

Intertek Testing Services

APPLICATION FOR FCC CERTIFICATION

X Wire

Wireless Transmitter

Model: XT904

FCC ID: NH491699TX904

Report # J98025862

Number of Pages: 13

Date of Report: October 12, 1998

This report shall not be reproduced except in full, without written approval of Intertek Testing Services.

This report must not be used to claim product endorsement by NVLAP or any agency of the U.S. Government.

The results contained in this report were derived from measurements performed on the identified test samples. Any implied performance of other samples on this report is dependent on the representative of the samples tested.

Table of Contents

0.0	<u>Summary of Test Results</u>	1
1.0	<u>General Description</u>	2
1.1	Product Description	2
1.2	Related Submittal(s) Grants	3
1.3	Test Methodology	3
1.4	Test Facility	3
2.0	<u>System Test Configuration</u>	4
2.1	Justification	4
2.2	EUT Exercising Software	4
2.3	System Test Configuration	5
2.3.1	Support Equipment	5
2.3.2	Block Diagram of Test Setup	5
2.4	Equipment Modification	6
2.5	Additions, deviations and exclusions from standards	6
3.0	<u>Emission Results</u>	7
3.1	Field Strength Calculation	8
3.3	Radiated Emission Data	9
3.5	Conducted Emission Data	10
4.0	<u>Out of Band Emission Plot</u>	11
5.0	<u>Antenna Requirement</u>	12
6.0	<u>List of Exhibits</u>	13

Intertek Testing Services

XWire, Wireless Transmitter

FCC ID: NH491699TX904

1365 Adams Court, Menlo Park, CA 94025

Date of Test: September 14, 1998

0.0 Summary of Test Results

X Wire - Model No.: XT904
FCC ID: NH491699TX904

TEST	REFERENCE	RESULTS
Radiated Emission	15.249	Complies
Conducted Emission	15.207	Not Applicable
Antenna Requirement	15.203	Complies

Test Engineer:

Xi-Ming Yang Date: 10/12/98
Xi-Ming Yang

EMC Site Mgr.:

David Chernomordik Date: 10/20/98
David Chernomordik

Intertek Testing Services

XWire, Wireless Transmitter

FCC ID: NH491699TX904

1365 Adams Court, Menlo Park, CA 94025

Date of Test: September 14, 1998

1.0 General Description

1.1 Product Description

The XWire Model XT904 is a handheld wireless digital transmitter.

Please refer to the attached reference manual for more details.

1.2 Related Submittal(s) Grants

This is an Application for Certification of a low power transmitter. One transmitter is included in this Application. This specific report details the emission characteristics of transmitter.

The model number for the receiver associated with this transmitter is XR904. The receiver is subject to the DoC authorization process. A DoC report is now being prepared for the receiver.

1.3 Test Methodology

Both AC mains line-conducted and radiated emission measurements were performed according to the procedures in ANSI C63.4 (1992). All measurements were performed in Open Area Test Sites. Preliminary scans were performed in the Open Area Test Sites only to determine worst case modes. For each scan, the procedure for maximizing emissions in Appendices D and E were followed. All Radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "Justification Section" of this Application.

1.4 Test Facility

The open area test site and conducted measurement facility used to collect the radiated data is Site 1. This test facility and site measurement data have been fully placed on file with the FCC and NVLAP accredited.

2.0 System Test Configuration

2.1 Justification

For emission testing, the equipment under test (EUT) was configured for testing in a typical fashion (as a customer would normally use it). During testing, all cables were manipulated to produce worst case emissions.

For the measurements, the EUT is attached to a cardboard box (if necessary) and placed on the wooden turntable. If the EUT attaches to peripherals, they are connected and operational (as typical as possible). The EUT is wired to transmit full power without modulation.

The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Detector function is in peak mode. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance.

All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance.

2.2 EUT Exercising Software

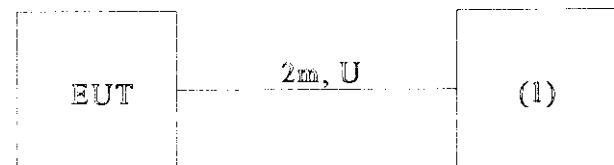
The EUT exercise program used during radiated and conducted testing was designed to exercise the various system components in a manner similar to a typical use.

For emissions testing, the units were setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing.

Intertek Testing Services

XWire, Wireless Transmitter
FCC ID: NH491699TX904

1365 Adams Court, Menlo Park, CA 94025


Date of Test: September 14, 1998

2.3 System Test Configuration

2.3.1 Support Equipment

Item #	Description	Model No.	Serial No.	FCC ID
1	IR Dynamic Microphone	MC103	N/A	N/A

2.3.2 Block Diagram of Test Setup

* = EUT

** = No ferrites on video cable

S = Shielded;

U = Unshielded

F = With Ferrite

2.4 Equipment Modification

Any modifications installed previous to testing by X Wire will be incorporated in each production model sold/leased in the United States.

No modifications were installed by Intertek Testing Services.

2.5 Additions, deviations and exclusions from standards

No additions, deviations or exclusion have been made from standard.

3.0 Emission Results

AC line conducted emission measurements were performed from 0.45 MH to 30 MHz. Analyzer resolution is 10 kHz or greater.

Radiated emission measurements were performed from 30 MHz to 5000 MHz. Analyzer resolution is 100 kHz or greater for 30 MHz to 1000 MHz, 1 MHz for > 1000 MHz.

Data is included of the worst case configuration (the configuration which resulted in the highest emission levels). A sample calculation, configuration photographs and data tables of the emissions are included. All measurements were performed with peak detection unless otherwise specified.

3.1 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CF - AG$$

where FS = Field Strength in dB(μ V/m)

RA = Receiver Amplitude (including preamplifier) in dB(μ V)

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB/m

AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows:-

$$FS = RR + LF$$

where FS = Field Strength in dB(μ V/m)

RR = RA - AG in dB(μ V)

LF = CF + AF in dB

Assume a receiver reading of 52.0 dB(μ V) is obtained. The antenna factor of 7.4 dB/m and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB(μ V/m). This value in dB μ V/m was converted to its corresponding level in μ V/m.

$$RA = 52.0 \text{ dB}(\mu\text{V})$$

$$AF = 7.4 \text{ dB/m}$$

$$RR = 23.0 \text{ dB}(\mu\text{V})$$

$$CF = 1.6 \text{ dB}$$

$$LF = 9.0 \text{ dB}$$

$$AG = 29.0 \text{ dB}$$

$$FS = RR + LF$$

$$FS = 23 + 9 = 32 \text{ dB}(\mu\text{V/m})$$

Level in μ V/m = Common Antilogarithm $\{[32 \text{ dB}(\mu\text{V/m})]/20\} = 39.8 \mu\text{V/m}$

3.3 Radiated Emission Data

The data on the following pages list the significant emission frequencies, the limit and the margin of compliance.

Results:	Passed by 0.8 dB at 906 MHz
-----------------	-----------------------------

Note: a) All emissions not reported are at least 20 dB below the limits

ITS Intertek Testing Services

Company: Xwire
Project #: J98025863
Model: TX904 (TX @ 906 MHz)
Engineer: Xi-Ming Yang
Date of test: September 14, 1998

FCC 15.249 Radiated Emissions

Frequency MHz	Antenna Polarity	Reading dB(uV)	Antenna Factor	Cable Loss	Pre-amp dB	Distance Factor	Corrected Reading dB(uV/m)	Limit dB(uV/m)	Margin dB
906.0	V	67.5	23.6	2.1	0.0	0.0	93.2	94.0	-0.8
1811.9	V	48.0*	26.5	2.3	-29.3	0.0	47.5	74.0	-26.5
1811.9	V	39.1	26.5	2.3	-29.3	0.0	38.6	54.0	-15.4
2718.0	V	49.0*	29.0	2.3	-28.2	0.0	52.1	74.0	-21.9
2718.0	V	41.2	29.0	2.3	-28.2	0.0	44.3	54.0	-9.7
3623.4	H	47.0*	31.3	2.8	-27.8	0.0	53.3	74.0	-20.7
3623.4	H	38.8	31.3	2.8	-27.8	0.0	45.1	54.0	-8.9
4529.4	V	46.0*	32.1	3.2	-27.9	0.0	53.4	74.0	-20.6
4529.4	V	37.2	32.1	3.2	-27.9	0.0	44.6	54.0	-9.4
5434.7	H	34.0*	34.4	3.5	-28.8	0.0	43.1	74.0	-30.9
5434.7	H	24.8	34.4	3.5	-28.8	0.0	33.9	54.0	-20.1
6340.8	V	46.0*	34.3	4.0	-28.0	0.0	56.3	74.0	-17.7
6340.8	V	37.0	34.3	4.0	-28.0	0.0	47.3	54.0	-6.7
7246.4	V	40.0*	37.0	4.5	-28.0	0.0	53.5	74.0	-20.5
7246.4	V	31.0	37.0	4.5	-28.0	0.0	44.5	54.0	-9.5
8153.5	H	33.0*	36.9	4.8	-27.2	0.0	47.5	74.0	-26.5
8153.5	H	24.0	36.9	4.8	-27.2	0.0	38.5	54.0	-15.5
9058.5	H	33.0*	38.2	5.2	-26.8	0.0	49.6	74.0	-24.4
9058.5	H	25.0	38.2	5.2	-26.8	0.0	41.6	54.0	-12.4

Note:

1. All measurement were made at 3 meters
2. Negative signs (-) in the margin column signify levels below the limit.
3. Reading with * is Peak-reading.

ITS Intertek Testing Services

Company: Xwire
Project #: J98025863
Model: TX904 (Tx @ 912 MHz)
Engineer: Xi-Ming Yang
Date of test: September 14, 1998

FCC 15.249 Radiated Emissions

Frequency MHz	Antenna Polarity	Reading dB(uV)	Antenna Factor	Cable Loss	Pre-amp dB	Distance Factor	Corrected Reading dB(uV/m)	Limit dB(uV/m)	Margin dB
912.0	V	67.2	23.6	2.1	0.0	0.0	92.9	94.0	-1.1
1823.7	V	40.0*	26.5	2.3	-29.3	0.0	39.5	74.0	-34.5
1823.7	V	30.0	26.5	2.3	-29.3	0.0	29.5	54.0	-24.5
2735.9	H	48.0*	29.0	2.3	-28.2	0.0	51.1	74.0	-22.9
2735.9	H	39.9	29.0	2.3	-28.2	0.0	43.0	54.0	-11.0
3647.4	H	45.0*	31.3	2.8	-27.8	0.0	51.3	74.0	-22.7
3647.4	H	36.0	31.3	2.8	-27.8	0.0	42.3	54.0	-11.7
4559.2	V	45.0*	32.1	3.2	-27.9	0.0	52.4	74.0	-21.6
4559.2	V	35.0	32.1	3.2	-27.9	0.0	42.4	54.0	-11.6
5470.7	V	39.0*	34.4	3.5	-28.8	0.0	48.1	74.0	-25.9
5470.7	V	28.0	34.4	3.5	-28.8	0.0	37.1	54.0	-16.9
6382.7	V	41.0*	34.3	4.0	-28.0	0.0	51.3	74.0	-22.7
6382.7	V	32.6	34.3	4.0	-28.0	0.0	42.9	54.0	-11.1
7297.9	V	38.0*	37.0	4.5	-28.0	0.0	51.5	74.0	-22.5
7297.9	V	29.7	37.0	4.5	-28.0	0.0	43.2	54.0	-10.8
8206.4	H	34.0*	36.9	4.8	-27.2	0.0	48.5	74.0	-25.5
8206.4	H	25.0	36.9	4.8	-27.2	0.0	39.5	54.0	-14.5
9118.4	V	35.0*	38.2	5.2	-26.8	0.0	51.6	74.0	-22.4
9118.4	V	25.0	38.2	5.2	-26.8	0.0	41.6	54.0	-12.4

Note:

1. All measurement were made at 3 meters
2. Negative signs (-) in the margin column signify levels below the limit.
3. Reading with * is Peak-reading.

ITS Intertek Testing Services

Company: Xwire
Project #: J98025863
Model: TX904 (Tx @ 924 MHz)
Engineer: Xi-Ming Yang
Date of test: September 14, 1998

FCC 15.249 Radiated Emissions

Frequency MHz	Antenna Polarity	Reading dB(uV)	Antenna Factor	Cable Loss	Pre-amp dB	Distance Factor	Corrected Reading dB(uV/m)	Limit dB(uV/m)	Margin dB
924.0	V	67.4	23.6	2.1	0.0	0.0	93.1	94.0	-0.9
1848.0	H	50.0*	26.5	2.3	-29.3	0.0	49.5	74.0	-24.5
1848.0	H	41.0	26.5	2.3	-29.3	0.0	40.5	54.0	-13.5
2771.3	V	55.0*	29.0	2.3	-28.2	0.0	58.1	74.0	-15.9
2771.3	V	46.0	29.0	2.3	-28.2	0.0	49.1	54.0	-4.9
3696.9	V	45.0*	31.3	2.8	-27.8	0.0	51.3	74.0	-22.7
3696.9	V	36.2	31.3	2.8	-27.8	0.0	42.5	54.0	-11.5
4619.4	V	45.0*	32.1	3.2	-27.9	0.0	52.4	74.0	-21.6
4619.4	V	36.0	32.1	3.2	-27.9	0.0	43.4	54.0	-10.6
5543.2	H	40.0*	34.4	3.5	-28.8	0.0	49.1	74.0	-24.9
5543.2	H	31.0	34.4	3.5	-28.8	0.0	40.1	54.0	-13.9
6467.0	V	37.0*	34.3	4.0	-28.0	0.0	47.3	74.0	-26.7
6467.0	V	28.6	34.3	4.0	-28.0	0.0	38.9	54.0	-15.1
7390.8	V	38.0*	37.0	4.5	-28.0	0.0	51.5	74.0	-22.5
7390.8	V	29.0	37.0	4.5	-28.0	0.0	42.5	54.0	-11.5
8314.8	H	34.0*	36.9	4.8	-27.2	0.0	48.5	74.0	-25.5
8314.8	H	25.0	36.9	4.8	-27.2	0.0	39.5	54.0	-14.5
9238.8	H	34.0*	38.2	5.2	-26.8	0.0	50.6	74.0	-23.4
9238.8	H	25.0	38.2	5.2	-26.8	0.0	41.6	54.0	-12.4

Note:

1. All measurement were made at 3 meters
2. Negative signs (-) in the margin column signify levels below the limit.
3. Reading with * is Peak-reading.

ITS Intertek Testing Services

Company: Xwire
Project #: J98025863
Model: TX904
Engineer: Xi-Ming Yang
Date of test: September 14, 1998

FCC 15 Class B Radiated Emissions

Frequency MHz	Antenna Polarity	Reading dB(uV)	Antenna Factor	Cable Loss dB	Pre-amp dB	Distance Factor dB	Corrected Reading dB(uV/m)	Limit dB(uV/m)	Margin dB
32.0	V	15.0	13.5	0.4	0.0	0.0	28.9	40.0	-11.1
120.0	V	16.0	9.8	1.0	0.0	0.0	26.8	43.5	-16.7
128.0	V	13.0	11.2	1.0	0.0	0.0	25.2	43.5	-18.3
160.0	V	14.0	9.8	1.1	0.0	0.0	24.9	43.5	-18.6
255.9	H	15.8	13.3	1.2	0.0	0.0	30.3	46.0	-15.7
320.0	H	10.7	15.5	1.5	0.0	0.0	27.7	46.0	-18.3
400.0	H	6.6	16.9	1.6	0.0	0.0	25.1	46.0	-20.9

Note: 1. All measurement were made at 3 meters
2. Negative signs (-) in the margin column signify levels below the limit.
3. Reading with * is Peak-reading.

3.5 Conducted Emission Data

The data on the following pages list the significant emission frequencies, the limit and the margin of compliance.

Results:	Not applicable, the EUT is a battery powered device.
-----------------	--

Note: a) A complete scan from 0.45 - 30 MHz was made.

4.0 Out of Band Emission Plot

The following plots show the relative spurious emission level of the transmitter.

Plot #	Description
3a	Low Channel, Band Edge Scan
3b	Middle Channel, Band Edge Scan
3c	High Channel, Band Edge Scan
3d - 3e	902 MHz - 10000 MHz Scan
3f - 3g	902 MHz - 10000 MHz Scan
3h - 3i	902 MHz - 10000 MHz Scan

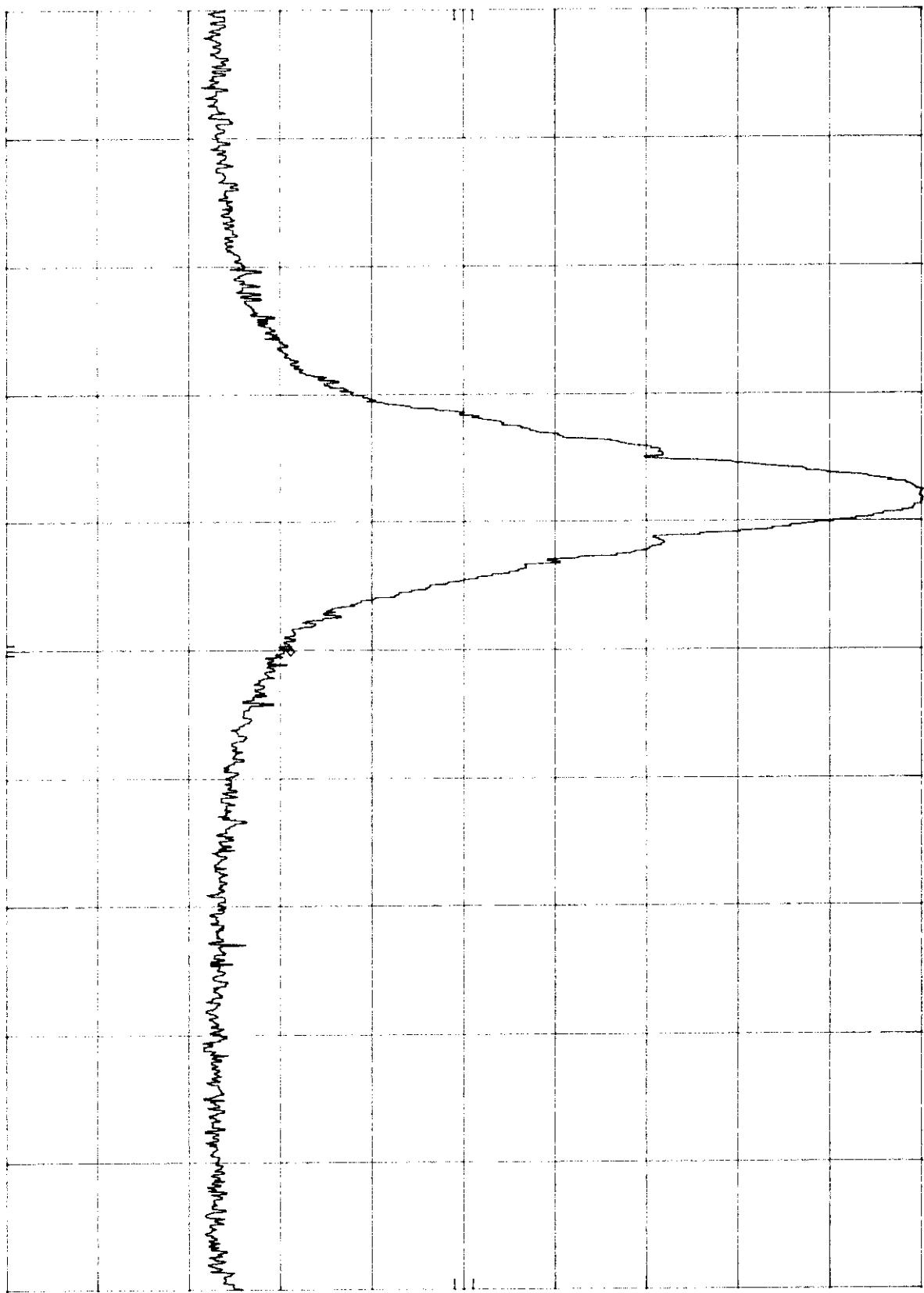
PLLOT # 3a

2000 1800 1600 1400 1200 1000 800 600 400 200 0

1000 900 800 700 600 500 400 300 200 100 0

1000 900 800 700 600 500 400 300 200 100 0

1000 900 800 700 600 500 400 300 200 100 0



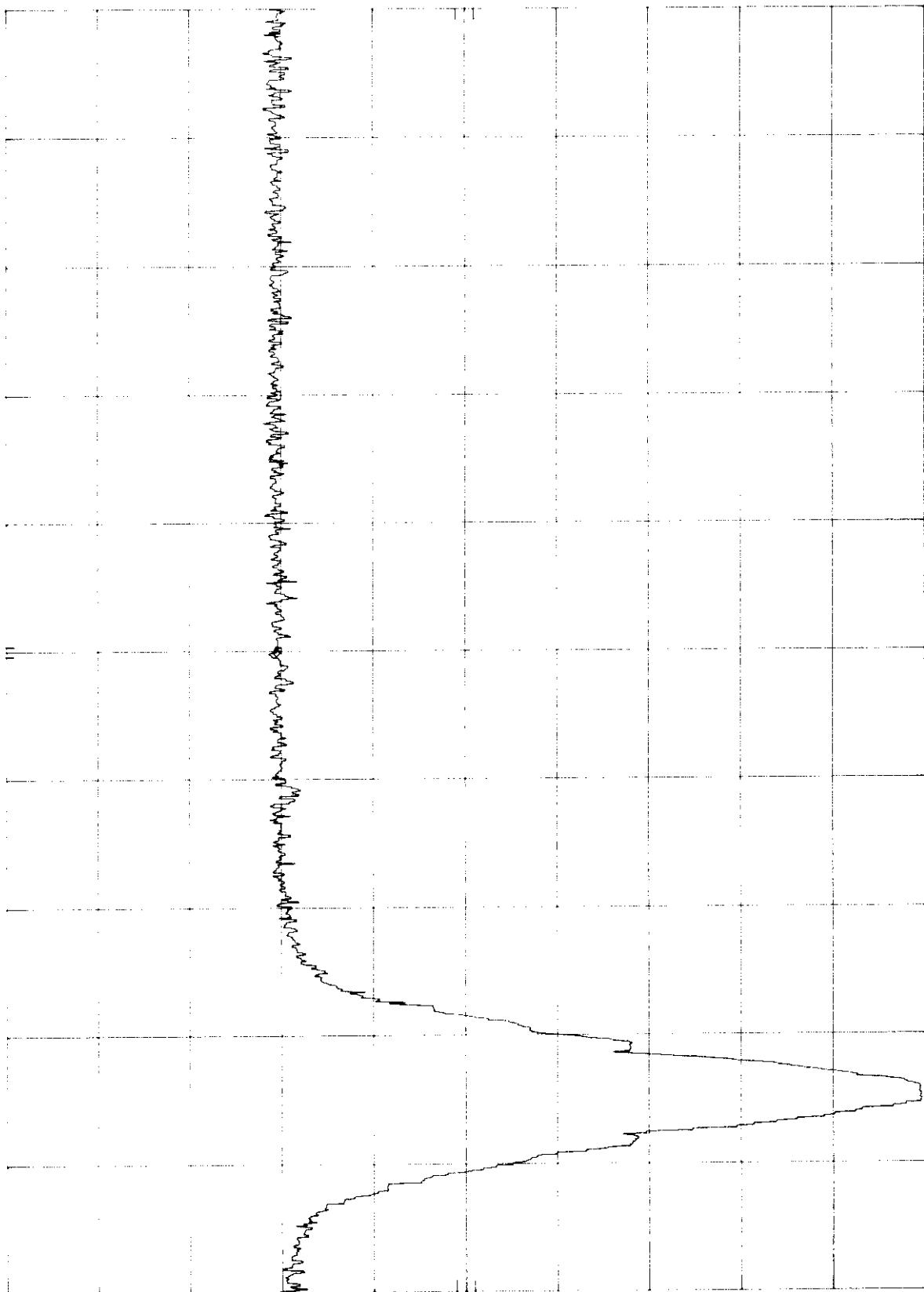
PLOT# 3b

MKR 915.00 MHz

-78.90 dBm

H_P REF -10.0 dBm ATTEN 0 dB
10 dB/

START 902.0 MHz
RES BW 100 kHz
VBW 100 kHz
STOP 928.0 MHz
SWP 20.0 msec


PLOT# 3c

HP REF -17.6 dBm ATTEN 0 dB

MKR 915.00 MHz

-88.10 dBm

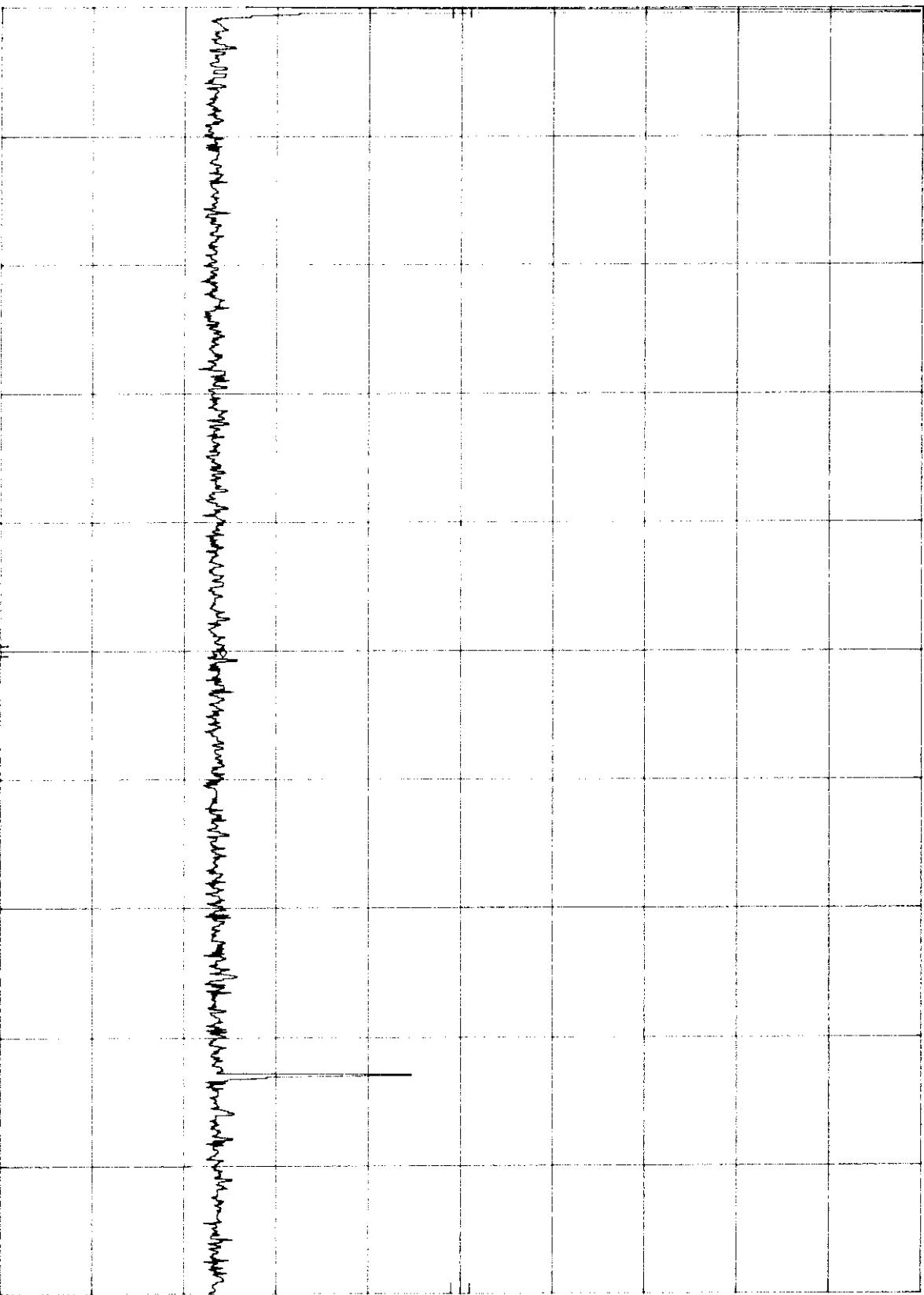
10 dB/

START 902.0 MHz

RES BW 100 kHz

VBW 100 kHz

STOP 928.0 MHz


SWP 20.0 msec

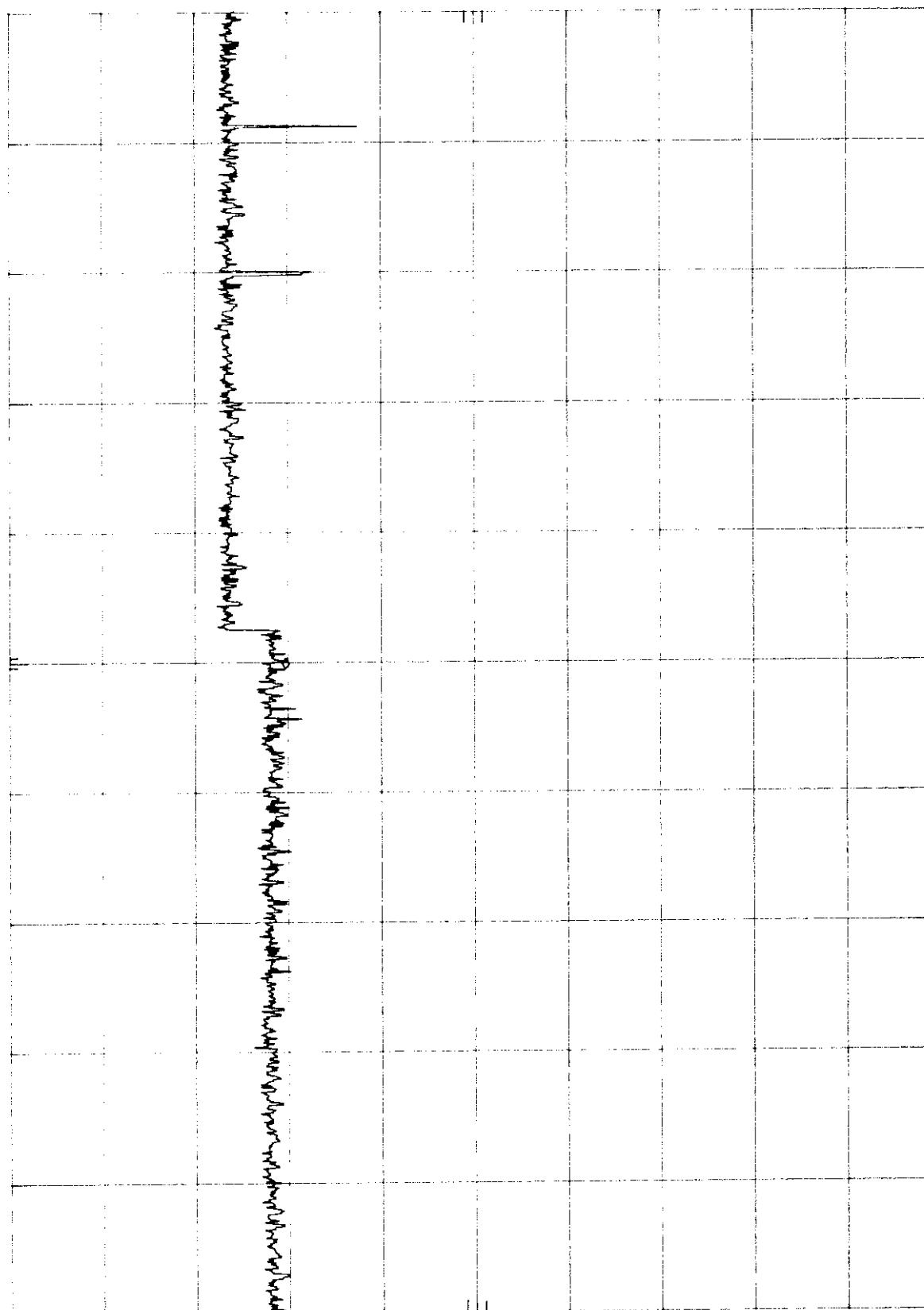
PLOT# 3d

MKR 1. 451 GHz

-85. 80 dBm

$\frac{10}{\text{dB}}$ REF -10.0 dBm ATTEN 0 dB

START 902 MHz
RES BW 100 kHz
VBW 100 kHz
STOP 2.00 GHz
SWP 329 msec


PLOT# 3e

MKR 6.000 GHz

-80.30 dBm

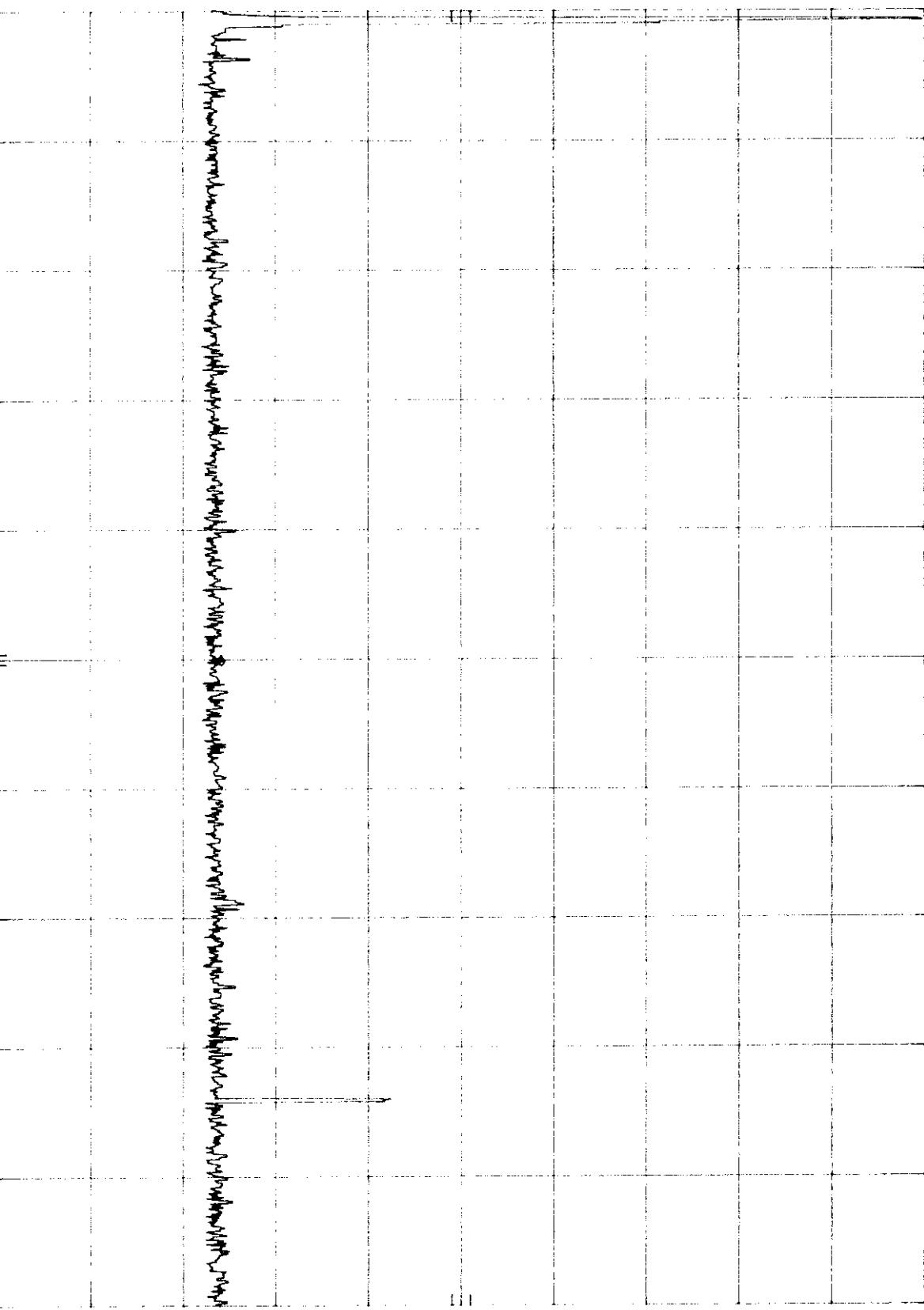
HP REF -10.0 dBm ATTEN 0 dB

10 dB/

START 2.00 GHz RES BW 100 kHz

VBW 100 kHz

STOP 10.00 GHz SWP 2.40 sec


PLOT# 3F

REF -10.0 dBm ATTEN 0 dB

MKR 1. 451 GHz

-85.90 dBm

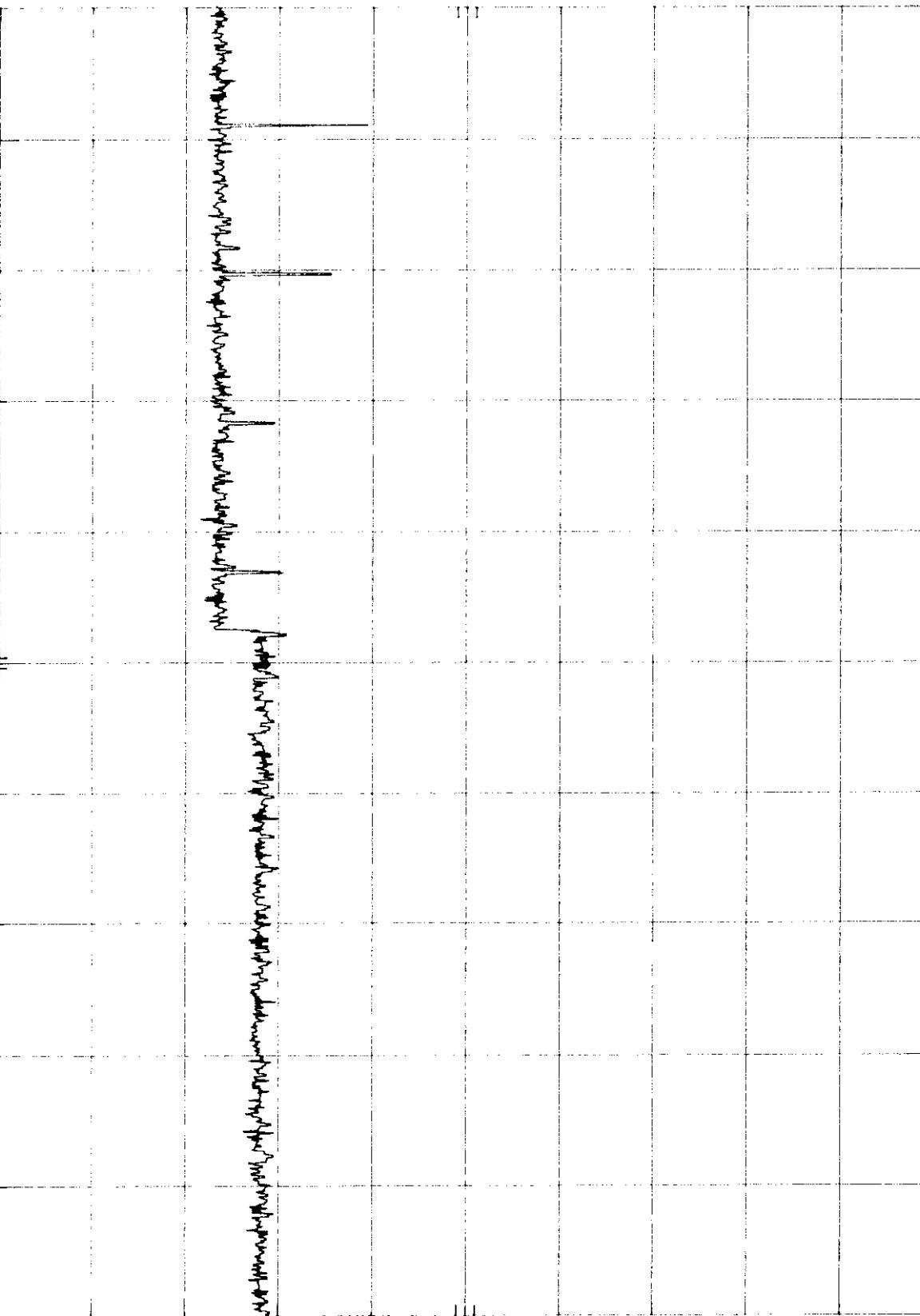
10 dB/

START 902 MHz

RES BW 100 kHz

VBW 100 kHz

STOP 2.00 GHz


SWP 329 msec

PLOT# 3g

MKR 6.000 GHz

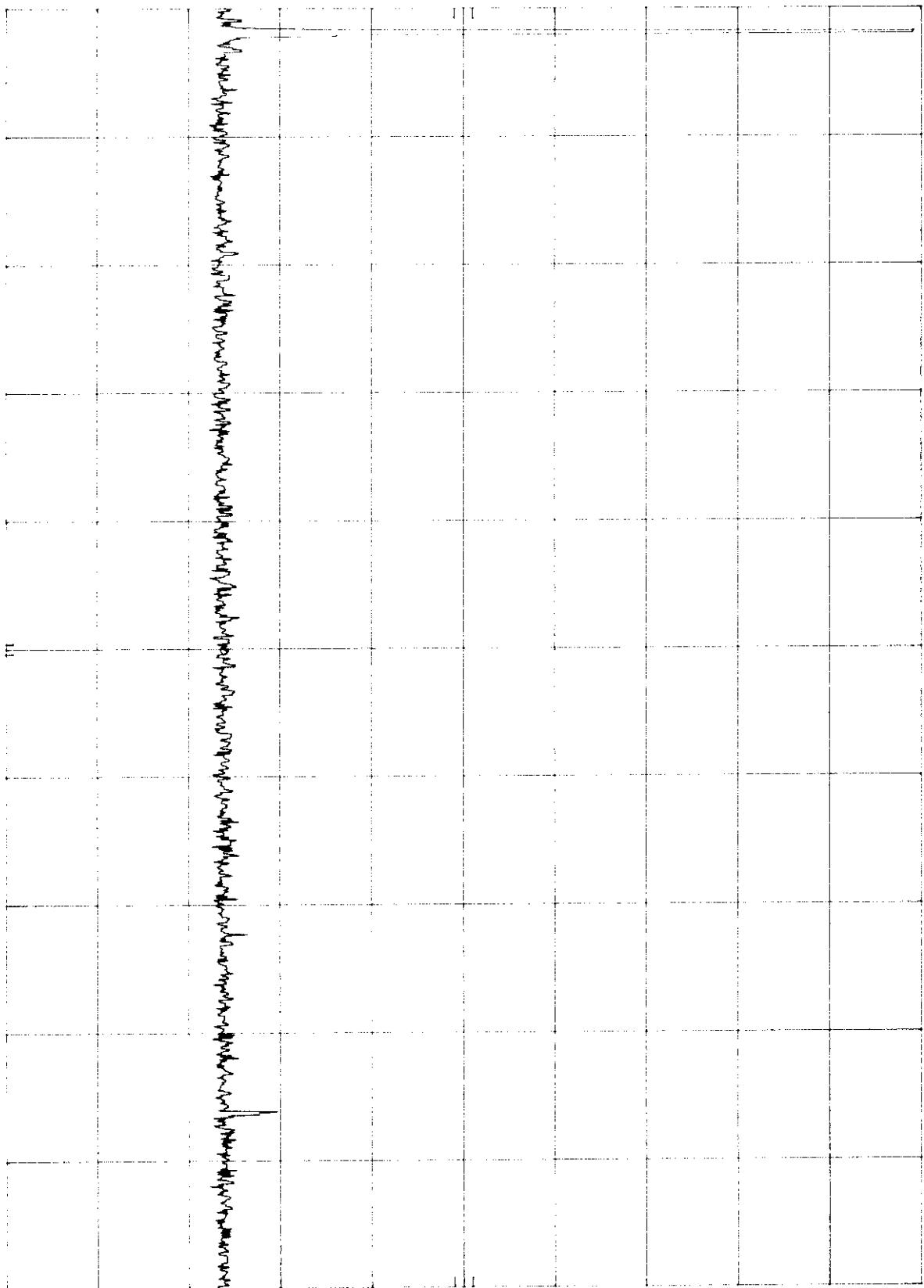
-81.40 dBm

HP REF -10.0 dBm ATTEN 0 dB
10 dB/

START 2.00 GHz
RES BW 100 kHz

VBW 100 kHz

STOP 10.00 GHz
SWP 2.40 sec


PLOT# 3h

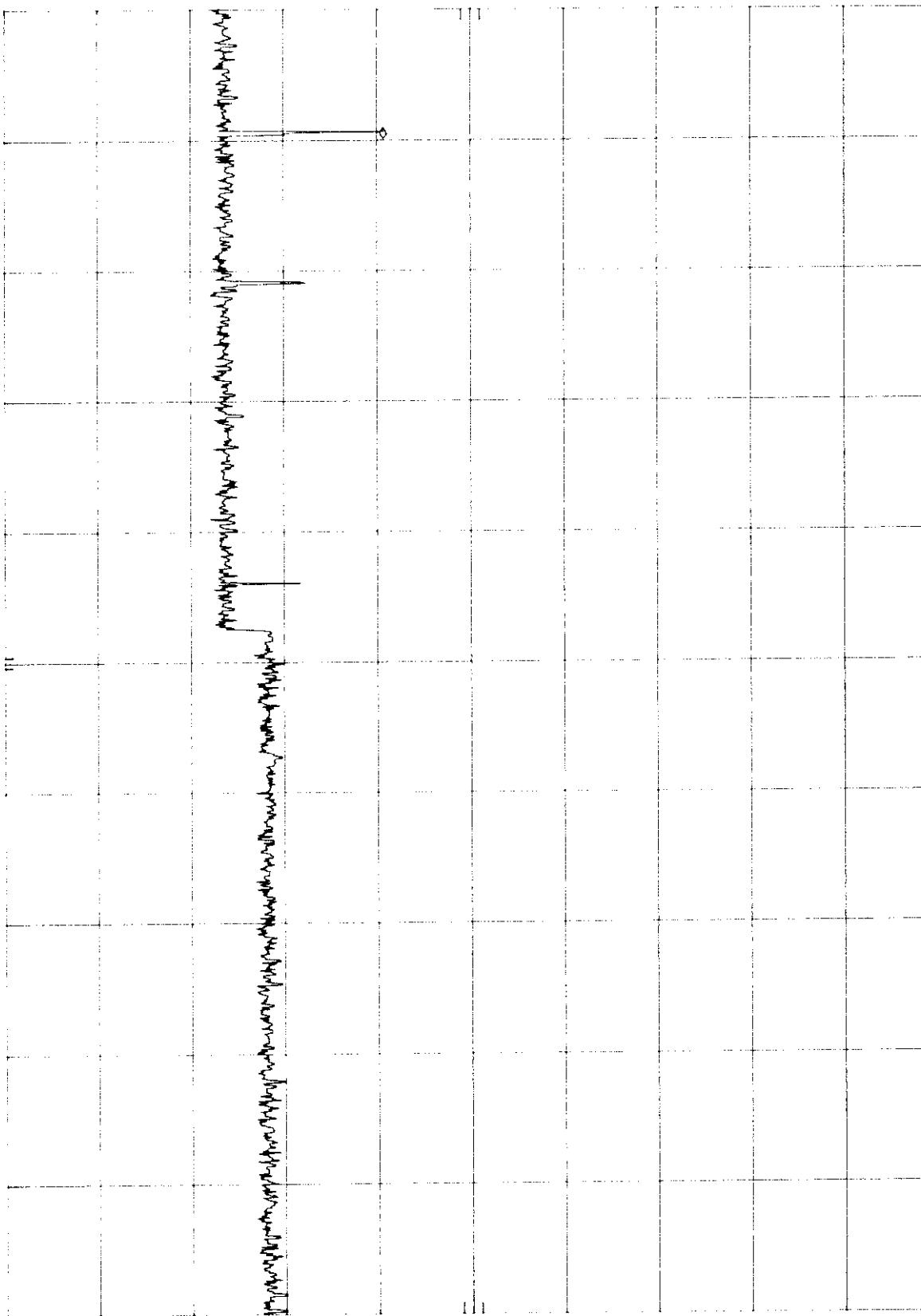
MKR 1. 451 GHz

-86.20 dBm

$\frac{dP}{dt}$ REF -10.0 dBm ATTEN 0 dB

10 dB/

START 902 MHz
RES BW 100 kHz


VBW 100 kHz

STOP 2.00 GHz
SWP 329 msec

PLOT# 3i

MKR 2.752 GHz
-69.30 dBm

$\frac{dP}{dt}$ REF -10.0 dBm ATTEN 0 dB
10 dB/

START 2.00 GHz
RES BW 100 kHz

VBW 100 kHz

STOP 10.00 GHz
SWP 2.40 sec

5.0 Antenna Requirement

<input checked="" type="checkbox"/>	The transmitter uses a permanently connected antenna.
	The antenna is affixed to the EUT using a unique connector which allows for replacement of a broken antenna, but does NOT use a standard antenna jack or electrical connector.
	The EUT requires professional installation. Please refer to the attached documentation for details).

6.0 List of Exhibits

Exhibit 1 **ID Label Format**

Exhibit 2 **ID Label Location**

Exhibit 3 **Equipment Photographs**

Exhibit 4 **Block Diagram**

Exhibit 5 **Circuit Diagram**

Exhibit 6 **Test Setup Photos**

Exhibit 7 **Instruction Manual**