

SIEMENS

August 07, 2013

FEDERAL COMMUNICATIONS COMMISSION

Authorization and Evaluation Division
7435 Oakland Mills Road
Columbia, MD 21046
U.S.A.

Subject: Reassessment Certification (Class II Permissive change)

Applicant: Siemens Milltronics Process Instruments Inc.
Model: 7ML5432
FCC ID: NJA-LR250

Dear Sir/Madam,

By signing this document we, Siemens Milltronics Process Instruments Inc. would like to obtain a Reassessment Certification Class II Permissive change for the above Model and Certification number.

Description of changes:

Changes were made to LR250 to make it suitable for the chemical, pharmaceutical and food industries. A new manual, updated with these changes is available.

New versions of the existing 2in and 3in standard horn antennas are added. The new antennas (referred herein as Flanged Encapsulated Antenna) consist in a horn filled with a dielectric material and have a lens attached at the process end of the antenna. The gain of the new antennas is comparable or smaller than the gain of the equivalent existing SITRANS LR250 horns and smaller than the gain of the highest gain antenna (standard 4in horn) on which the current radio approval is based.

The enclosure suffered minor changes implemented to ensure suitability for the chemical, pharmaceutical and food industries; the size and nature of the openings are not changed as such shielding properties are not affected.

The potting compound was replaced with a new one with equivalent electric properties.

All the above changes are not modifying the RF characteristics of the SITRANS LR250 level radar family.

1) Enclosure

Changes were made to the enclosure to make it suitable for the chemical, pharmaceutical and food industries. It has the same dimensions, shape and aspect, and is built with the same materials as the enclosure currently used. As such the RF and shielding characteristics are not affected. The changes are:

- The display window edges were tapered to prevent water beading. The window shape and area are not modified. A new window gasket is used to improve sealing and aesthetics.
- The potting compound was replaced with Henkel ES2505 (alternative replacement Royal EPOCAP 42174/52174) having electrical properties similar to the properties of the original potting compound.

Siemens Milltronics Process Instruments Inc.

1954 Technology Drive, P.O. Box 4225
Peterborough, Ontario
K9J 7B1 / Canada

Tel.: (705) 745-2431
Fax: (705) 741-0466
www.siemens.com/processautomation

SIEMENS

The following assembly drawing shows an exploded view of the SITRANS LR250 with the Flanged Encapsulated Antenna.

See A5E31162075A.pdf

2) Antenna and process connections

Two new Flanged Encapsulated Antenna versions of the existing 2in and 3in standard horn antennas are added. They are conical horn antenna (the "horn") made from stainless steel filled with an ULTEM cone (the "emitter"). The emitter is attached to the horn by a thin layer of adhesive uniformly spread around the circumference and confined into a determined area by an o-ring. The process end of the horn has a flange which mates with the customer process connection. A TFM lens is attached to the emitter by screwing and partially covers the flange. The lens has multiple functions including: protection of the horn internals against process materials, to focus the microwave energy inside the tank and as a gasket between the customer flange and the unit flange.

The Flanged Encapsulated Antenna attaches to the existing LR250 housing using the same lock nut as the LR250 antenna thus the enclosure can be rotated with respect of the antenna. O-rings are placed at different locations to ensure sealing.

The Flanged Encapsulated Antenna connects to the circular waveguide present in the LR250 housing by a built-in waveguide with the same cross section as the housing waveguide. The microwave signal produced by the electronics inside the housing propagates through the waveguides, and it is transferred to the conical horn. It propagates through the filled horn and then it is radiated into the free space through the TFM lens. To enhance the radiation pattern the lens is shaped as a conical or hyperbolic lens.

An assembly view with the associated part numbers is shown in the following drawing.

See 7ML5432A.pdf

The gain of the new antennas is comparable to or smaller than the gain of the equivalent existing LR250 horns and smaller than the gain of the highest gain antenna (standard 4in horn) for which the current radio approval has been granted. The following report presents a comparison between the radiation diagrams of the new Flanged Encapsulated Antenna relative to the existing antenna.

See LR250 with Flanged Encapsulated Antenna.pdf

3) Board stack

No changes were made to the boardstack

4) RF circuits

No changes were made to the RF circuits

5) Firmware

No changes affecting the RF circuitry control were made to the firmware

6) Manual

The new manuals are attached

7) Conclusion

Two new Flanged Encapsulated Antennas were added and minor changes to the enclosure were implemented to the SITRANS LR250 to make it suitable for the chemical, pharmaceutical and food industries. No changes were done to the RF circuitry, boardstack or software. The gain of the new antennas is smaller than the gain of the highest gain antenna (standard 4in horn) on which the current radio approval is based. As such the radiated emissions will be smaller with the new antennas.

Kindly confirm FCC acceptance of this Class II permissive change by return letter.

Sincere Regards,

Gabriel SERBAN

Sr. HF Designer, R&D
Siemens Milltronics Process Instruments Inc.
Phone No: (705) 740-7659
Fax No: (705) 740-7692
Email: Gabriel.serban@siemens.com

Thoai BUI

Product Approval Specialist, R&D
Siemens Milltronics Process Instruments Inc.
Phone No: (705) 740-7005
Fax No: (705) 745-5599
Email: thoai.bui@siemens.com