ITS Intertek Testing Services ETL SEMKO

Specific Absorption Rate (SAR) Test Report
for
Wireless Link
on the
Fixed Wireless Cellular Desktop Phone
Models: FWT-8100

Job Number: J20045137 Date of Test: April 20, 2001

Test Report: 20451371 Date of Report: April 25, 2001

Total number of pages in report: 38

Tested by	Suresh Kondapalli Test Engineer	Review Date:
Reviewed by: GT &C	David Chernomordik EMC Site Manager	Review Date 4/30/01

All services undertaken are subject to the following general policy: Reports are submitted for exclusive use of the client to whom they are addressed. Their significance is subject to the adequacy and representative character of the samples and to the comprehensiveness of the tests, examinations or surveys made. This report shall not be reproduced except in full, without written consent of Intertek Testing Services, NA Inc. This report must not be used to claim product endorsement by NVLAP, NIST nor any other agency of the U.S. Government.

Table of Contents

1.0	JOB	DESCRIPTION	2
	1.1	Client Information	2
	1.2	Equipment under test (EUT)	2
	1.3	Test plan reference	3
	1.4	System test configuration	3
		1.4.1 System block diagram & Support equipment	3
		1.4.2 Test Position	4
		1.4.3 Test Condition	
	1.5	Modifications required for compliance	5
	1.6	Additions, deviations and exclusions from standards	5
2.0	SAR	EVALUATION	<i>.</i>
	2.1	SAR Limits	6
	2.2	Configuration Photographs	7
	2.3	System Verification	
	2.1	Evaluation Procedures	13
	2.4	Test Results	14
3.0	EQU	IPMENT	16
	3.1	Equipment List	16
	3.2	Tissue Simulating Liquid	17
	3.3	E-Field Probe Calibration	17
	3.4	Measurement Uncertainty	18
	3.5	Measurement Traceability	18
4.0	WAF	RNING LABEL INFORMATION - USA	19
5.0	REF	ERENCES	20
6.0	Docu	ıment History	21
APPI	ENDIX	A - SAR Evaluation Data	22
A DDI	VION	R - F-Field Probe Calibration Data	20

Wireless Link, Model No. FWP-8100

1.0 JOB DESCRIPTION

1.1 Client Information

The EUT has been tested at the request of:

Company: Wireless Link

Address: 1909 Milmont Drive

Milpitas, CA 95035

USA

 Name of contact:
 Mr. Eric Maxon

 Telephone:
 (408) 719-1100

 Fax:
 (408) 719-9646

1.2 Equipment under test (EUT)

Product Descriptions:

Equipment	Fixed Wireless Cellular Desktop Phone				
Trade Name	Wireless Link Model No. FWT-8100				
FCC ID	NJIFW8100	JIFW8100 S/N No. Not Labeled			
Category	Portable	RF Uncontrolled			
	Exposure				
Frequency	824-849 MHz	System	AMPS		
Band (uplink)	TDMA				

EUT Antenna Description					
Type Monopole Configuration Fixed					
Dimensions	195 mm	Gain	0 dBi		
Location Top/Right Side					

Use of Product : The Fixed Wireless Cellular Desktop Phone is a stand-alone telephone

with digital TDMA and analog AMPS cellular transceiver radio system built-in. It provides extended telephone service bringing subscriber

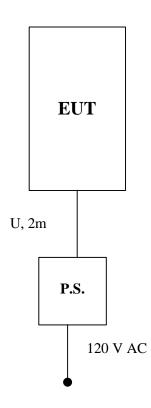
wireless access to a cellular network.

Manufacturer: SAME as above.

Production is planned: [X] Yes, [] No

EUT receive date: April 20, 2001

EUT received condition: Good condition prototype


Test start date: April 20, 2001

Test end date: April 20, 2001

1.3 Test plan reference

FCC rule part 2.1093, FCC Docket 96-326 & Supplement C to OET Bulletin 65

- 1.4 System test configuration
- 1.4.1 System block diagram & Support equipment

Item #	Description	Model No.	Serial No.
1	CUI Stack Switching Power Supply	DSA-0151A-06A	DPS060200-P5

1.4.2 Test Position

The FWP-8100 was configured for testing in a typical fashion (as a customer would normally use it), and in the confines as outlined in C95.1 (1992) and Supplement C of OET 65 (1998). Please refer to figure 2 below for the position details:

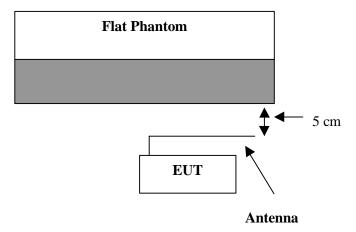


Figure 2: Intended use position

1.4.3 Test Condition

During tests, the worst case data (max. RF coupling) was determined with following conditions:

EUT Antenna	External	Orientation	Flat (Muscle)	
Usage	Body	Distance between antenna axis at the joint and the liquid surface:	5 cm	
Simulating human hand	Not Used	EUT Battery	Tested with power cord	
Power output		S (conducted Power at antenna terminal) A (conducted Power at antenna terminal)		

The spatial peak SAR values were accessed for lowest, middle and highest operating channels defined by the manufacturer. Tests were performed in AMPS/TDMA mode.

1.5 Modifications required for compliance

No modifications were implemented by Intertek Testing Services.

1.6 Additions, deviations and exclusions from standards

No additions, deviations or exclusions have been made from standard.

Wireless Link, Model No. FWP-8100

2.0 SAR EVALUATION

2.1 SAR Limits

The following FCC limits for SAR apply to devices operate in General Population/Uncontrolled Exposure environment:

EXPOSURE (General Population/Uncontrolled Exposure environment)	SAR (W/kg)
Average over the whole body	0.08
Spatial Peak (1g)	1.60
Spatial Peak for hands, wrists, feet and ankles (10g)	4.00

2.2 Configuration Photographs

SAR measurement Test Setup

Configuration Photographs Continued 2.2

SAR Measurement Test Setup

Configuration Photographs Continued 2.2

SAR Measurement Test Setup

Date of Test: April 20, 2001

2.2 Configuration Photographs Continued

SAR Measurement Test Setup

Configuration Photographs Continued 2.2

EUT PHOTO

Configuration Photographs Continued 2.2

EUT PHOTO

2.3 System Verification

Prior to the assessment, the system was verified to the $\pm 5\%$ of the specifications by using the system validation kit. The validation was performed at 900 MHz.

Validation kit	Targeted SAR _{1g} (mW/g)	Measured SAR _{1g} (mW/g)
D900V2, S/N #: 013	9.5	9.45

2.1 Evaluation Procedures

The SAR evaluation was performed with the following procedures:

- a. SAR was measured at a fixed location above the ear point and used as a reference value for the assessing the power drop.
- b. The SAR distribution at the exposed side of the head was measured at a distance of 4.0 mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 20 mm x 20 mm. Based on this data, the area of the maximum absorption was determined by spline interpolation.
- c. Around this point, a volume of 32 mm x 32 mm x 34 mm was assessed by measuring 5 x 5 x 7 points. Based on this data set, the spatial peak SAR value was evaluated with the following procedure:
 - I) The data at the surface were extrapolated, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measurement point is 1.6 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in Z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
 - ii) The maximum interpolated value was searched with a straightforward algorithm. Around this maximum, the SAR values averaged over the spatial volumes (1g or 10g) were computed using the 3-D spline interpolation algorithm. The 3-D spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y and z directions). The volume was integrated with the trapezoidal algorithm. 1000 points (10 x 10 x 10) were interpolated to calculate the average.
 - iii) All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- d. Re-measurements of the SAR value at the same location as in step a. above. If the value changed by more than 5 %, the evaluation was repeated.

2.4 Test Results

The results on the following page(s) were obtained when the device was tested in the condition described in this report. Detail measurement data and plots, which reveal information about the location of the maximum SAR with respect to the device, are reported in Appendix A.

Trade Name:	Wireless Link	Model No.:	FWT-8100
Serial No.:	Not Labeled	Test Engineer:	Suresh Kondapalli

TEST CONDITIONS				
Ambient Temperature	23 °C	Relative Humidity	55 %	
Test Signal Source	Test Mode	Signal Modulation	AMPS TDMA	
Output Power Before SAR Test AMPS TDMA	27.2 dBm 35.4 dBm	Output Power After SAR Test	26.9 dBm 35.4 dBm	
Test Duration	23 Min.	Number of Battery Change	1	

EUT Position: Middle Antenna 5 cm from Phantom					
Channel	Operating	Duty	Measured SAR _{1g}	Plot Number	
MHz	Mode	Cycle ratio	(mW/g)		
824	AMPS	1	0.322	1	
837	AMPS	1	0.209	2	
849	AMPS	1	0.110	3	
824	TDMA	3	0.173	4	
837	TDMA	3	0.112	5	
849	TDMA	3	0.0671	6	

3.0 EQUIPMENT

3.1 Equipment List

The Specific Absorption Rate (SAR) tests were performed with the SPEAG model DASY 3 automated near-field scanning system, which is a package, optimized for dosimetric evaluation of mobile radios [3].

The following major equipment/components were used for the SAR evaluations:

	SAR Measurement System		
EQUIPMENT	SPECIFICATIONS	S/N #	CAL. DATE
Robot	Stäubi RX60L	597412-01	N/A
	Repeatability: ± 0.025mm Accuracy: 0.806x10 ⁻³ degree Number of Axes: 6		
E-Field Probe	ET3DV4	1122	03/18/01
	Frequency Range: 10 MHz to 6 GHz Linearity: ± 0.2 dB Directivity: ± 0.1 dB in brain tissue		
Data Acquisition	DAE3	317	N/A
	Measurement Range: 1μV to >200mV Input offset Voltage: < 1μV (with auto zero) Input Resistance: 200 M		
Phantom	Generic Twin V3.0	N/A	N/A
	Type: Generic Twin, Homogenous Shell Material: Fiberglass Thickness: 2 ± 0.1 mm Capacity: 20 liter Ear spacer: 4 mm (between EUT ear piece at	nd tissue simulati	ng liquid)
Simulated Tissue	Mixture	N/A	04/20/01
	Please see section 6.2 for details		
Power Meter	HP 8900D w/ 84811A sensor	3607U00673	08/01/00
	Frequency Range: 100kHz to 18 GHz Power Range: 300µW to 3W		

3.2 Tissue Simulating Liquid

Muscle			
Ingredient	Frequency (800 – 900 MHz)		
Water	54.05 %		
Sugar	45.05 %		
Salt	0.1 %		
Bactericide	0.8%		

The dielectric parameters were verified prior to assessment using the HP 85070A dielectric probe kit and the HP 8753C network Analyzer. The dielectric parameters were:

Frequency (MHz) r *		*(mho/m)	**(kg/m ³⁾	
835	56.5 ± 5%	$0.95 \pm 10\%$	1000	

^{*} Worst case uncertainty of the HP 85070A, dielectric probe kit

Note: The amount of each ingredient specified in the tables is not the exact amounts of the final test solution. The final test solution was adjusted by adding small amounts of water, sugar, and/or salt to calibrate the solution to meet the proper dielectric parameters.

3.3 E-Field Probe Calibration

Probes were calibrated by the manufacturer in the TEM cell ifi 110. To ensure consistency, a strict protocol was followed. The conversion factor (ConF) between this calibration and the measurement in the tissue simulation solution was performed by comparison with temperature measurement and computer simulations. Probe calibration factors are included in Appendix B.

^{**} Worst case assumption

3.4 Measurement Uncertainty

The uncertainty budget has been determined for the DASY3 measurement system according to the NIS81 [5] and the NIST 1297 [6] documents and is given in the following table. The extended uncertainty (K=2) was assessed to be 23.5 %

UNCERTAINTY BUDGET								
Uncertainty Description	Error	Distrib.	Weight	Std.Dev.				
Probe Uncertainty	Probe Uncertainty							
Axial isotropy	±0.2 dB	U-shape	0.5	±2.4 %				
Spherical isotropy	±0.4 dB	U-shape	0.5	±4.8 %				
Isotropy from gradient	±0.5 dB	U-shape	0					
Spatial resolution	±0.5 %	Normal	1	±0.5 %				
Linearity error	±0.2 dB	Rectang.	1	±2.7 %				
Calibration error	±3.3 %	Normal	1	±3.3 %				
SAR Evaluation Uncertainty								
Data acquisition error	±1 %	Rectang.	1	±0.6 %				
ELF and RF disturbances	±0.25 %	Normal	1	±0.25 %				
Conductivity assessment	±10 %	Rectang.	1	±5.8 %				
Spatial Peak SAR Evaluation	Uncertainty							
Extrapol boundary effect	±3 %	Normal	1	±3 %				
Probe positioning error	±0.1 mm	Normal	1	±1 %				
Integrat. And cube orient	±3 %	Normal	1	±3 %				
Cube shape inaccuracies	±2 %	Rectang.	1	±1.2 %				
Device positioning	±6 %	Normal	1	±6 %				
Combined Uncertanties								
				±11.7 %				

3.5 Measurement Traceability

All measurements described in this report are traceable to National Institute of Standards and Technology (NIST) standards or appropriate national standards.

Wireless Link, Model No. FWP-8100

4.0 WARNING LABEL INFORMATION - USA

See attached users manual.

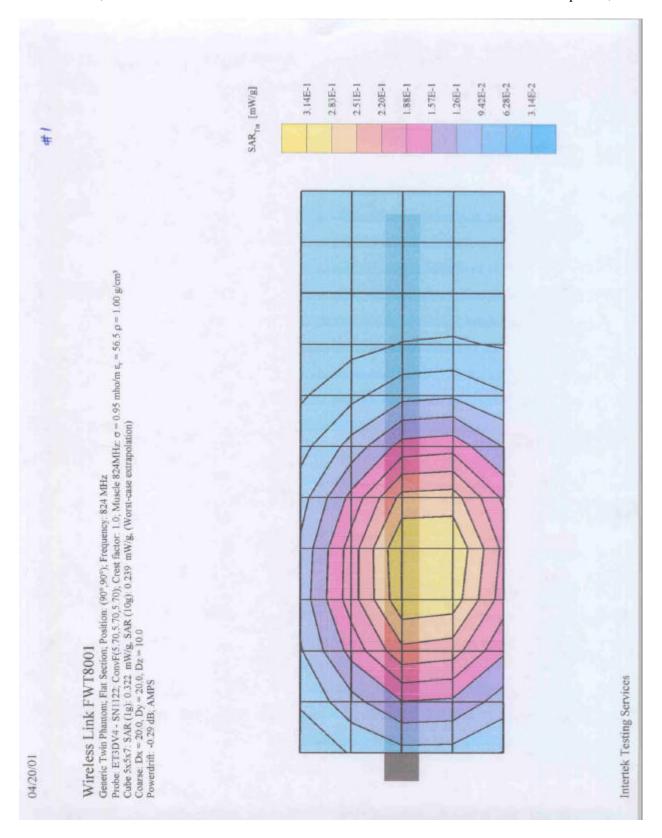
Wireless Link, Model No. FWP-8100

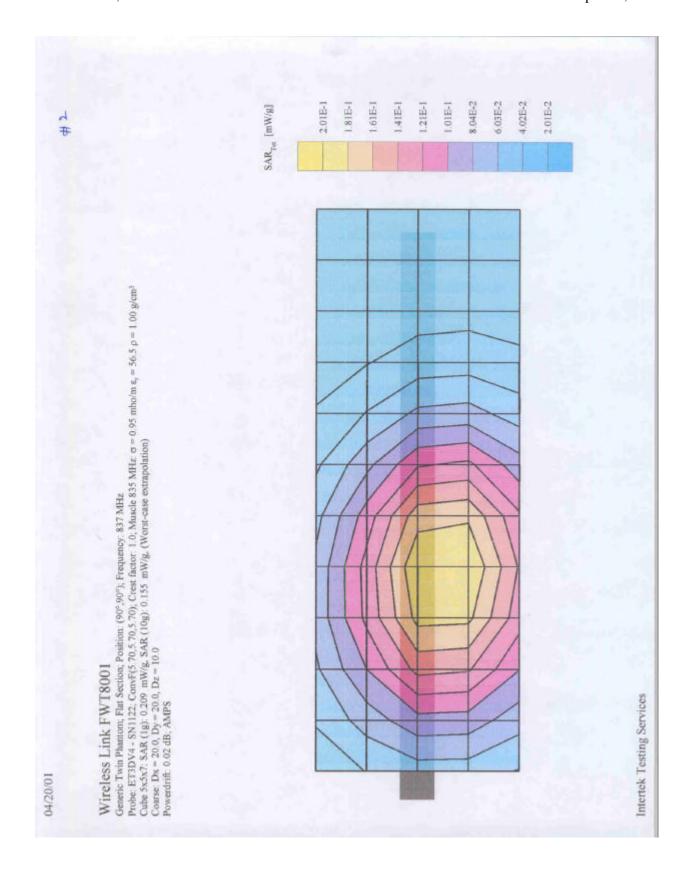
5.0 REFERENCES

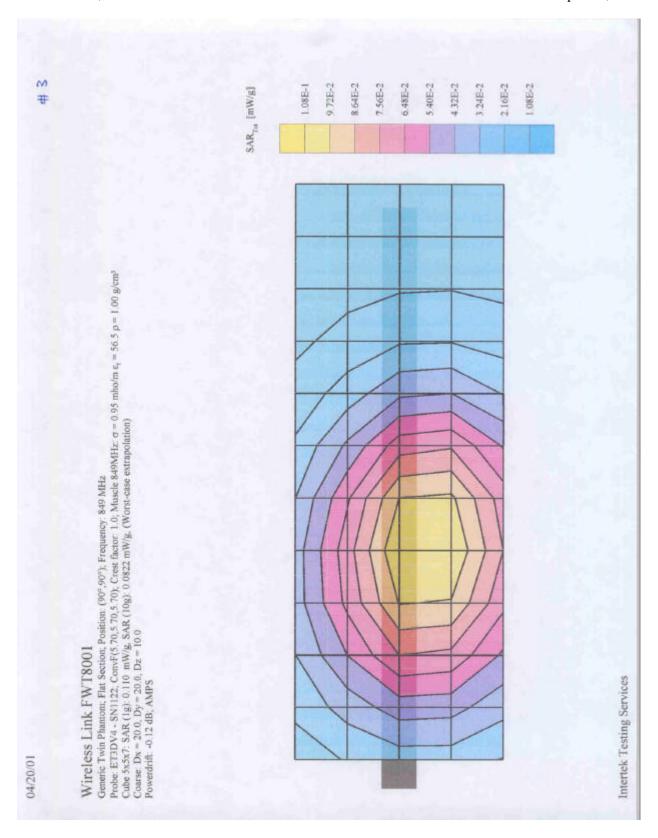
- [1] ANSI, ANSI/IEEE C95.1-1991: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3kHz to 300 Ghz, The Institute of electrical and Electronics Engineers, Inc., New York, NY 10017, 1992
- [2] Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields", OET Bulletin 65, FCC, Washington, D.C. 20554, 1997
- [3] Thomas Schmid, Oliver Egger, and Niels Kuster, "Automated E-field scanning system for dosimetric assessments", *IEEE Transaction on Microwave Theory and Techniques*, vol. 44, pp. 105-113, Jan. 1996.
- [4] Niels Kuster, Ralph Kastle, and Thomas Schmid, "Dosimetic evaluation of mobile communications equipment with know precision", IEICE Transactions on Communications, vol. E80-B, no. 5, pp.645-652, May 1997.
- [5] NIS81, NAMAS, "The treatment of uncertainty in EMC measurement", Tech. Rep., NAMAS Executive, National Physical Laboratory, Teddinton, Middlesex, England, 1994.
- [6] Barry N. Tayor and Chris E. Kuyatt, "Guidelines for evaluating and expressing the uncertainty of NIST measurement results", Tech. Rep., National Institude of Standards and Technology, 1994.

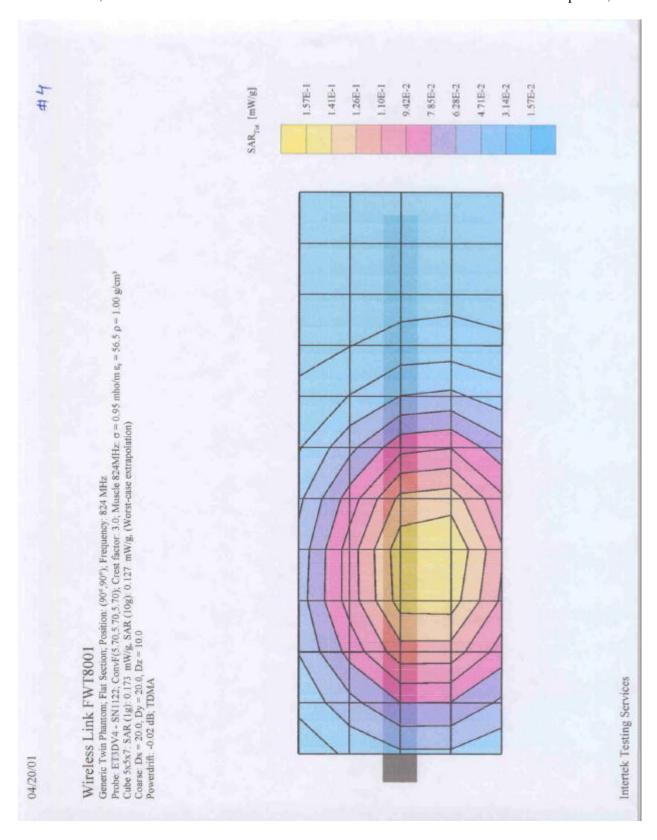
Report # 20451371 20 of 38 FCC Part 2 SAR Evaluation

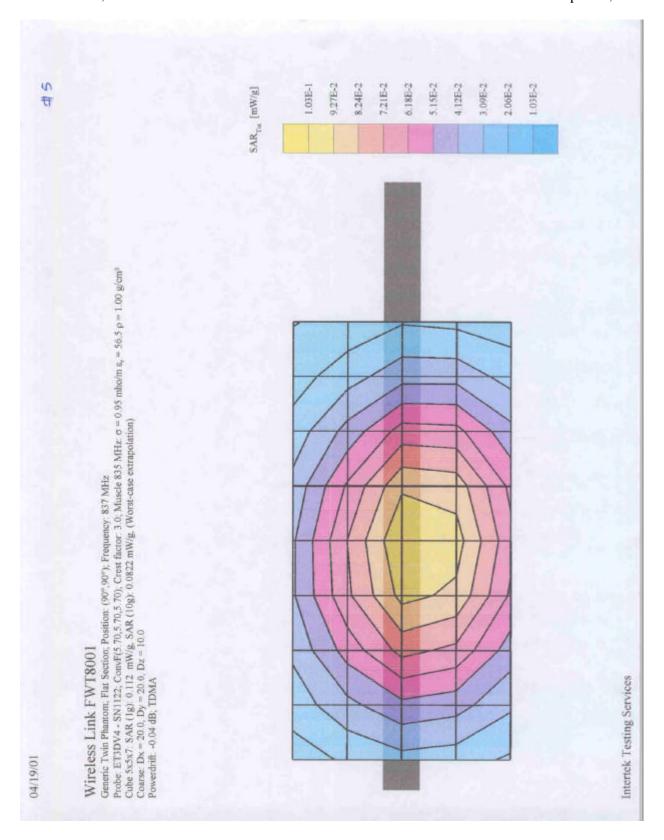
6.0 Document History

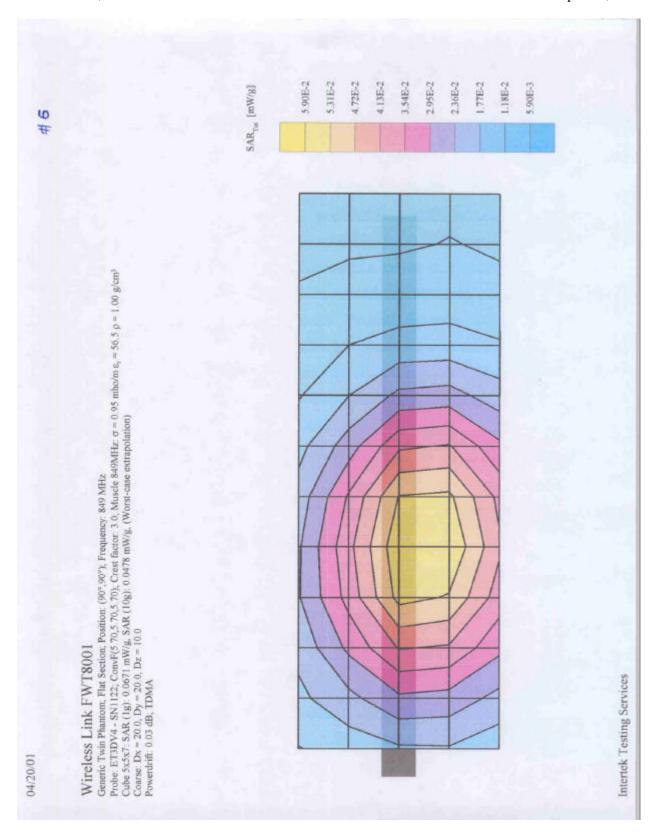

Revision/ Job Number	Writer Initials	Date	Change
1.0 / 20451371	SS	April 25, 2001	Original document


Wireless Link, Model No. FWP-8100


APPENDIX A - SAR Evaluation Data


Please note that the graphical visualization of the phone position onto the SAR distribution gives only limited information on the current distribution of the device, since the curvature of the head results in graphical distortion. Full information can only be obtained either by H-field scans in free space or SAR evaluation with a flat phantom.


Powerdrift is the measurement of power drift of the device over one complete SAR scan.



Wireless Link, Model No. FWP-8100

APPENDIX B - E-Field Probe Calibration Data

See attached pages.

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Replacement Probe

Dosimetric E-Field Probe

Type:	ET3DV4
Serial Number:	1122
Place of Calibration:	Zurich
Date of Calibration:	Mar. 19, 2001
Calibration Interval:	12 months

Schmid & Partner Engineering AG hereby certifies, that this device has been calibrated on the date indicated above. The calibration was performed in accordance with specifications and procedures of Schmid & Partner Engineering AG.

Wherever applicable, the standards used in the calibration process are traceable to international standards. In all other cases the standards of the Laboratory for EMF and Microwave Electronics at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland have been applied.

Calibrated by:

Approved by:

Report # 20451371 30 of 38 FCC Part 2 SAR Evaluation

Schmid & Partner Engineering AG

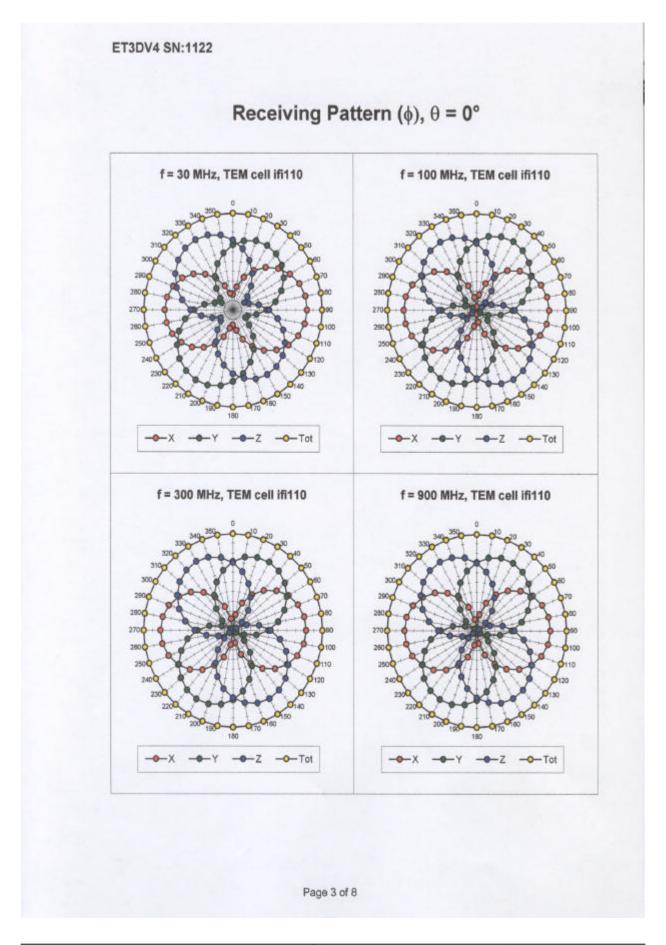
Zeughausstrasse 43, 8004 Zurich, Switzerland, Telephone +41 1 245 97 00, Fax +41 1 245 97 79

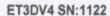
Probe ET3DV4

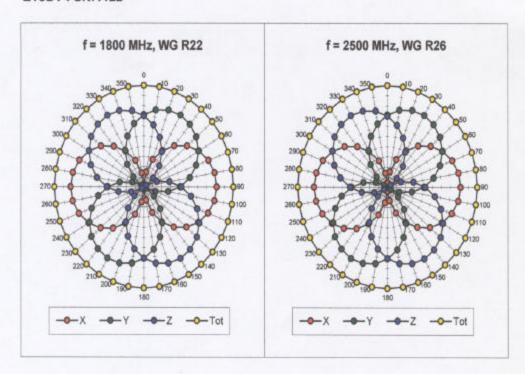
SN:1122

Manufactured:

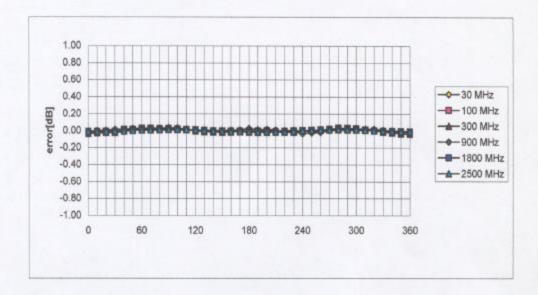
February 1, 1996

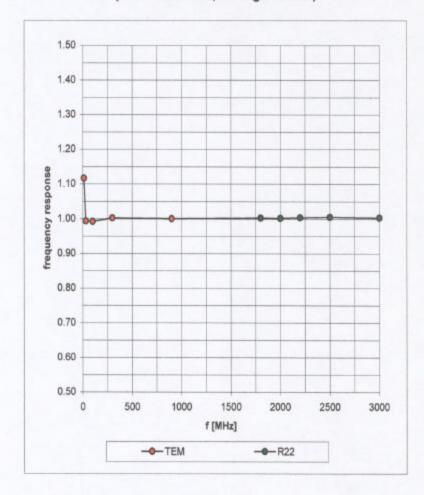

Last calibration: Recalibrated: September 21, 1999


March 17, 2001


Calibrated for System DASY3

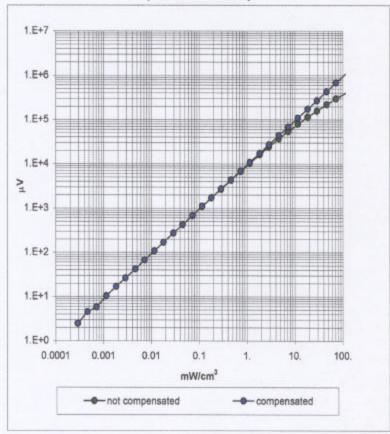
DASY3 - Parameters of Probe: ET3DV4 SN:1122

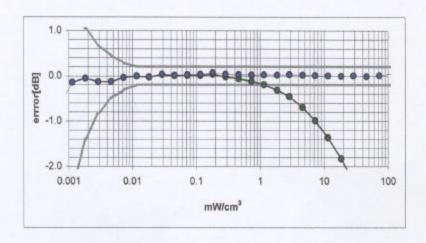

Sensi	tivity in Free	Space		Diode	Compress	ion
	NormX	2.28	$\mu V/(V/m)^2$		DCP X	99 mV
	NormY	2.53	$\mu V/(V/m)^2$		DCP Y	99 mV
	NormZ	2.44	$\mu V/(V/m)^2$		DCP Z	99 mV
Sensi	tivity in Tissu	ue Simi	ulating Liquid			
Head	450 M	Hz	ε _r = 43.5 ± 5%	6 σ	= 0.87 ± 10%	mho/m
	ConvF X	6.02	extrapolated		Boundary ef	fect:
	ConvF Y	6.02	extrapolated		Alpha	0.24
	ConvF Z	6.02	extrapolated		Depth	3.20
Head	900 M	Hz	$\epsilon_{\rm r}$ = 42 ± 5%	σ	= 0.97 ± 10%	mho/m
	ConvF X	5.65	± 7% (k=2)		Boundary ef	fect:
	ConvF Y	5.65	±7% (k=2)		Alpha	0.37
	ConvF Z	5.65	± 7% (k=2)		Depth	2.85
Brain	1500 M	Hz	ϵ_r = 41 ± 5%	σ	σ = 1.32 ± 10% mho/m	
	ConvF X	5.16	interpolated		Boundary ef	fect:
	ConvF Y	5.16	interpolated		Alpha	0.53
	ConvF Z	5.16	interpolated		Depth	2.40
Brain	1800 M	Hz	$\epsilon_{\rm r}$ = 41 ± 5%	σ	= 1.69 ± 10%	mho/m
	ConvF X	4.92	± 7% (k=2)		Boundary ef	fect:
	ConvF Y	4.92	± 7% (k=2)		Alpha	0.61
	ConvF Z	4.92	± 7% (k=2)		Depth	2.17
Senso	or Offset					
	Probe Tip to	Sensor Ce	enter	2.7		mm
	Optical Surfa	ce Detect	ion	1.5 ± 0.2	mm	


Isotropy Error (ϕ), θ = 0°

Page 4 of 8

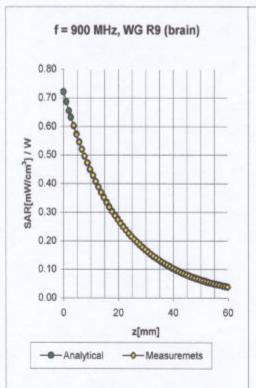
Frequency Response of E-Field

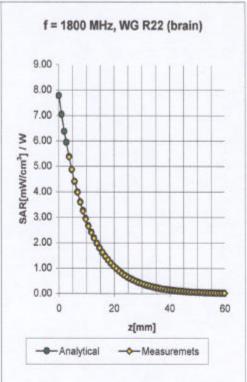

(TEM-Cell:ifi110, Waveguide R22)



Page 5 of 8

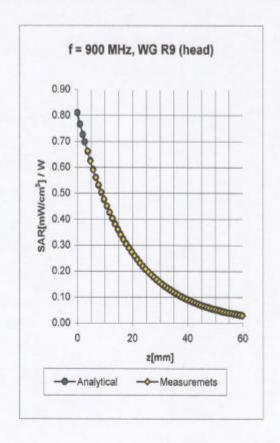
Dynamic Range f(SAR_{brain})


(TEM-Cell:ifi110)



Page 6 of 8

Conversion Factor Assessment


Brain	900 MHz		$\varepsilon_{\rm r}$ = 42.5 ± 5%	σ = 0.86 ± 10% mho/m	
	ConvF X	5.62	± 7% (k=2)	Boundary eff	ect:
	ConvF Y	5.62	± 7% (k=2)	Alpha	0.39
	ConvF Z	5.62	± 7% (k=2)	Depth	2.63

1000 8	inz ε _τ = 41 1 5%	0 - 1.09 1 10%	mno/m
ConvF X	4.92 ± 7% (k=2)	Boundary e	ffect:
ConvF Y	4.92 ±7% (k=2)	Alpha	0.61
ConvF Z	4.92 ±7% (k=2)	Depth	2.17

Page 7 of 8

Brain

Conversion Factor Assessment

Head	900 MHz		$\varepsilon_{\rm r}$ = 42 ± 5%	σ = 0.97 ± 10% mho/m	
	ConvF X	5.65	± 7% (k=2)	Boundary et	ffect:
	ConvF Y	5.65	± 7% (k=2)	Alpha	0.37
	ConvF Z	5.65	± 7% (k=2)	Depth	2.85

Page 8 of 8