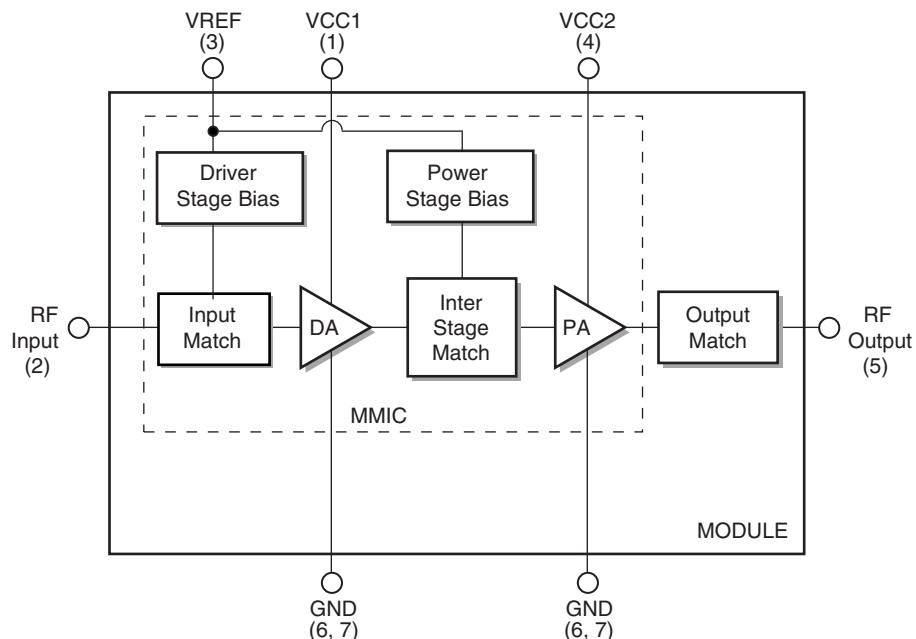


This document contains information on a product under development. The parametric information contains target parameters that are subject to change.

RM806

TDMA/AMPS 3 to 4-Volt Power Amplifier (824—849 MHz)

The RM806 dual mode Time Division Multiple Access (TDMA)/Advanced Mobile Phone Service (AMPS) Power Amplifier is a fully matched 6-pin LCC surface mount module designed for mobile units operating in the 824-849 MHz cellular band width. This device meets stringent IS-136 linearity requirements beyond 30 dBm output power and can be driven to power output levels beyond 31 dBm for high efficiency FM mode operation. A single GaAs Microwave Monolithic Integrated Circuit (MMIC) contains all active circuitry in the module. The MMIC contains on-board bias circuitry, as well as input and inter-stage matching circuits. The output match is realized off-chip within the module package to optimize efficiency and power performance into a $50\ \Omega$ load. This device is manufactured with Conexant's GaAs HBT process that provides for all positive voltage DC supply operation while maintaining high efficiency and good linearity. Primary bias to the RM806 can be supplied directly from a three cell nickel-cadmium, single cell lithium-ion, or other suitable battery with output in the 3-4 volt range. Power down is accomplished by setting the voltage on the low current reference pin to zero volts. No external supply side switch is needed as typical "off" leakage is a few microamperes with full primary voltage supplied from the battery.


Distinguishing Features

- Low voltage positive bias supply
- Good linearity
- High efficiency
- Dual mode operation
- Large dynamic range
- 6-pin LCC package (6 x 6 x 1.5 mm)
- Power down control

Applications

- Digital cellular (TDMA)
- Analog cellular (AMPS)
- Wireless local loop

Functional Block Diagram

Electrical Specifications

The following tables list the electrical characteristics for the RM806 Power Amplifier. [Table 1](#), lists the absolute maximum rating for continuous operation. [Table 2](#), lists the recommended operating conditions for achieving the electrical performance listed in [Table 3](#). [Table 3](#), lists the electrical performance of the RM806 Power Amplifier over the recommended operating conditions.

Table 1. Absolute Maximum Ratings⁽¹⁾

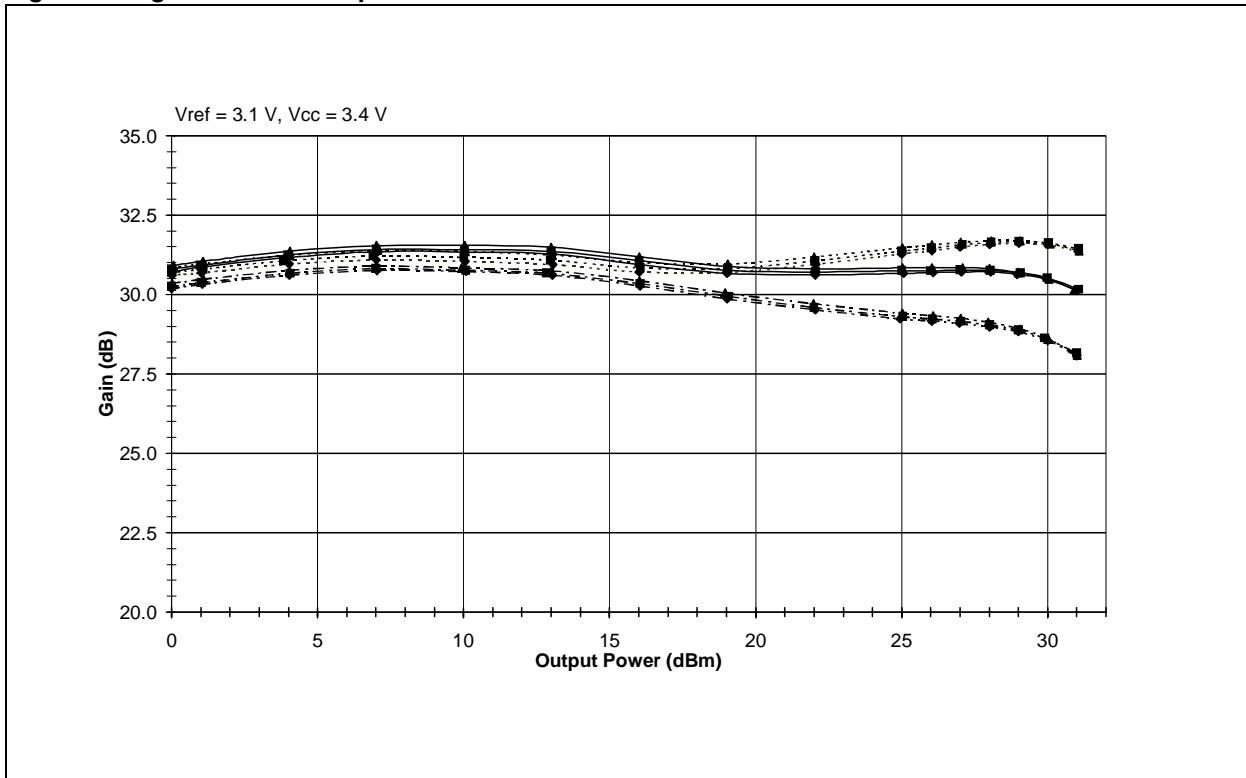
Parameter	Symbol	Min	Nominal	Max	Unit
Rf Input Power	P _{in}	—	3	8	dBm
Supply Voltage	V _{cc}	—	3.4	5	Volts
Reference Voltage	V _{ref}	—	3.1	3.3	Volts
Case Operating Temperature	T _c	-30	25	+110	°C
Storage Temperature	T _{stg}	-55	—	+125	°C
NOTE(S):					
(1) No damage assuming only one parameter is set at limit at a time with all other parameters set at or below nominal value.					

Table 2. Recommended Operating Conditions

Parameter	Symbol	Min	Nominal	Max	Unit
Supply Voltage	V _{cc}	3.0	3.4	4.2	Volts
Reference Voltage	V _{ref}	—	3.1	—	Volts
Operating Frequency	F ₀	824	836.5	849	MHz
Operating Temperature	T ₀	-30	+25	+85	°C

Table 3. Electrical Specifications

Characteristics	Condition	Symbol	Min	Typical	Max	Unit
Quiescent current	—	—	—	150	185	mA
Reference current	$P_o \leq 32 \text{ dBm}$	I_{ref}	—	6	9	mA
Leakage current	PA Off	—	—	2	25	μA
Gain	$P_o = 0 \text{ dBm}$	G	27	31	—	dB
Gain	$P_o = 30 \text{ dBm}$	G_p	26	28	—	dB
Analog Mode Power Added Efficiency	$P_o = 31 \text{ dBm}$	PAEa	41	43	—	%
Digital Mode Power Added Efficiency	$P_o = 30 \text{ dBm}$	PAEd	37	40	—	%
Adjacent Channel Power ⁽⁴⁾	$P_o \leq 30 \text{ dBm}$	—	—	—	—	—
—30 kHz Offset	$P_o \leq 30 \text{ dBm}$	ACP1	—27	—31	—	dBc
—60 kHz Offset	$P_o \leq 30 \text{ dBm}$	ACP2	—46	—51	—	dBc
—90 kHz Offset	$P_o \leq 30 \text{ dBm}$	ACP3	—50	—58	—	dBc
Harmonics			—	—	—	—
Second	$P_o \leq 31 \text{ dBm}$	H2	—	—40	—30	dBc
Third	$P_o \leq 31 \text{ dBm}$	H3	—	—40	—30	dBc
PA “Turn Off Time”	—	—	—	10	30	μs
PA “Turn On Time”	—	—	—	10	30	μs
Noise Power in RX Band 869-894 MHz ⁽⁵⁾	$P_o \leq -31 \text{ dBm}$	No	—	—132	—	dBm/Hz
Noise Figure	—	NF	—	5	7	dB
Input VSWR	—	—	—	2:1	—	—
Stability (Spurious output) ⁽³⁾	5:1 VSWR All phases	S	—	—60	—	dBc
Ruggedness – No damage $P_o \leq 31 \text{ dBm}$	No damage	Ru	8:1	—	—	VSWR


NOTE(S):

1. $V_{cc} = +3.4 \text{ V}$, $V_{ref} = +3.1 \text{ V}$, $\text{FREQ}' = 824\text{--}849 \text{ MHz}$, $T_c = -30 \text{ }^\circ\text{C}$ to $+85 \text{ }^\circ\text{C}$.
2. Min/Max values in table indicate performance over process corners and conditions specified in Note 1 unless otherwise detailed.
- (3) $T_c = 25 \text{ }^\circ\text{C}$.
- (4) Also meets same linearity for $P_o \leq 28.5 \text{ dBm}$ @ $V_{cc} = +3.0 \text{ V}$ and as further specified in Note 1.
- (5) With NADC modulation applied. $T_c = 25 \text{ }^\circ\text{C}$

Characterization Data

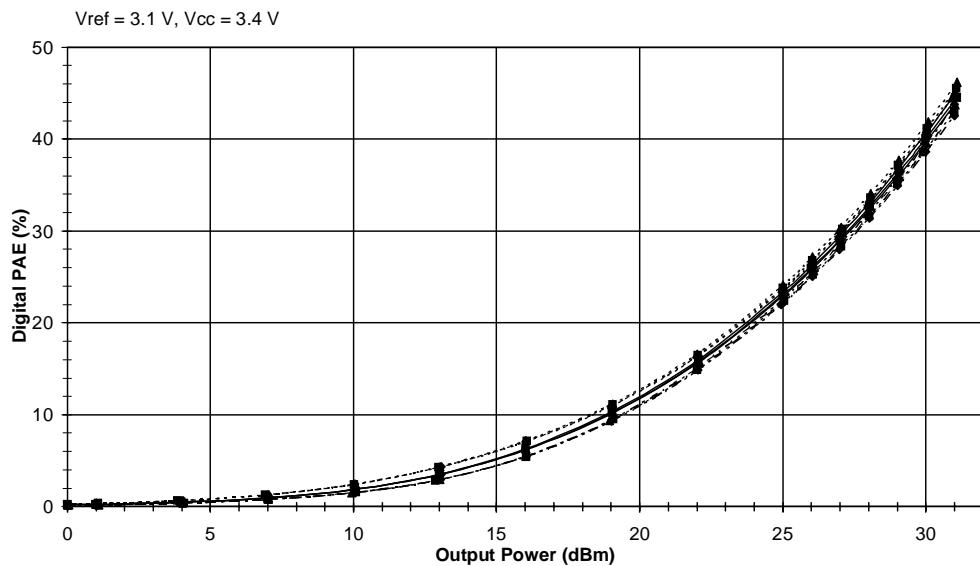
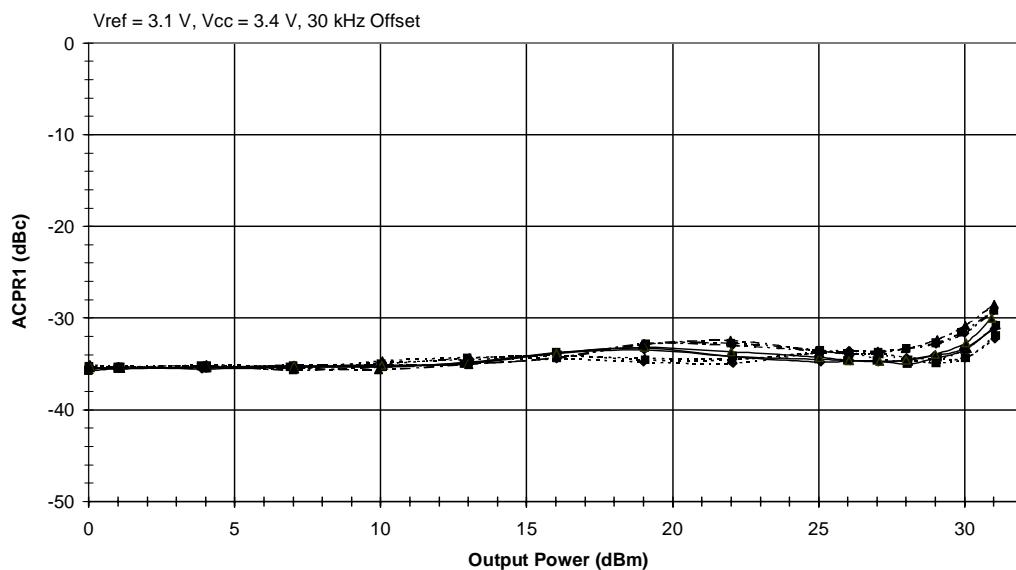
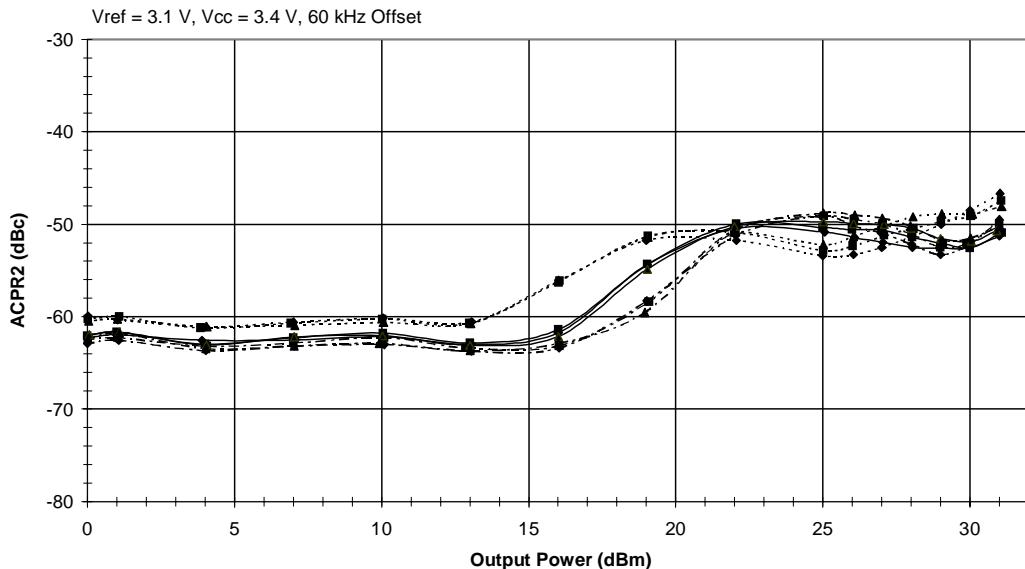
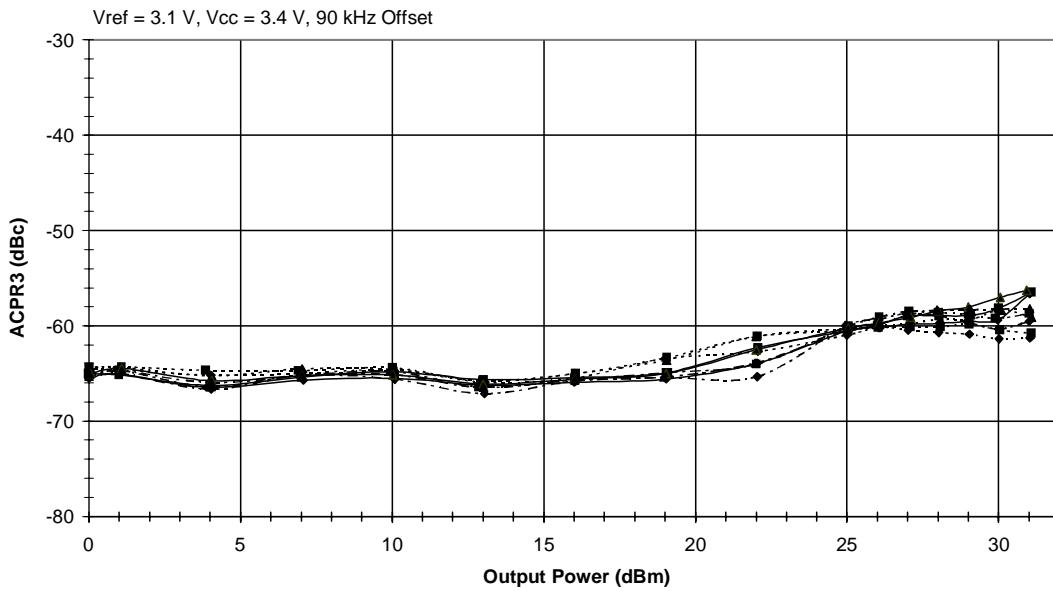


The following graphs illustrate characteristics for a typical RM806 Power Amplifier. The amplifier was selected by characterizing a group of devices and selecting a part having average electrical performance both at nominal and worst case. [Figures 1 through 5](#) illustrate the digital signal characteristics and [Figures 6 through 9](#) illustrate the analog characteristics for the RM806.

Figure 1. Digital Gain vs. Output Power

Legend

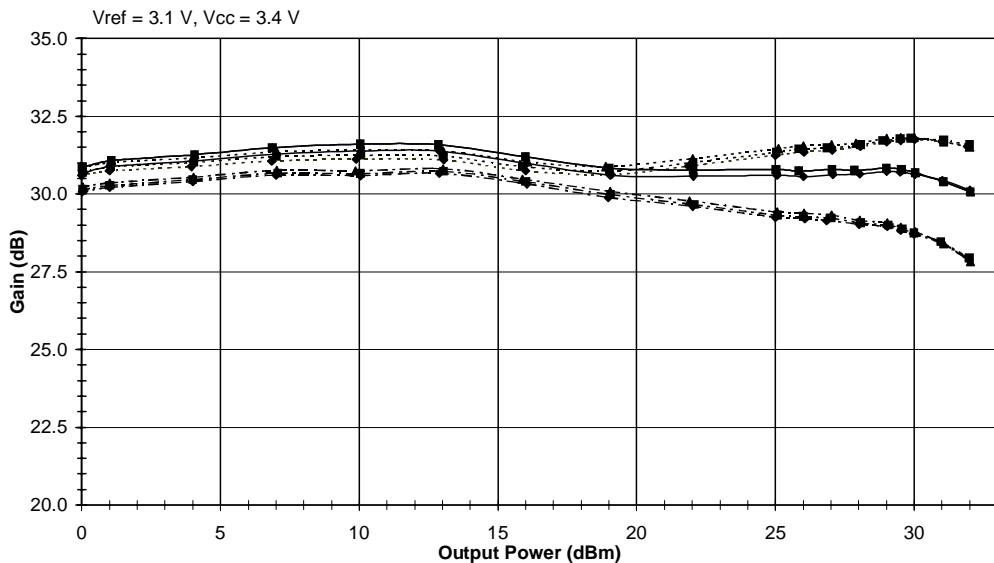
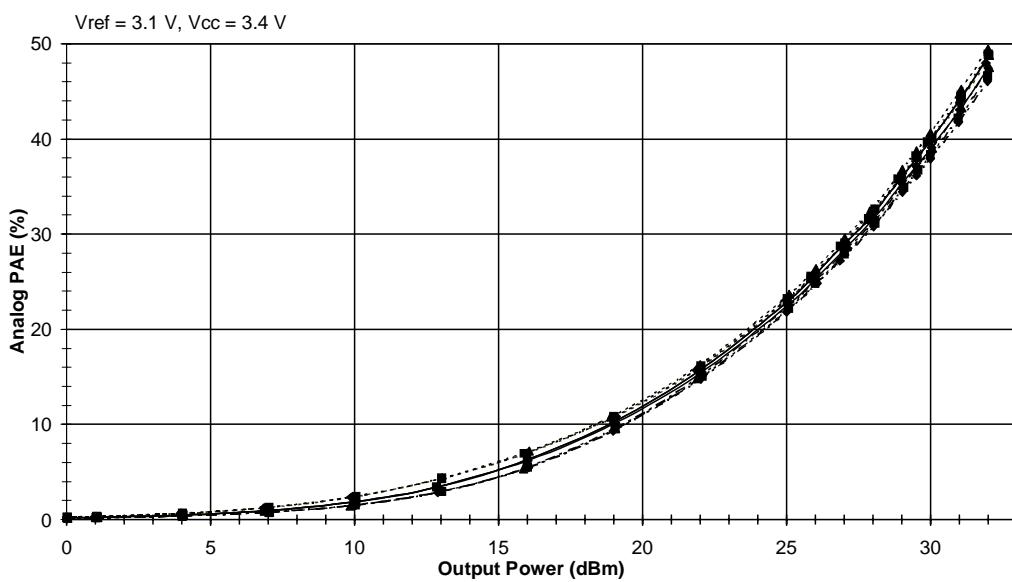


---◆---	824 MHz @ -30 °C	◆	824 MHz @ +25 °C	◆	824 MHz @ +85 °C
---■---	837 MHz @ -30 °C	■	837 MHz @ +25 °C	■	837 MHz @ +85 °C
---▲---	849 MHz @ -30 °C	▲	849 MHz @ +25 °C	▲	849 MHz @ +85 °C

Figure 2. Digital Power Added Efficiency**Figure 3. Digital Adjacent Channel Power vs. Output Power****Legend**

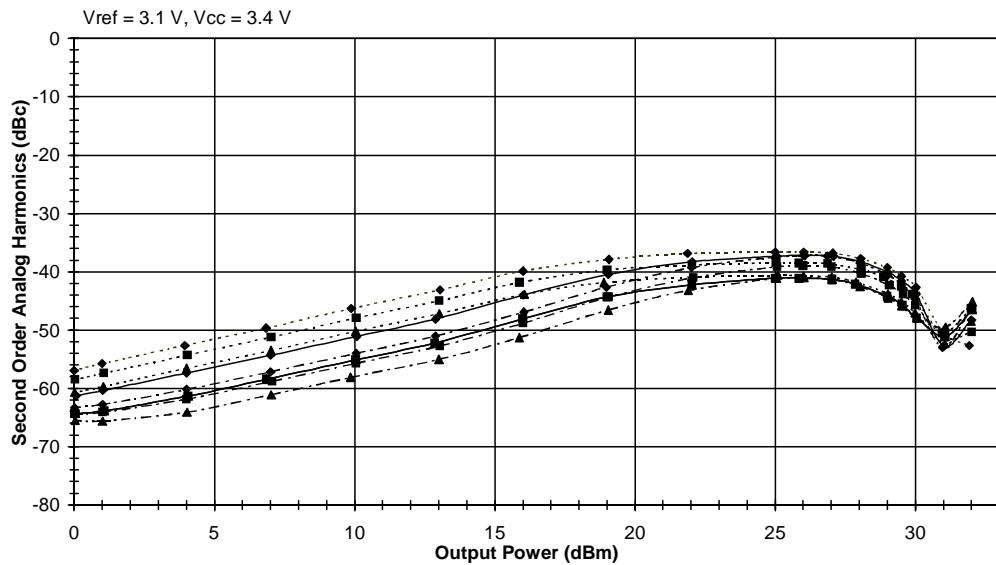
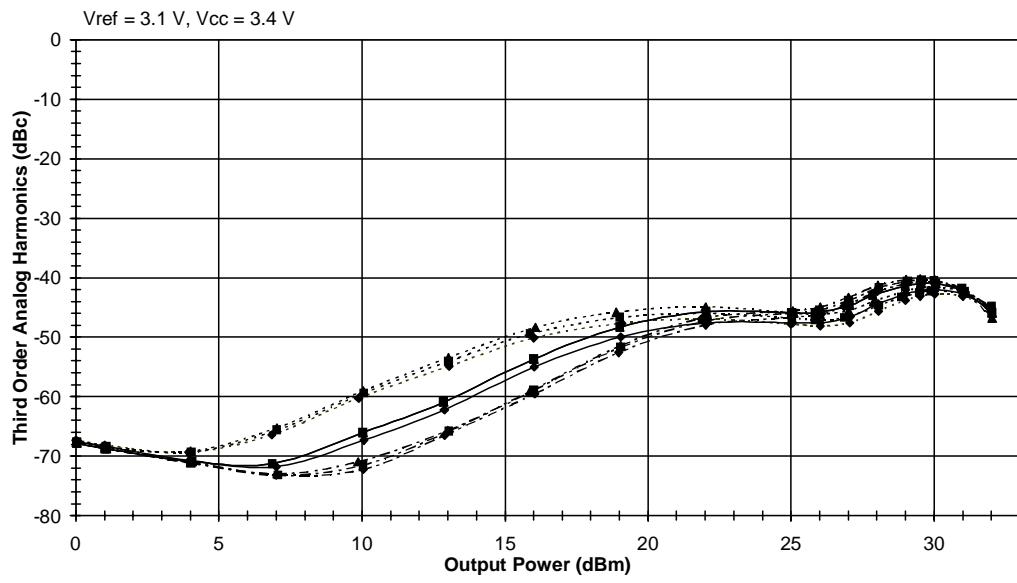


---◆---	824 MHz @ -30 °C	◆	824 MHz @ +25 °C	---◆---	824 MHz @ +85 °C
---■---	837 MHz @ -30 °C	■	837 MHz @ +25 °C	---■---	837 MHz @ +85 °C
---▲---	849 MHz @ -30 °C	▲	849 MHz @ +25 °C	---▲---	849 MHz @ +85 °C

Figure 4. Digital Alternate1 Channel Power vs. Output Power**Figure 5. Digital Alternate2 Channel Power vs. Output Power****Legend**

---◆---	824 MHz @ -30 °C	---◆---	824 MHz @ +25 °C	---◆---	824 MHz @ +85 °C
---■---	837 MHz @ -30 °C	---■---	837 MHz @ +25 °C	---■---	837 MHz @ +85 °C
---▲---	849 MHz @ -30 °C	---▲---	849 MHz @ +25 °C	---▲---	849 MHz @ +85 °C

Figure 6. Analog Gain vs. Output Power**Figure 7. Analog Power Added Efficiency vs. Output Power****Legend**

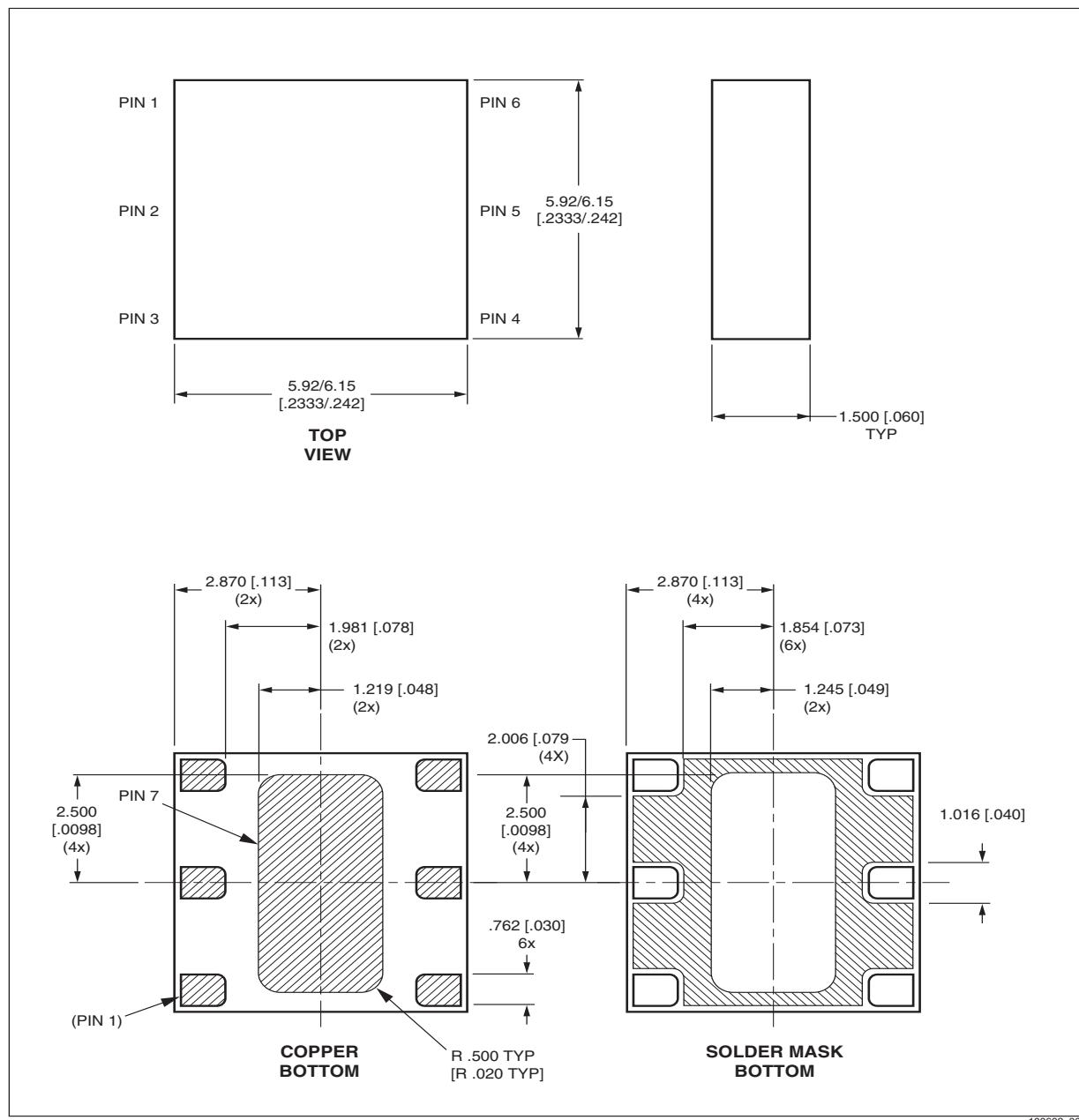

-----◆-----	824 MHz @ -30 °C	-----◆-----	824 MHz @ +25 °C	-----◆-----	824 MHz @ +85 °C
-----■-----	837 MHz @ -30 °C	-----■-----	837 MHz @ +25 °C	-----■-----	837 MHz @ +85 °C
-----▲-----	849 MHz @ -30 °C	-----▲-----	849 MHz @ +25 °C	-----▲-----	849 MHz @ +85 °C

Figure 8. Analog Second Order Harmonic**Figure 9. Analog Third Order Harmonic****Legend**

-----◆-----	824 MHz @ -30 °C	-----◆-----	824 MHz @ +25 °C	-----◆-----	824 MHz @ +85 °C
-----■-----	837 MHz @ -30 °C	-----■-----	837 MHz @ +25 °C	-----■-----	837 MHz @ +85 °C
-----▲-----	849 MHz @ -30 °C	-----▲-----	849 MHz @ +25 °C	-----▲-----	849 MHz @ +85 °C

Package Dimensions and Pin Description

Figure 10. RM806 Package Drawing

*TDMA/AMPS 3 to 4-Volt Power Amplifier (824—849 MHz)***Table 4. Pin Description**

Pin #	Function
1	VCC1 ⁽¹⁾
2	RF Input
3	VREF
4	VCC2 ⁽¹⁾
5	RF Output
6	GND
7	GND ⁽²⁾

NOTE(S):

(1) All supply pins may be connected together at the supply.
(2) Package underside is GND.

Preliminary 5/15/00 1:30 PM

Ordering Information

Model Number	Manufacturing Part Number	Product Revision	Package	Operating Temperature

Revision History

Revision	Level	Date	Description

© 2000, Conexant Systems, Inc.
All Rights Reserved.

Information in this document is provided in connection with Conexant Systems, Inc. ("Conexant") products. These materials are provided by Conexant as a service to its customers and may be used for informational purposes only. Conexant assumes no responsibility for errors or omissions in these materials. Conexant may make changes to specifications and product descriptions at any time, without notice. Conexant makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Conexant's Terms and Conditions of Sale for such products, Conexant assumes no liability whatsoever.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF CONEXANT PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. CONEXANT FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. CONEXANT SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

Conexant products are not intended for use in medical, lifesaving or life sustaining applications. Conexant customers using or selling Conexant products for use in such applications do so at their own risk and agree to fully indemnify Conexant for any damages resulting from such improper use or sale.

The following are trademarks of Conexant Systems, Inc.: Conexant™, the Conexant C symbol, and "What's Next in Communications Technologies"™. Product names or services listed in this publication are for identification purposes only, and may be trademarks of third parties. Third-party brands and names are the property of their respective owners.

For additional disclaimer information, please consult Conexant's Legal Information posted at www.conexant.com, which is incorporated by reference.

Reader Response: Conexant strives to produce quality documentation and welcomes your feedback. Please send comments and suggestions to tech.pubs@conexant.com. For technical questions, contact your local Conexant [sales office](#) or field applications engineer.

Further Information

literature@conexant.com
(800) 854-8099 (North America)
(949) 483-6996 (International)
Printed in USA

World Headquarters

Conexant Systems, Inc.
4311 Jamboree Road
Newport Beach, CA
92660-3007
Phone: (949) 483-4600
Fax 1: (949) 483-4078
Fax 2: (949) 483-4391

Americas

**U.S. Northwest/
Pacific Northwest – Santa Clara**
Phone: (408) 249-9696
Fax: (408) 249-7113

U.S. Southwest – Los Angeles
Phone: (805) 376-0559
Fax: (805) 376-8180

U.S. Southwest – Orange County
Phone: (949) 483-9119
Fax: (949) 483-9090

U.S. Southwest – San Diego
Phone: (858) 713-3374
Fax: (858) 713-4001

U.S. North Central – Illinois
Phone: (630) 773-3454
Fax: (630) 773-3907

U.S. South Central – Texas
Phone: (972) 733-0723
Fax: (972) 407-0639

U.S. Northeast – Massachusetts
Phone: (978) 367-3200
Fax: (978) 256-6868

U.S. Southeast – North Carolina
Phone: (919) 858-9110
Fax: (919) 858-8669

**U.S. Southeast – Florida/
South America**
Phone: (727) 799-8406
Fax: (727) 799-8306

U.S. Mid-Atlantic – Pennsylvania
Phone: (215) 244-6784
Fax: (215) 244-9292

Canada – Ontario
Phone: (613) 271-2358
Fax: (613) 271-2359

Europe

Europe Central – Germany
Phone: +49 89 829-1320
Fax: +49 89 834-2734

Europe North – England

Phone: +44 1344 486444
Fax: +44 1344 486555

Europe – Israel/Greece

Phone: +972 9 9524000
Fax: +972 9 9573732

Europe South – France

Phone: +33 1 41 44 36 51
Fax: +33 1 41 44 36 90

Europe Mediterranean – Italy

Phone: +39 02 93179911
Fax: +39 02 93179913

Europe – Sweden

Phone: +46 (0) 8 5091 4319
Fax: +46 (0) 8 590 041 10

Europe – Finland

Phone: +358 (0) 9 85 666 435
Fax: +358 (0) 9 85 666 220

Asia – Pacific

Taiwan
Phone: (886-2) 2-720-0282
Fax: (886-2) 2-757-6760

Australia

Phone: (61-2) 9869 4088
Fax: (61-2) 9869 4077

China – Central

Phone: 86-21-6361-2515
Fax: 86-21-6361-2516

China – South

Phone: (852) 2 827-0181
Fax: (852) 2 827-6488

China – South (Satellite)

Phone: (86) 755-5182495

China – North

Phone: (86-10) 8529-9777
Fax: (86-10) 8529-9778

India

Phone: (91-11) 692-4789
Fax: (91-11) 692-4712

Korea

Phone: (82-2) 565-2880
Fax: (82-2) 565-1440

Korea (Satellite)

Phone: (82-53) 745-2880
Fax: (82-53) 745-1440

Singapore

Phone: (65) 737 7355
Fax: (65) 737 9077

Japan

Phone: (81-3) 5371 1520
Fax: (81-3) 5371 1501