spectrum analyzer. The detector function is set to **Peak**. The resolution bandwidth of the spectrum analyzer is set at 120 kHz, for the frequency range of 30-1000 MHZ, and 1 MHz for the range of 1 GHz-40 GHz. A 10 Hz video BW setting is used to average readings above 1 GHz. All emissions within 20 dB of the limit are recorded in the data tables.

To convert the spectrum analyzer reading into a quantified E-field level to allow comparison with the FCC limits, it is necessary to account for various calibration factors. These factors include cable loss (CL) and antenna factors (AF). The AF/CL in dB/m is algebraically added to the Spectrum Analyzer Voltage in dbuV to obtain the Radiated Electric Field in dBuV/m. This level is then compared with the FCC limit.

Example:

Spectrum Analyzer Volt: VdBuV

Composite Factor: AF/CLdB/m

Electric Field: $EdBuV/m = VdBuV + AF/CLdB/m$

Linear Conversion: $EuV/m = \text{Antilog}(EdBuV/m/20)$

FCC 15.209 RADIATED EMISSIONS DATA

FCC ID: NK4-400011

CLIENT: IO WAVE, INC.
EUT: ioStar TX

CARRIER: 5737.5 MHZ

FREQ MHz	POL H/V	AVRG			AVRG			MRGN dB
		SPEC A dBuV	AF/CL dB/m	PREAMP GAIN	E-FIELD dBuV/m	E-FIELD uV/m	LIMIT uV/m	
11475.00	V	29.0	40.0	-22	47.0	223.8	500.0	-7.0
22950.00	H	21.0	36.0	-22	35.0	56.2	500.0	-19.0

CARRIER: 5737.5 MHZ

FREQ MHz	POL H/V	PEAK			PEAK			MRGN dB
		SPEC A dBuV	AF/CL dB/m	PREAMP GAIN	E-FIELD dBuV/m	E-FIELD uV/m	LIMIT uV/m	
11475.00	V	33.0	40.0	-22	51.0	354.8	5000	-23.0
22950.00	H	24.0	36.0	-22	38.0	79.4	5000	-36.0

FCC 15.209 RADIATED EMISSIONS DATA

FCC ID: NK4-400011

CLIENT: IO WAVE, INC.
EUT: IO LINK1 TX

CARRIER: 5817.5 MHZ

FREQ MHz	POL H/V	AVRG			AVRG			LIMIT uV/m	MRGN dB
		SPEC A dBuV	AF/CL dB/m	PREAMP GAIN	E-FIELD dBuV/m	E-FIELD uV/m			
11635.00	V	27.0	40.0	-22	45.0	177.8	500.0	-9.0	

CARRIER: 5817.5 MHZ

FREQ MHz	POL H/V	PEAK			PEAK			LIMIT uV/m	MRGN dB
		SPEC A dBuV	AF/CL dB/m	PREAMP GAIN	E-FIELD dBuV/m	E-FIELD uV/m			
11635.00	V	31.0	40.0	-22	49.0	281.8	5000	-25.0	

CLIENT: IO WAVE, INC.
EUT: IO LINK1 TX

CARRIER: 5837.5 MHZ

FREQ MHz	POL H/V	AVRG			AVRG			MRGN dB
		SPEC A dBuV	AF/CL dB/m	PREAMP GAIN	E-FIELD dBuV/m	E-FIELD uV/m	LIMIT uV/m	
11675.00	V	27.0	40.0	-22	45.0	177.8	500.0	-9.0

CARRIER: 5837.5 MHZ

FREQ MHz	POL H/V	PEAK			PEAK			MRGN dB
		SPEC A dBuV	AF/CL dB/m	PREAMP GAIN	E-FIELD dBuV/m	E-FIELD uV/m	LIMIT uV/m	
11675.00	V	30.0	40.0	-22	48.0	250.8	5000	-26.0

Table 1**Support Equipment**

Parabolic Dish Antenna - Radio Waves, Inc. Model SP2-5.8

- S/N: 100081-2M

- Gain = 28 dBi

Table 2

Interface Cables Used

7 ft., dual 75 ohm coaxial cables are used to connect the indoor modem unit to the outside RF transmitter unit.

A 5 ft., 1/4" Andrews L4A-NMNM Surfex 50 ohm coax line is used to connect the output of the RF unit to the dish antenna.

Table 3**Measurement Equipment Used**

The following equipment is used to perform measurements:

HP 435A RF Peak Power Meter	- Serial No. 1362016
EMCO Model 3110 Biconical Antenna	- Serial No. 1619
Antenna Research MWH-1826B Horn Antenna	- Serial No. 1005
EMCO Model 3116 Ridged Horn Antenna	- Serial No. 3007
HP 83051A Preamplifier	- Serial No. 72-2564C
Solar 8012-50-R-24-BNC LISN	- Serial No. 924867
Solar 8012-50-R-24-BNC LISN	- Serial No. 927230
HP 14IT w/ 8555 RF Sec. Spectrum Analyzer	- Serial No 1850A16168
4 Meter Antenna Mast	
Motorized Turntable	
Heliax FSJ1-50A 1/4" Superflex Coax Cable (12 Ft.)	