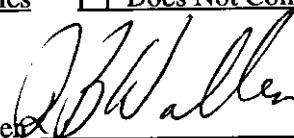


[X] EMISSIONS -FCC Part 15

FUJITSU COMPUTER PRODUCTS
OF AMERICA, INC.

Test Report Number: RSS 9809 2801
Model No: PRO1

Date of Issue: 23 October 1998
Date of Test Article Receipt: 28 September 1998


Type of product: Intentional Radiator

Manufacturer: Remote Sensing Systems, Inc.

Address: 15285 Rockview Drive, Colorado Springs, CO 80921

Test Results: [X] Complies [] Does Not Comply

Barry Waller

Lab Director
(NVLAP Signatory)

Michael E. Mussler

Michael E. Mussler

Compliance Engineer

Testing Center
P.O. Box 387
1350 County Road 16
Rollinsville, CO 80474
(303) 682-6600
fax (303) 682-6672

Business Office
2402 Clover Basin Drive
Longmont, CO 80503
(303) 682-6485
fax (303) 682-6401
www.criteriontech.com

Accredited by NIST NVLAP for FCC Part 15

TEST REPORT

Disclaimers:

This report is the confidential property of the client. For the protection of our clients and ourselves, extracts from this test report cannot be produced without prior written approval from Criterion Technology. Reproduction of the complete report can be performed at the client's discretion.

The client is aware that Criterion Technology has performed testing in accordance with the applicable standard(s). Test data is accurate within ANSI uncertainty parameters for Emissions testing, unless a specific level of accuracy has been defined in writing prior to testing, by Criterion Technology and the client.

Criterion Technology reports apply only to the specific Equipment Under Test (EUT) sample(s) tested under the test conditions described in this report. If the manufacturer intends to use this report as a document demonstrating compliance of this model, additional models of this product must have electrical and mechanical characteristics identical to the device tested for this report. Criterion Technology shall have no liability for any deductions, inferences, or generalizations drawn by the client or others from Criterion Technology issued reports.

Total liability is limited to the amount invoiced for the testing of this EUT and the contents of this report are not warranted.

Compliance with the appropriate governmental standards is the responsibility of the manufacturer. Any questions regarding this report should be directed to:

Laboratory Director
Criterion Technology
P.O. Box 387
1350 County Road 16
Rollinsville, Colorado 80474
Phone: 1-303-682-6600
Fax: 1-303-682-6672
email: Laboratory_Director@criteriontech.com

NVLAP Notes:

The **NVLAP Logo** on the front cover of this report applies only to the **47 CFR part 15 and CISPR 22:1993** data contained herein.

This report contains data which are not covered by the NVLAP accreditation.

This report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

Criterion Technology has been accredited by the following groups: NVLAP, VCCI, BCIQ and NMI (EU Competent Body Accreditation)

All Criterion Technology instrumentation and accessories used to test products for compliance to the indicated standards are calibrated regularly in accordance with ISO 9001, ISO Guide 25, ANSI/NCSL Z450-I-1994 and are traceable to national standards.

QUALIFICATION TEST REPORT

[X] EMISSIONS -FCC Part 15

Test Report Number: RSS 9809 2801
Model No: PRO1

Date of Issue: 23 October 1998
Date of Test Article Receipt: 28 September 1998

Type of product: Intentional Radiator

Manufacturer: Remote Sensing Systems, Inc.

Address: 15285 Rockview Drive, Colorado Springs, CO 80921

Test Results: [X] Complies [] Does Not Comply

Barry Wallen _____ Lab Director
(NVLAP Signatory)

Michael E. Mussler _____ Compliance Engineer

Accredited by NIST NVLAP for FCC Part 15

TEST REPORT

Disclaimers:

This report is the confidential property of the client. For the protection of our clients and ourselves, extracts from this test report cannot be produced without prior written approval from Criterion Technology. Reproduction of the complete report can be performed at the client's discretion.

The client is aware that Criterion Technology has performed testing in accordance with the applicable standard(s). Test data is accurate within ANSI uncertainty parameters for Emissions testing, unless a specific level of accuracy has been defined in writing prior to testing, by Criterion Technology and the client.

Criterion Technology reports apply only to the specific Equipment Under Test (EUT) sample(s) tested under the test conditions described in this report. If the manufacturer intends to use this report as a document demonstrating compliance of this model, additional models of this product must have electrical and mechanical characteristics identical to the device tested for this report. Criterion Technology shall have no liability for any deductions, inferences, or generalizations drawn by the client or others from Criterion Technology issued reports.

Total liability is limited to the amount invoiced for the testing of this EUT and the contents of this report are not warranted.

Compliance with the appropriate governmental standards is the responsibility of the manufacturer. Any questions regarding this report should be directed to:

Laboratory Director
Criterion Technology
P.O. Box 387
1350 County Road 16
Rollinsville, Colorado 80474
Phone: 1-303-682-6600
Fax: 1-303-682-6672
email: Laboratory_Director@criteriontech.com

NVLAP Notes:

The NVLAP Logo on the front cover of this report applies only to the **47 CFR part 15 and CISPR 22:1993** data contained herein.

This report contains data which are not covered by the NVLAP accreditation.

This report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

Criterion Technology has been accredited by the following groups: NVLAP, VCCI, BCIQ and NMI (EU Competent Body Accreditation)

All Criterion Technology instrumentation and accessories used to test products for compliance to the indicated standards are calibrated regularly in accordance with ISO 9001, ISO Guide 25, ANSI/NCSL Z450-I-1994 and are traceable to national standards.

Table Of Contents

Section 1 Executive Summary	5
Section 2 Emissions Test Standards	7
Part 2.1 FCC Part 15 Subpart B - Conducted Emissions	7
Part 2.2 FCC Part 15 Subpart B -Radiated Emissions	7
Part 2.3 FCC Part 15 Subpart C -Intentional Radiated Fields	9
Section 3 Test Setup Photographs	11
Part 3.1 Radiated Emissions Setup - Front View	11
Part 3.2 Radiated Emissions Setup - Rear View	12
Section 4 ORIGINAL TEST DATA / PLOTS	13
Part 4.1 Radiated Emissions - 30 MHz to 10 GHz Plot	13
Part 4.2 Radiated Emissions - Prescan Plot, 150 KHz to 1 MHz	14
Part 4.3 Radiated Emissions - Prescan Plot, 1 MHz to 30 MHz	15
Part 4.4 EUT Description and Scan Lists	16
Part 4.5 Pulse Characteristics of the Pro1 Unit	20
Section 5 Product Information	23
Part 5.1 EUT Description and Block Diagram	23
Part 5.2 EUT Block Diagram	23
Part 5.3 EUT Diagram as Tested	23

TEST REPORT

Section 1 Executive Summary

The test article was in compliance with all the test standards listed below.

FCC Part 15 Subpart A

General

FCC Part 15 Subpart B

Conducted & Radiated Emissions

FCC Part 15 Subpart C

Intentional Radiators

All test methods were performed in accordance with the standards listed above.

TEST REPORT

Section 2 Emissions Test Standards

The emissions tests were performed according to following standards:

FCC Part 15, Subpart B Class A Class B
 FCC Part 15, Subpart C, Paragraph 15.209 & 249

Part 2.1 FCC Part 15 Subpart B - Conducted Emissions

Measurement of *conducted emissions* was not performed as the EUT was battery operated.

Part 2.2 FCC Part 15 Subpart B -Radiated Emissions

Measurement of *radiated emissions (electric field)* in the frequency range of 30 MHz-1000 MHz were tested in a horizontal and vertical polarization as indicated below:

Environmental conditions in the lab:

Date(s) of Test: mm/dd/yy 9/29/98 through 10/17/98

Temperature: 77°F
 Rel. Humidity 28%
 Test Voltage none (Battery operation)

Test location:

Criterion Technology Open Area Test Site
 Pre-Scan In Semi-Anechoic Chamber
 Not applicable

Test distance (antenna - EUT):

<input type="checkbox"/>	1 meter	<input type="checkbox"/> Preliminary Measurement	<input type="checkbox"/> Final Measurement
<input checked="" type="checkbox"/>	3 meters	<input checked="" type="checkbox"/> Preliminary Measurement	<input checked="" type="checkbox"/> Final Measurement
<input type="checkbox"/>	10 meters	<input type="checkbox"/> Preliminary Measurement	<input type="checkbox"/> Final Measurement
<input type="checkbox"/>	30 meters	<input type="checkbox"/> Preliminary Measurement	<input type="checkbox"/> Final Measurement
<input type="checkbox"/>	Not applicable		

Test instruments:

			<u>Calibration Due Date</u>
<input checked="" type="checkbox"/>	Hewlett Packard Spectrum Analyzer, Model 8566B		12/17/98
<input type="checkbox"/>	Hewlett Packard Quasi Peak Adapter, Model 85650A		12/17/98
<input type="checkbox"/>	Hewlett Packard Tracking Generator, Model 85645A		12/17/98
<input type="checkbox"/>	Rohde and Schwarz Receiver, Model, ESHS-30		8/26/99
<input checked="" type="checkbox"/>	Rohde and Schwarz Model Receiver, ESVS-30		9/1/99
<input checked="" type="checkbox"/>	Chase, BiLog Antenna, Model 1121		5/30/99
<input checked="" type="checkbox"/>	Antenna Research, Model 1181A (sn: 1056)		4/15/99
<input checked="" type="checkbox"/>	Amp3 and High Freq缆 set		9/30/99
<input checked="" type="checkbox"/>	Mini Circuits Pre-Amp, Amp 2		6/2/99
<input checked="" type="checkbox"/>	EMCO Loop Antenna, Model 6502		10/7/99

Test accessories:

Other
 Not applicable

Results

TEST REPORT

Radiated Emissions (Electric Field) 30 MHz - 10000 MHz (exclusive of the fundamental and harmonics)

The requirements are

PASS FAIL N/A

Min. limit margin

0.52 dB at 932.0580 MHz

Max. limit exceeding

dB at MHz

Remarks:

- 1.) Reference Appendix B for Data Sheets
- 2.) The lowest internal clock/oscillator frequency used in the device is 500 kHz. A pre-scan was done in the Semi-Anechoic Chamber to identify emissions from 150 kHz to 30 MHz. None were encountered.
- 3.) The fundamental frequency of the intentional radiator is 903.8121 MHz. Emissions were examined to the tenth harmonic of the fundamental with the only emissions of note being the 2nd and 3rd harmonics.

Part 2.3 FCC Part 15 Subpart C –Intentional Radiated Fields

Measurement or *radiated emissions (electric field)* in the frequency range of 900 MHz-10000 MHz were tested in a horizontal and vertical polarization as indicated below:

Environmental conditions in the lab:

Date(s) of Test:	mm/dd/yy	9/28/98 through 10/17/98
Temperature:	77°F	
Rel. Humidity	28%	
Test Voltage	none (Battery operation)	

Test location:

- Criterion Technology Open Area Test Site
- Pre-Scan In Semi-Anechoic Chamber
- Not applicable

Test distance (antenna - EUT):

<input type="checkbox"/> 1 meter	<input type="checkbox"/> Preliminary Measurement	<input type="checkbox"/> Final Measurement
<input checked="" type="checkbox"/> 3 meters	<input checked="" type="checkbox"/> Preliminary Measurement	<input checked="" type="checkbox"/> Final Measurement
<input type="checkbox"/> 10 meters	<input type="checkbox"/> Preliminary Measurement	<input type="checkbox"/> Final Measurement
<input type="checkbox"/> 30 meters	<input type="checkbox"/> Preliminary Measurement	<input type="checkbox"/> Final Measurement
<input type="checkbox"/> Not applicable		

Test instruments:

		<u>Calibration Due Date</u>
<input checked="" type="checkbox"/> Hewlett Packard Spectrum Analyzer, Model 8566B		12/17/98
<input type="checkbox"/> Hewlett Packard Quasi Peak Adapter, Model 85650A		12/17/98
<input type="checkbox"/> Hewlett Packard Tracking Generator, Model 85645A		12/17/98
<input type="checkbox"/> Rohde and Schwarz Receiver, Model, ESHS-30		8/26/99
<input checked="" type="checkbox"/> Rohde and Schwarz Model Receiver, ESVS-30		9/1/99
<input checked="" type="checkbox"/> Chase, BiLog Antenna, Model 1121		5/30/99
<input checked="" type="checkbox"/> Antenna Research, Model 1181A (sn: 1056)		4/15/99
<input checked="" type="checkbox"/> Amp3 and High Freq cbf set		9/30/99
<input checked="" type="checkbox"/> Mini Circuits Pre-Amp, Amp 2		6/2/99
<input type="checkbox"/> EMCO Loop Antenna, Model 6502		10/7/99

Test accessories:

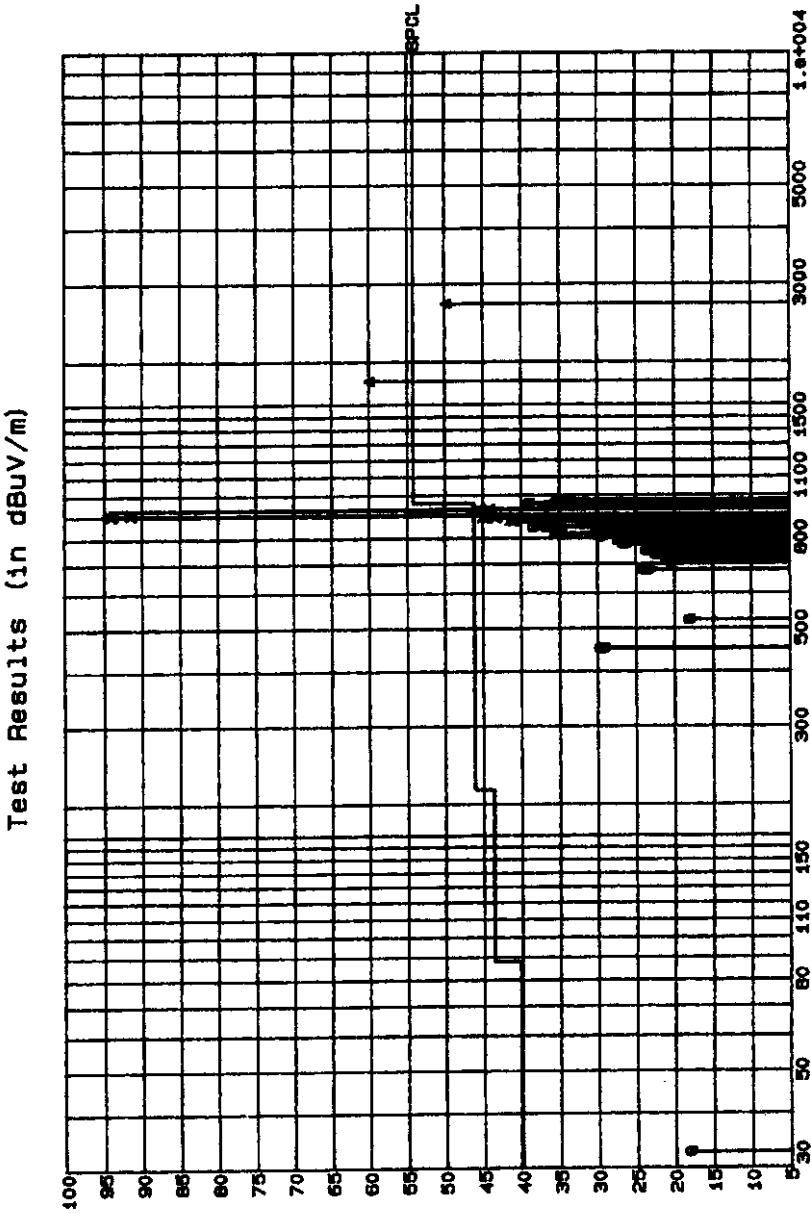
- Other
- Not applicable

Results**Radiated Emissions (Electric Field) 30 MHz - 10,000 MHz**

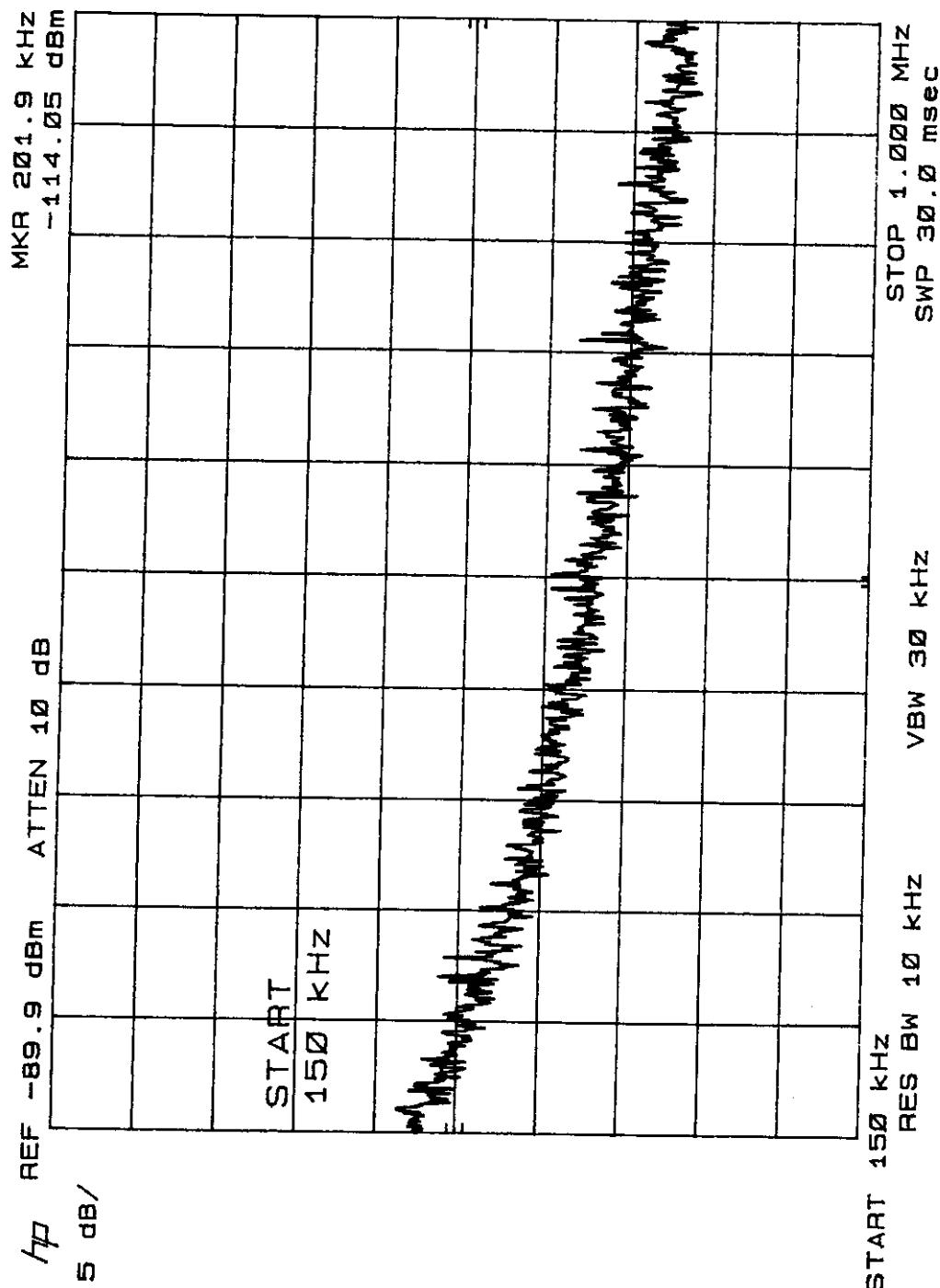
The requirements are 15.209 & 249 PASS FAIL N/A

Min. limit margin - Fundamental	<u>0.15</u> dB	at <u>903.8121</u> MHz
Min. limit margin - 2nd Harmonic	<u>2.48</u> dB	at <u>1808.0288</u> MHz
Min. limit margin - 3rd Harmonic	<u>12.58</u> dB	at <u>2711.7480</u> MHz
Max. limit exceeding	dB	at MHz

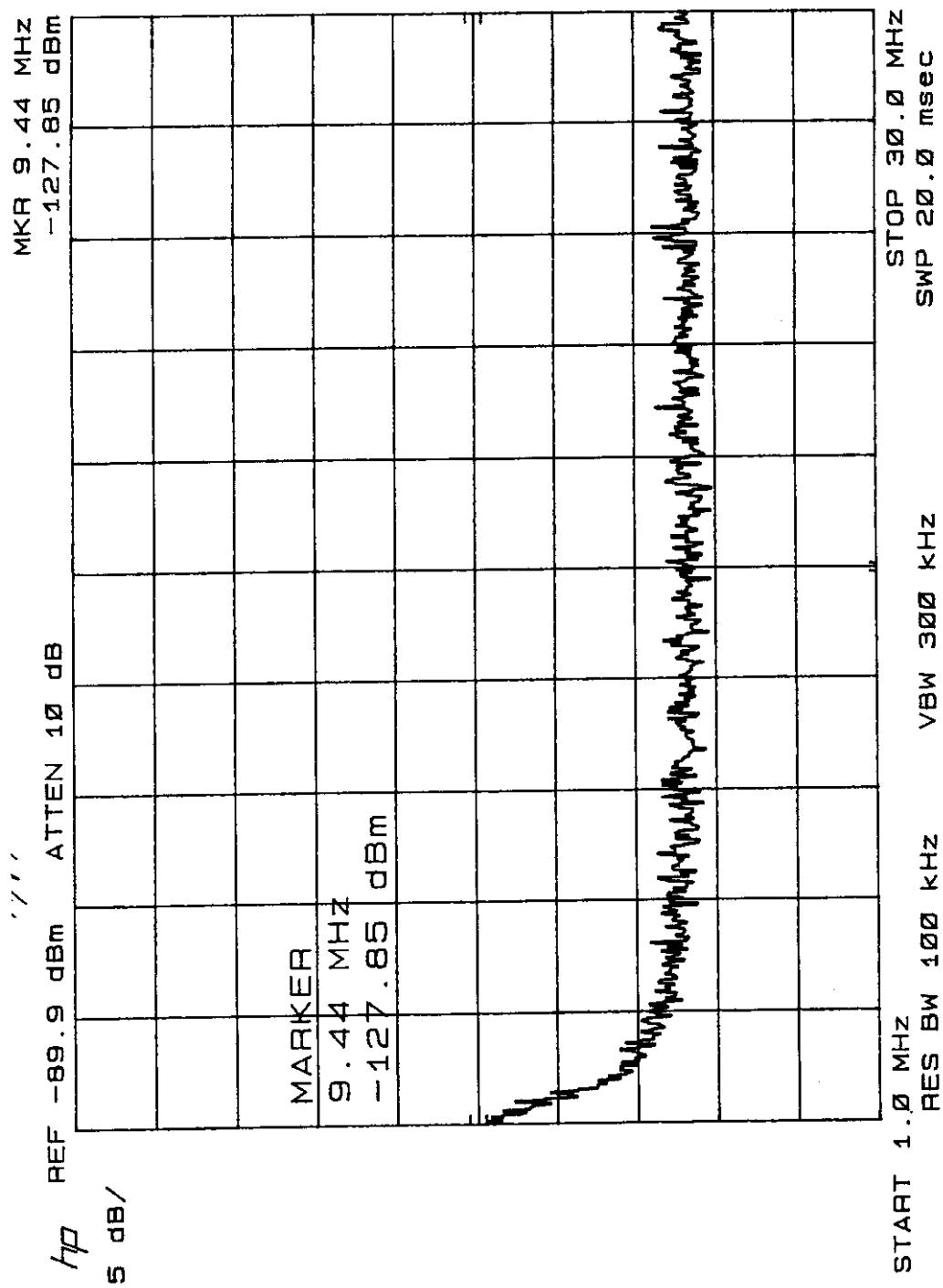
Remarks: Reference Appendix B for Data Sheets


TEST REPORT

Section 4 ORIGINAL TEST DATA / PLOTS


Part 4.1 Radiated Emissions - 30 MHz to 10 GHz Plot

Date: Mon Oct 26 12:43:15 1998


EUT: Model PRD1 propane tank monitor
Manufacturer: Remote Sensing Systems
Tester: rbw SPID: RSS PRD1 ISI_03
EUT Level: Tabletop, cable coiled inside, mounting nut
EUT Information: Paint stripped on top of cyl and screws added to TX
Test Information: DC Powered, FCC Class B, FCC Part 15 Sub part C (24B), 3 meter test dist.

Part 4.2 Radiated Emissions - Prescan Plot, 150 KHz to 1 MHz

Part 4.3 Radiated Emissions - Prescan Plot, 1 MHz to 30 MHz

Part 4.4 EUT Description and Scan Lists

Intellistor OATS

Mon Oct 26 12:43:35 1998

EUT: Model PRO1 propane tank monitor

Manufacturer: Remote Sensing Systems

Tester: rbw

Special ID: RSS PRO1 ISI_03

EUT Level: Tabletop, cable coiled inside, mounting nut

EUT Information: Paint stripped on top of cvr and screws added to TX

Test information: DC powered, FCC Class B, FCC Part 15 Sub part C (249), 3 meter test dist.

Table 1: Scan List, sorted by margin to limit SPCL, -30.0dB filter

<u>Freq. MHz</u>	<u>Value</u>	<u>Sts</u>	<u>SPCL</u>	<u>TT</u>	<u>Hght</u>	<u>Az</u>	<u>Comment</u>
1807.6790	59.75	p	5.75	287	100	V	2fo
903.8121	93.85	m	-0.15	66	99	V	Left peak of fundamental
904.0080	93.66	m	-0.34	66	99	V	right half of Fundamental
932.0580	45.48	m	-0.52	104	99	V	.
889.8874	44.78	m	-1.22	46	99	V	14.12 ck
932.2660	44.00	m	-2.00	104	99	V	.
903.8976	91.19	m	-2.81	66	99	V	Middle of Fundamental
889.6947	43.14	m	-2.86	104	99	V	.
2711.4410	49.65	p	-4.35	279	100	V	3fo
875.7663	41.18	m	-4.82	196	99	V	.
875.5717	40.72	m	-5.28	196	99	V	.
847.3250	38.26	q	-7.74	171	106	V	.
946.1800	36.78	q	-9.22	180	99	V	.
847.5100	36.58	q	-9.42	171	106	V	.
946.3930	36.29	q	-9.71	171	106	V	.
819.2710	35.34	q	-10.66	171	106	V	.
819.0840	34.74	q	-11.26	171	106	V	.
861.6360	31.52	q	-14.48	171	106	V	.
960.3040	38.86	q	-15.14	180	99	V	.
861.4560	30.75	q	-15.25	171	106	V	.
833.2010	30.21	m	-15.79	180	99	V	.
833.3870	29.66	m	-16.34	180	99	V	.
452.2930	29.62	q	-16.38	171	106	V	14.123 MHz Clk
804.9590	29.49	q	-16.51	171	106	V	.
451.9090	29.44	q	-16.56	171	106	V	.
452.0050	29.00	q	-17.00	171	106	V	.
960.5180	35.38	q	-18.62	180	99	V	.
790.8400	27.17	q	-18.83	171	106	V	.
974.4270	35.12	q	-18.88	180	99	V	.

TEST REPORT

Table 1: Scan List, sorted by margin to limit SPCL, -30.0dB filter

<u>Freq. MHz</u>	<u>Value</u>	<u>Sts</u>	<u>SPCL</u>	<u>TT</u>	<u>Hght</u>	<u>Az</u>	<u>Comment</u>
776.7160	26.56	q	-19.44	171	106	V	.
791.0090	26.30	q	-19.70	171	106	V	.
776.8860	26.11	q	-19.89	171	106	V	.
805.1320	25.82	q	-20.18	171	106	V	.
974.6390	33.58	q	-20.42	180	99	V	.
32.5805	18.03	q	-21.97	180	99	V	.
677.8590	23.96	q	-22.04	171	106	V	.
748.4770	23.56	q	-22.44	171	106	V	14.123 MHz Clk
678.0110	23.26	q	-22.74	171	106	V	.
748.6380	23.13	q	-22.87	171	106	V	.
734.3490	22.30	q	-23.70	171	106	V	14.123 MHz Clk
734.5080	22.03	q	-23.97	171	106	V	14.123 MHz Clk
762.7610	21.65	q	-24.35	171	106	V	.
762.5950	21.55	q	-24.45	171	106	V	.
720.2310	21.00	q	-25.00	171	106	V	14.123 MHz Clk
706.1680	20.34	q	-25.66	180	99	V	14.12 ck
522.8170	18.01	q	-27.99	180	99	V	.

Table 2: Scan List for SPCL, sorted by Frequency, -30.0dB filter

<u>Freq. MHz</u>	<u>Value</u>	<u>Sts</u>	<u>SPCL</u>	<u>TT</u>	<u>Hght</u>	<u>Az</u>	<u>Comment</u>
32.5805	18.03	q	-21.97	180	99	V	.
451.9090	29.44	q	-16.56	171	106	V	.
452.0050	29.00	q	-17.00	171	106	V	.
452.2930	29.62	q	-16.38	171	106	V	14.123 MHz Clk
522.8170	18.01	q	-27.99	180	99	V	.
677.8590	23.96	q	-22.04	171	106	V	.
678.0110	23.26	q	-22.74	171	106	V	.
706.1680	20.34	q	-25.66	180	99	V	14.12 ck
720.2310	21.00	q	-25.00	171	106	V	14.123 MHz Clk
734.3490	22.30	q	-23.70	171	106	V	14.123 MHz Clk
734.5080	22.03	q	-23.97	171	106	V	14.123 MHz Clk
748.4770	23.56	q	-22.44	171	106	V	14.123 MHz Clk
748.6380	23.13	q	-22.87	171	106	V	.
762.5950	21.55	q	-24.45	171	106	V	.
762.7610	21.65	q	-24.35	171	106	V	.
776.7160	26.56	q	-19.44	171	106	V	.
776.8860	26.11	q	-19.89	171	106	V	.

Table 2: Scan List for SPCL, sorted by Frequency, -30.0dB filter

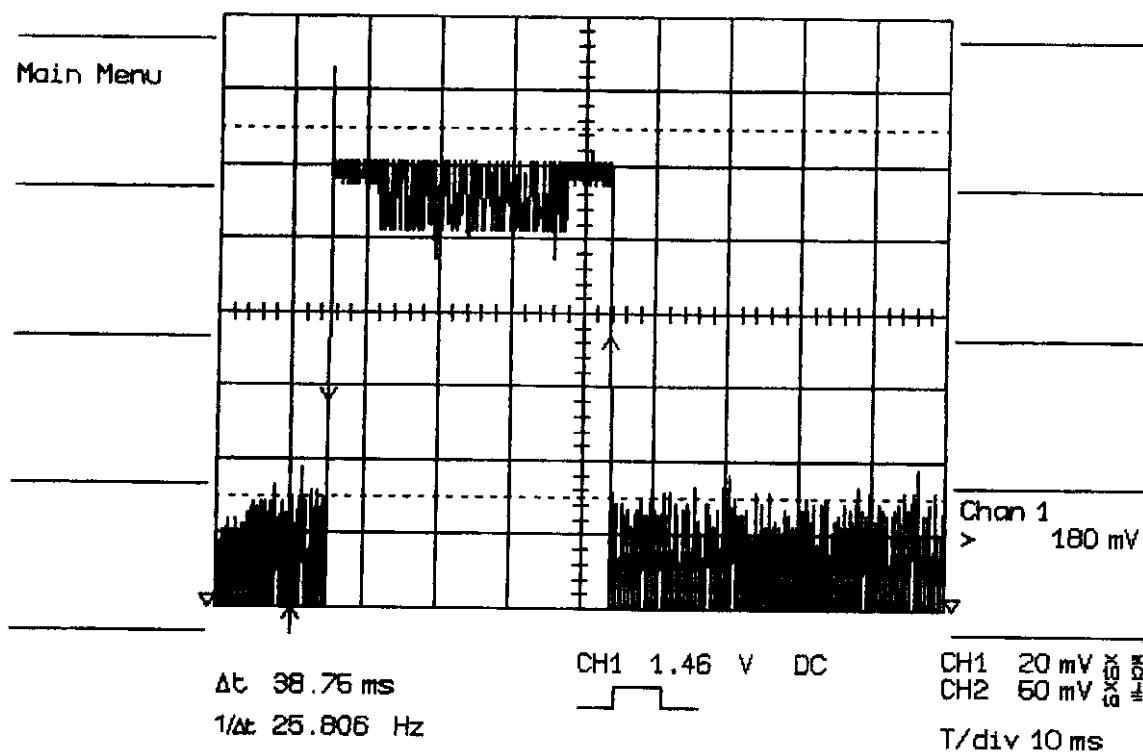
<u>Freq, MHz</u>	<u>Value</u>	<u>Sts</u>	<u>SPCL</u>	<u>TT</u>	<u>Hght</u>	<u>Az</u>	<u>Comment</u>
790.8400	27.17	q	-18.83	171	106	V	
791.0090	26.30	q	-19.70	171	106	V	
804.9590	29.49	q	-16.51	171	106	V	
805.1320	25.82	q	-20.18	171	106	V	
819.0840	34.74	q	-11.26	171	106	V	
819.2710	35.34	q	-10.66	171	106	V	
833.2010	30.21	m	-15.79	180	99	V	
833.3870	29.66	m	-16.34	180	99	V	
847.3250	38.26	q	-7.74	171	106	V	
847.5100	36.58	q	-9.42	171	106	V	
861.4560	30.75	q	-15.25	171	106	V	
861.6360	31.52	q	-14.48	171	106	V	
875.5717	40.72	m	-5.28	196	99	V	
875.7663	41.18	m	-4.82	196	99	V	
889.6947	43.14	m	-2.86	104	99	V	
889.8874	44.78	m	-1.22	46	99	V	14.12 ck
903.8121	93.85	m	-0.15	66	99	V	Left peak of fundamental
903.8976	91.19	m	-2.81	66	99	V	Middle of Fundamental
904.0080	93.66	m	-0.34	66	99	V	right half of Fundamental
932.0580	45.48	m	-0.52	104	99	V	
932.2660	44.00	m	-2.00	104	99	V	
946.1800	36.78	q	-9.22	180	99	V	
946.3930	36.29	q	-9.71	171	106	V	
960.3040	38.86	q	-15.14	180	99	V	
960.5180	35.38	q	-18.62	180	99	V	
974.4270	35.12	q	-18.88	180	99	V	
974.6390	33.58	q	-20.42	180	99	V	
1807.6790	59.75	p	5.75	287	100	V	2fo
2711.4410	49.65	p	-4.35	279	100	V	3fo

Table 3: Complete Scan List Sorted by Frequency

<u>Freq, MHz</u>	<u>I-val</u>	<u>Final</u>	<u>Sts</u>	<u>TT</u>	<u>Hght</u>	<u>Az</u>	<u>Time</u>	<u>Comment</u>
32.5805	23.90	18.03	q	180	99	V	Mon Sep 28 16:08:55 1998	
127.0760	23.63	12.78	q	180	99	V	Mon Sep 28 16:09:51 1998	
268.2471	22.37	13.02	q	196	99	V	Tue Sep 29 09:57:18 1998	
451.9090	33.60	29.44	q	171	106	V	Mon Sep 28 12:24:14 1998	
452.0050	33.16	29.00	q	171	106	V	Mon Sep 28 12:25:24 1998	
452.2930	33.76	29.62	q	171	106	V	Mon Sep 28 12:27:14 1998	14.123 MHz Clk
522.8170	20.86	18.01	q	180	99	V	Tue Sep 29 08:33:09 1998	

TEST REPORT

Table 3: Complete Scan List Sorted by Frequency


Freq, MHz	I-val	Final	Sts	TT	Hght	Az	Time	Comment
677.8590	23.89	23.96	q	171	106	V	Mon Sep 28 13:15:37 1998	
678.0110	23.19	23.26	q	171	106	V	Mon Sep 28 13:16:35 1998	
706.1680	20.07	20.34	q	180	99	V	Mon Sep 28 16:12:58 1998	14.12 ck
720.2310	20.54	21.00	q	171	106	V	Mon Sep 28 13:20:39 1998	14.123 MHz Clk
734.3490	21.66	22.30	q	171	106	V	Mon Sep 28 13:21:27 1998	14.123 MHz Clk
734.5080	21.40	22.03	q	171	106	V	Mon Sep 28 13:23:31 1998	14.123 MHz Clk
748.4770	23.03	23.56	q	171	106	V	Mon Sep 28 13:26:56 1998	14.123 MHz Clk
748.6380	22.59	23.13	q	171	106	V	Mon Sep 28 13:26:21 1998	
762.5950	20.64	21.55	q	171	106	V	Mon Sep 28 13:28:15 1998	
762.7610	20.73	21.65	q	171	106	V	Mon Sep 28 13:29:05 1998	
776.7160	25.33	26.56	q	171	106	V	Mon Sep 28 13:29:38 1998	
776.8860	24.88	26.11	q	171	106	V	Mon Sep 28 13:30:01 1998	
790.8400	25.95	27.17	q	171	106	V	Mon Sep 28 13:30:30 1998	
791.0090	25.08	26.30	q	171	106	V	Mon Sep 28 13:30:45 1998	
804.9590	28.07	29.49	q	171	106	V	Mon Sep 28 13:31:30 1998	
805.1320	24.39	25.82	q	171	106	V	Mon Sep 28 13:31:52 1998	
819.0840	32.58	34.74	q	171	106	V	Mon Sep 28 13:32:33 1998	
819.2710	33.18	35.34	q	171	106	V	Mon Sep 28 13:33:21 1998	
833.2010	27.92	30.21	m	180	99	V	Tue Sep 29 09:12:42 1998	
833.3870	27.38	29.66	m	180	99	V	Tue Sep 29 09:16:56 1998	
847.3250	36.22	38.26	q	171	106	V	Mon Sep 28 13:36:16 1998	
847.5100	34.54	36.58	q	171	106	V	Mon Sep 28 13:35:11 1998	
861.4560	28.99	30.75	q	171	106	V	Mon Sep 28 13:38:49 1998	
861.6360	29.76	31.52	q	171	106	V	Mon Sep 28 13:37:20 1998	
875.5717	39.13	40.72	m	196	99	V	Tue Sep 29 09:55:01 1998	
875.7663	39.59	41.18	m	196	99	V	Tue Sep 29 09:53:52 1998	
889.6947	41.89	43.14	m	104	99	V	Sat Oct 03 13:40:16 1998	
889.8874	43.53	44.78	m	46	99	V	Sat Oct 03 13:54:08 1998	14.12 ck
903.8121	92.55	93.85	m	66	99	V	Sat Oct 03 13:22:29 1998	Left peak of fundamental
903.8976	89.89	91.19	m	66	99	V	Sat Oct 03 13:25:34 1998	Middle of Fundamental
904.0080	92.35	93.66	m	66	99	V	Sat Oct 03 13:24:17 1998	right half of Fundamental
917.6380	21.74	23.62	q	180	99	V	Tue Sep 29 08:56:11 1998	
917.9376	43.68	45.56	m	345	99	V	Sat Oct 03 13:49:14 1998	
918.1344	41.12	43.00	m	174	99	V	Sat Oct 03 13:43:57 1998	
932.0580	43.28	45.48	m	104	99	V	Sat Oct 03 13:32:43 1998	
932.2660	41.80	44.00	m	104	99	V	Sat Oct 03 13:34:15 1998	
946.1800	33.91	36.78	q	180	99	V	Tue Sep 29 08:57:59 1998	
946.3930	33.41	36.29	q	171	106	V	Mon Sep 28 13:45:29 1998	
960.3040	35.39	38.86	q	180	99	V	Tue Sep 29 08:58:44 1998	
960.5180	31.91	35.38	q	180	99	V	Tue Sep 29 08:59:26 1998	
974.4270	31.51	35.12	q	180	99	V	Tue Sep 29 09:00:01 1998	
974.6390	29.97	33.58	q	180	99	V	Tue Sep 29 09:00:28 1998	
1807.6790	52.35	59.75	p	287	100	V	Sat Oct 17 13:21:48 1998	2fo
2711.4410	36.85	49.65	p	279	100	V	Sat Oct 17 13:21:48 1998	3fo

Part 4.5 Pulse Characteristics of the Pro1 Unit

The following plot was taken in the pre-scan chamber at the spectrum analyzer video detector.

4.5.1 EUT Pulse Timing Plot

27-Oct-03
19:57:36

4.5.2 Average Level Calculation

The average level was calculated from the measured peak level per the instructions in ANSI C63.4-1992, Appendix I4:

Test Number: RSS 9809_2801

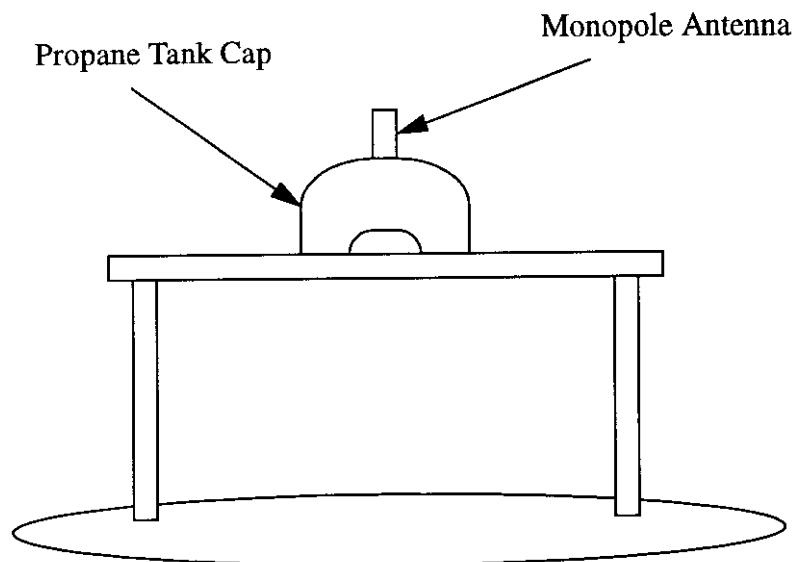
PRO1		
Pulse Timing		
Pulse No.	(milli sec.)	Pulse Train Duration (milli sec.) =
t1	38.750	38.76
t2	0.000	Pulse Train Duration (Pd) < 100 mSec
t3	0.000	
t4	0.000	
t5	0.000	
t6	0.000	Duty Cycle (%) = $P_{total} / Pd \times 100$
t7	0.000	38.76
t8	0.000	
t9	0.000	
t10	0.000	
t11	0.000	
t12	0.000	Correction Factor (dB) = $20 \log (\text{Duty Cycle})$
t13	0.000	-8.23
P total	38.750	

Note that the blanking intervals did not take the pulses to 0. Therefore the entire pulse train duration was used for the duty cycle calculation over the 100 millisecond interval.

The measured peak level was 59.75 dBuV/m at 1807.679 MHz which is 14.25 dB below the peak limit. Applying the correction factor of 8.23 dB gives a calculated average level of 51.52 dBuV/m which is 2.48 dB below the average specification limit.

TEST REPORT

Section 5 Product Information


Part 5.1 EUT Description and Block Diagram

The client will provide this information.

Part 5.2 EUT Block Diagram

The client will provide the block diagram of the PRO1.

Part 5.3 EUT Diagram as Tested

TEST REPORT

Figure 1. - Mark and Drill Holes in the Tank Cover

1. Locate the apex of the cover. Be careful so the antenna boot will not look canted after installation. Drill a 3/8" hole and remove burrs from both sides of the cover.

Figure 2. - Mark and Drill Holes for the Solar Cell

2. Review for the optimum location for the solar cell. Locate a vertical surface in which all four edges of the solar boot will seal against the tank cover surface. Preferably southern exposure. Using the magnet line with the magnet located at the cover apex mark the centerline of the solar boot. Using the solar cell template drill two $17/64"$ holes and deburr both sides.
3. Center punch and drill 3 each $3/16"$ holes for the cable mounting ties. One directly above the solar cell at the cover's arc. One at the hinge point and one at the arc directly above the one at the hinge point. Deburr

Figure 3 - Install the Transmitter

4. Remove the antenna rubber radome. Placing the transmitter and fender washer underside the cover, carefully feed the antenna through the tank cover. Apply and hand tighten the 3/8" grooved lock nut. Rotate and position the transmitter for optimum wire routing to the sensor (hinge area) and solar cell. Thighten 3/8" lock nut with wrench.
5. Slip on the radome and clamp, and applying pressure to seal the radome against the tank cover, secure the clamp with the pinchers.

Figure 4. - Install the Solar Cell

6. Install the Solar Cell assembly as shown ensuring that the small diameter on the vinyl shoulder washers is embedded into the drilled holes. Attach the terminal leads and tighten the lock nuts with the 5/16" nutdriver. Make sure that electrical contact is not made with the tank cover.
7. Install the cable tie until the tab is flatten against the inside of the cover. Route the cable into the tie double looping any excess. Twist lock the tie securing the cable.
8. Replace cover on the tank.

Figure 5a - Install the Sensor Assembly
(Rochester and Sherwood Float Assemblies)

- 9a. Remove the two screws and gauge. Reinstall the sensor and gauge as shown using the #6-5/8 screws supplied.
- 10a. Install two cable ties and the cable as done on the solar cell. Double loop any excess on the upper tie.

Figure 5b - Install the Sensor Assembly
(Squibb Taylor Float Assembly)

- 9b. Remove the two screws and gauge. Reinstall the gauge as shown using the screws that were removed.
- 10b. Install two cable ties and the cable as done on the solar cell. Double loop any excess on the upper tie.

Figure 6 - Prepare Transmitter for RF Test

12. Remove tape covering the hole on the side of the transmitter. Place the Battery Pack on the tank and insert the plug into the transmitter. The Battery Pack was designed to prevent spark ignition in a hazardous environment. **Do not substitute with any other power source.**
13. Write down the ID number etched on the transmitter lid in the lower right hand corner and from the maximum fill percentage from the manufacturers label on the propane tank. This and the serial number of the unit from the box will be needed later for programming.

Figure 8 - Controller Installation - Wall Mount Only

14. Position the 8" level and the side with the notches spaced at 4 inches (grooved edge), at the desired location in horizontal level. Mark the 4" notch locations. Drill and use the applicable hardware as required given the wall materials and structure. Install the mounting screws to the point where they protrusion depth from the wall aligns with the notch on the end of the level.
15. Install the Controller Unit and make any adjustments necessary to snugly secure the unit.

Figure 9 - Phone Connections

16. The unit can handle up to two phone lines. Line 1 is used by the unit. On the bottom of the case the phone jacks are labeled "IN" and "OUT". Line "IN" is the telephone line cord. Line "OUT" may be used to connect to other phone accessories such as a phone set.

Programming the Controller Unit

1. To reset the unit at any time unplug and replug the power or press **SHIFT** and **ESCAPE** simultaneously.
2. Unplug the power. Plug in the handheld and replug in the power. Within about ten seconds the unit will display four options.

F1: Program Unit

F2: Upload Records

F3: RF Test

F4: Troubleshooting

3. For **F1: Program Unit** you will need the maximum fill percent from the propane tank label, the serial number of the unit from the shipping box and the ID number off the transmitter unit. To program the unit press F1, then **Enter**.
4. **Number of tanks:** enter up to **3**, then press **Enter**.
5. Enter the Serial Number of the tank #1, then press **Enter**.
6. Enter the maximum fill level, just numerical digits, from the propane tank manufacturers label. Usually a number between 80 and 93 percent.
7. Enter the label ID number, then press **Enter**.
8. Repeat steps 5, 6, and 7 for tanks 2 and 3 if applicable.

Programming the Controller Unit (cont.)

9. For F2: Upload Records, the Add Customer form should of been filled out at the office PC and downloaded to RSS's server so the upload records function can be enabled. Press F2, then ENTER.
10. For F3: RF Test, the test will require that the battery pack is plugged into the transmitter unit. The unit senses the battery pack is plugged in and begins transmitting every 2.3 seconds. A successful RF test occurs when 30 out of 40 (75%) transmissions are received. During the test the transmissions will be displayed as a "P" for pass or "F" for fail. To start the test press F3, then ENTER.
- 11.