

EMI - TEST REPORT

- FCC Part 15B -

Test Report No. : T36613-00-04HU

06. February 2013

Date of issue

Type / Model Name : XtendMax

Product Description : RFID handheld reader for animal identification

Applicant: Datamars S.A.

Address : Via ai Prati

CH – 6930 BEDANO

Manufacturer: Datamars S.A.

Address : Via ai Prati

CH – 6930 BEDANO

Licence holder : Datamars S.A.

Address : Via ai Prati

CH – 6930 BEDANO

Test Result according to the standards listed in clause 1 test	POSITIVE
standards:	

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test results without the written permission of the test laboratory.

mikes-testingpartners gmbh Ohmstrasse 2-4 · 94342 Strasskirchen Tel.:+49(0)9424-94810 · Fax:+49(0)9424-9481240 File No. **T36613-00-04HU**, page **1** of **17**

Rev. No. 1.1. 23.7.2008

Contents

1 <u>TEST STANDARDS</u>	3
2 SUMMARY	4
3 EQUIPMENT UNDER TEST	5
3.1 Photo documentation of the EUT – Detailed photos see Attachment A	5
3.2 Power supply system utilised	5
3.3 Short description of the Equipment under Test (EuT)	5
4 <u>TEST ENVIRONMENT</u>	6
4.1 Address of the test laboratory	6
4.2 Environmental conditions	6
4.3 Statement of the measurement uncertainty	6
4.4 Measurement Protocol for FCC, VCCI and AUSTEL	7
5 TEST CONDITIONS AND RESULTS	8
5.1 Conducted emissions	8
5.2 Radiated emissions	12
5.3 Spurious emissions (antenna conducted)	15
6 USED TEST EQUIPMENT AND ACCESSORIES	17

1 TEST STANDARDS

The tests were performed according to following standards:

FCC Rules and Regulations Part 15 Subpart A - General (October, 2012)

Part 15, Subpart A, Section 15.31 Measurement standards

Part 15, Subpart A, Section 15.33 Frequency range of radiated measurements

Part 15, Subpart A, Section 15.35 Measurement detector functions and bandwidths

FCC Rules and Regulations Part 15 Subpart B - Unintentional Radiators (October, 2012)

Part 15, Subpart B, Section 15.107 AC Line conducted emissions

Part 15, Subpart B, Section 15.109 Radiated emissions, general requirements

Part 15, Subpart B, Section 15.111 Antenna power conduction

ANSI C63.4: 2003 Methods of Measurement of Radio-Noise Emissions from Low-

Voltage Electrical and Electronic Equipment in the Range of 9 kHz

to 40 GHz.

ANSI C95.1:1992 IEEE Standard for Safety Levels with respect to Human Exposure

to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz

CISPR 16-4-2: 2003 Uncertainty in EMC measurement

CISPR 22: 2005 Information technology equipment

EN 55022: 2006

2 SUMMARY

GENERAL REMARKS:

The EuT is working at frequency of 134.2 kHz.

Data connection via USB to a LapTop:

FINAL ASSESSMENT:

The equipment under test **fulfills** the EMI requirements cited in clause 1 test standards.

Klaus Gegenfurtner	Huber Markus
Checked by:	Tested by:
Testing concluded on	: 30. January 2013
Testing commenced on	: <u>21. January 2013</u>
Date of receipt of test sample	: acc. to storage records

Dipl.-Ing.(FH)
Manager: Radio Group

File No. **T36613-00-04HU**, page **4** of **17**

3	EQ	U	IΡ	ΜE	ΝT	UN	DER	TEST
---	----	---	----	----	----	----	-----	------

3.1	Photo documentation of the EUT - Detailed	photos see Attachment A
-----	---	-------------------------

3.2 Power supply system utilised	
	15 V / 60 Hz x 4.0 V
3.3 Short description of the Equipm The EuT is a RFID handheld reader for animal in	•
Number of tested samples: 1 Serial number: Beta 019	
EuT operation mode:	
The equipment under test was operated during	the measurement under the following conditions:
- Standby - Data connection via USB to a Lapto	p
_	
EUT configuration: (The CDF filled by the applicant can be viewed a	at the test laboratory.)
The following peripheral devices and interface	ce cables were connected during the measurements:
- USB 2.0 Cable A-B, m-m, 2.0	Model : Supplied by manufacturer
- AC/DC Power supply	Model: PHIHONG, PSA10F-050Q
- Rhode & Schwarz emi receiver	Model: ESR7, No.: 101108

4 <u>TEST ENVIRONMENT</u>

4.1 Address of the test laboratory

mikes-testingpartners gmbh Ohmstrasse 2-4 94342 Strasskirchen Germany

4.2 Environmental conditions

During the m	neasurement the	environmental	conditions	were	within t	he listed	ranges:

Temperature: 15-35 ° C

Humidity: 30-60 %

Atmospheric pressure: 86-106 kPa

4.3 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader may notice that tolerances within the calibration of the equipment and facilities may cause additional uncertainty. The measurement uncertainty is calculated for all measurements listed in this test report acc. to CISPR 16-4-2 "Uncertainties, statistics and limit modelling — Uncertainty in EMC measurement" and documented in the mikes-testingpartners gmbh quality system acc. to DIN EN ISO/IEC 17025. For all measurements shown in this report, the measurement uncertainty of the test laboratory, mikes-testingpartners gmbh, is below the measurement uncertainty as defined by CISPR. Therefore, no special measures must be taken into consideration with regard to the limits according to CISPR. Furthermore, component diversity and modifications in production processes may result in additional deviation. If necessary, refer to the test lab for the actual measurement uncertainty for specific tests. The manufacturer has the sole responsibility of continued compliance of the EUT.

4.4 Measurement Protocol for FCC, VCCI and AUSTEL

4.4.1 GENERAL INFORMATION

4.4.1.1 Test Methodology

Conducted and radiated disturbance testing is performed according to the procedures set out by the International Special Committee on Radio Interference (CISPR) Publication 22, European Standard EN 55022 as shown under section 1 of this report.

The test methods used comply with CISPR Publication 22, EN 55022 - "Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement" and with ANSI C63.4 - "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz."

In compliance with 47 CFR Part 15 Subpart A, Section 15.38 testing for FCC compliance may be achieved by following the procedures set out in ANSI C63.4 and applying the CISPR 22 limits.

4.4.1.2 Justification

The Equipment under Test (EUT) is configured in a typical user arrangement in accordance with the manufacturer's instructions. A cable is connected to each available port and either terminated with a peripheral using the appropriate impedance characteristic or left unterminated. Where appropriate, cables are manually manipulated with respect to each in order to obtain maximum disturbances from the unit.

4.4.2 DETAILS OF TEST PROCEDURES

4.4.2.1 General Standard Information

The test methods used comply with CISPR Publication 22, EN 55022 - "Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement" and with ANSI C63.4 - "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz."

5 TEST CONDITIONS AND RESULTS

5.1 Conducted emissions

For test instruments and accessories used see section 6 Part A 4.

5.1.1 Description of the test location

Test location: Shielded Room S2

5.1.2 Photo documentation of the test set-up

5.1.3 Applicable standard

According to FCC Part 15B, Section 15.107(a):

Except as shown in paragraphs (b) and (c) of this Section, for an unintentional radiator that is designed to be connected to the public utility AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table

Frequency of emission	Conducted limit (dBµV)				
(MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56 *	56 to 46 *			
0.5-5	56	46			
5-30	60	50			

^{*} Decreases with the logarithm of the frequency

5.1.4 Description of Measurement

The correction factors for cable loss and antenna gain are stored in the memory of the EMI receiver therefore the final level ($dB_{\mu}V$) appears directly in the reading of the EMI receiver. This level is compared to the FCC limit.

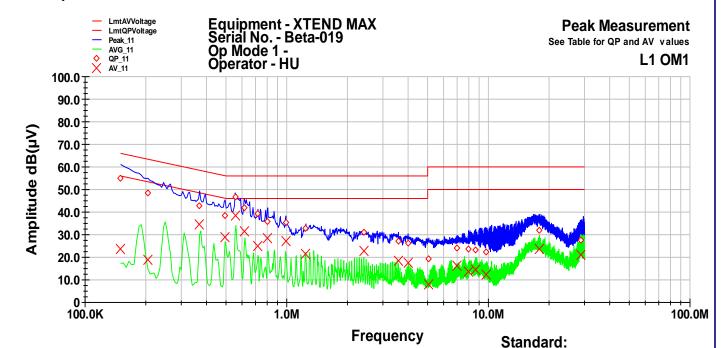
To convert between $dB\mu V$ and μV , the following conversions apply:

 $dB\mu V = 20(log \mu V)$ $\mu V = 10^{(dB\mu V/20)}$

The measurements are performed using a receiver, which has CISPR characteristic bandwidth and quasi-peak detection and a line impedance stabilization network (LISN) with $50\Omega/50~\mu H$ (CISPR 16) characteristics. Table top equipment is placed on a non-conducting table 80 centimetres above the floor and is positioned 40 centimetres from the vertical ground plane (wall) of the screen room. If the minimum limit margin appears to be less than 20 dB with a peak mode measurement, the emissions are remeasured using a tuned receiver with quasi-peak and average detection and recorded on the data sheets.

Frequency range: 0.15 MHz - 30 MHz Min. limit margin 14.4 dB at 0.445 MHz The requirements are FULFILLED. Remarks:

5.1.6 Test protocol


Test point: L1 Result: passed

Operation mode: Standby mode

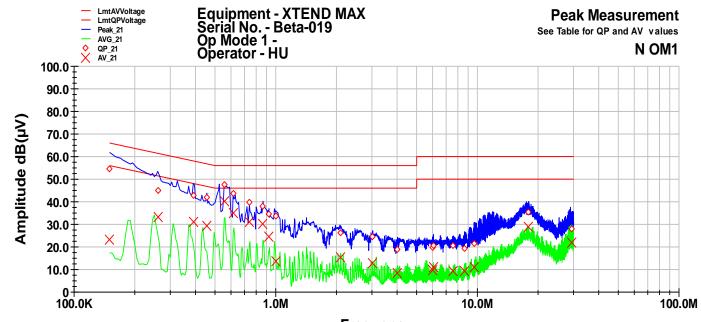
Remarks: Connection via USB to a LapTop

Date:

Tested by: Huber Markus

					File Number: T36613-00HU			
Frequency	QP Level	QP Margin	QP Limit	AV Level	AV Margin	AV Limit		
MHz	dB(μV)	dB	dB	dB(μV)	dB	dB		

IVITZ	αΒ(μν)	uБ	аь	αΒ(μν)	uв	иь
0.15	55.1	-10.9	66.0	23.5	-32.5	56.0
0.205	48.3	-15.1	63.4	18.8	-34.6	53.4
0.37	42.7	-15.8	58.5	34.4	-14.1	48.5
0.495	38.3	-17.8	56.1	28.7	-17.4	46.1
0.555	46.8	-9.2	56.0	38.7	-7.3	46.0
0.615	41.7	-14.3	56.0	31.6	-14.4	46.0
0.72	39.4	-16.6	56.0	25.1	-20.9	46.0
0.805	36.0	-20.0	56.0	28.4	-17.6	46.0
0.99	35.3	-20.7	56.0	27.1	-18.9	46.0
1.245	32.7	-23.3	56.0	21.3	-24.7	46.0
2.41	31.2	-24.8	56.0	22.9	-23.1	46.0
3.58	27.1	-28.9	56.0	18.3	-27.7	46.0
4.015	26.1	-29.9	56.0	17.6	-28.4	46.0
5.07	19.4	-40.6	60.0	7.9	-42.1	50.0
6.985	23.9	-36.1	60.0	16.1	-33.9	50.0
7.975	23.5	-36.5	60.0	13.7	-36.3	50.0
8.655	23.3	-36.7	60.0	14.3	-35.7	50.0
9.705	22.4	-37.6	60.0	12.4	-37.6	50.0
17.91	31.8	-28.2	60.0	23.8	-26.3	50.0
28.63	27.4	-32.6	60.0	21.0	-29.0	50.0


Test point: N Result: passed

Operation mode: Standby mode

Remarks: Connection via USB to a LapTop

Date:

Tested by: Huber Markus

Frequency Standard:

File Number: T36613-00HU

Frequency	QP Level	QP Margin	QP Limit	AV Level	AV Margin	AV Limit
MHz	dB(μV)	dB	dB	dB(μV)	dB	dB
0.15	54.7	-11.3	66.0	23.0	-33.0	56.0
0.26	45.1	-16.3	61.4	33.1	-18.3	51.4
0.39	42.8	-15.2	58.1	31.2	-16.9	48.1
0.455	42.0	-14.8	56.8	29.2	-17.6	46.8
0.555	47.6	-8.4	56.0	40.0	-6.0	46.0
0.615	43.5	-12.5	56.0	34.8	-11.2	46.0
0.74	39.7	-16.3	56.0	31.1	-14.9	46.0
0.865	38.1	-17.9	56.0	30.2	-15.8	46.0
0.925	34.7	-21.3	56.0	24.6	-21.4	46.0
1.005	33.6	-22.4	56.0	13.8	-32.2	46.0
2.1	26.2	-29.8	56.0	15.2	-30.8	46.0
3.025	24.6	-31.4	56.0	12.9	-33.1	46.0
4.015	19.0	-37.0	56.0	8.6	-37.4	46.0
5.99	19.6	-40.4	60.0	9.9	-40.1	50.0
6.05	20.6	-39.4	60.0	11.0	-39.0	50.0
7.595	20.6	-39.4	60.0	9.3	-40.7	50.0
8.645	19.3	-40.8	60.0	9.4	-40.6	50.0
9.695	21.3	-38.7	60.0	10.9	-39.1	50.0
17.955	35.2	-24.8	60.0	28.8	-21.3	50.0
29.405	28.2	-31.8	60.0	22.0	-28.0	50.0

5.2 Radiated emissions

For test instruments and accessories used see section 6 Part SER 1, SER 2.

5.2.1 Description of the test location

Test location: OATS1

Test distance: 3 metres

5.2.2 Photo documentation of the test set-up

5.2.3 Applicable standard

According to FCC Part 15B, Section 15.109 (a):

Except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 m shall not exceed the given limit.

5.2.4 Description of Measurement

Radiated emissions from the EUT are measured in the frequency range of 30 MHz to 1000 MHz using a tuned receiver and appropriate broadband linearly polarized antennas. Measurements between 30 MHz and 1000 MHz are made with 120 kHz/6 dB bandwidth and quasi-peak detection. Table top equipment is placed on a 1.0 X 1.5 dB(μV/m) non-conducting table 80 centimetres above the ground plane. Floor standing equipment is placed directly on the turntable/ground plane. The set up of the equipment under test will be in accordance to ANSI C63.4. The interface cables that are closer than 40 cm to the ground plane are bundled in the center in a serpentine fashion so they are at least 40 cm from the ground plane. Cables to simulators/testers (if used in this test) are routed through the center of the table and to a screen room located outside the test area. The antenna was positioned 3 m horizontally from the EUT. To locate maximum emissions from the test sample the antenna is varied in height from 1 to 4 metres, measurement scans are made with horizontal and vertical antenna polarization and the EUT is rotated 360 degrees. The radiated emissions from the EUT are measured in the frequency range of 1 GHz to maximum frequency as specified in section 15.33, using a spectrum analyser and appropriate linearly polarized antennas. Table top equipment is placed on a 1.0 X 1.5 metre non-conducting table 80 centimetres above the ground plane. The set up of the equipment under test will be in accordance to ANSI C63.4. The Interface cables that are closer than 40 cm to the ground plane are bundled in the center in a serpentine fashion so they are at least 40 cm from the ground plane. Cables to simulators/testers (if used in this test) are routed through the center of the table and to a screen room located outside the test area. The antenna was positioned 3 m horizontally from the

Measurements are made in horizontal and vertical polarization in a fully anechoic chamber. All tests are performed at a test distance of 3 m. Hand-held or body-worn devices are rotated through three orthogonal axes to determine the attitude of the highest emission shall be used for final testing. During the tests the EUT is rotated 360° and the cables and equipment are placed and moved in position in such a way to find the maximum emission level. For testing above 1 GHz, the emission level of the EUT in peak mode complies to the average limit is 20 dB lower, then testing will be stopped and peak values of the EUT will be reported, otherwise, the emission will be measured in average mode again and reported.

The resolution bandwidth during the measurement is as following:

30 MHz – 1000 MHz: RBW: 120 kHz Above 1000 MHz: RBW: 1 MHz

5.2.5 Test result

Measurement distance: 3 m

Frequency [kHz]	L: QP [dBµV]	L: AV [dBµV]	Bandwidth [kHz]	Correct. [dB]	L: QP [dBµV/m]	L: AV [dBµV/m]	Limit [dBµV/m]	Delta [dB]
536.8	24.1	19.7	9.0	20	44.1	39.7	73.0	-33.3
1073.6	23.4	18.0	9.0	20	43.4	38.0	67.0	-29.0
1342.0	21.6	15.9	9.0	20	41.6	35.9	65.0	-29.1

Frequency [MHz]	L: QP [dBµV]	Correct. [dB]	L: QP [dBµV/m]	Limit [dBµV/m]	Delta [dB]
33.78	3.7	13.4	17.1	40.0	-22.9
118.54	9.3	12.9	22.2	43.5	-21.3
517.43	4.8	21.9	26.7	46.0	-19.3

Limit according to FCC Part 15 Subpart 15.209(a)

Frequency	Field strength of spurious		Measurement distance		
(MHz)	emiss	sions	(meters)		
	(μV/m)	dB (μV/m)			
0.009-0.490	2400/F(kHz)		300		
0.490-1.705	24000/F (kHz)	/ y	30		
1.705-30.0	30	29.5	30		

Limit according to FCC part, Section 15.109(a):

Frequency	Limit	Limit
(MHz)	(µV/m)	dB(μV/m)
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

The requirements are **FULFILLED**.

Remarks: No unwanted emissions from the EuT could be measured in the relevant frequency ranges.

5.3 Spurious emissions (antenna conducted)

For test instruments and accessories used see section 6 Part SEC 2, SEC 3.

5.3.1 Description of the test location

Test location: None

5.3.2 Photo documentation of the test set-up

5.3.3 Applicable standard

According to FCC Part 15B, Section 15.111(a):

In addition to the radiated emission limits, receivers that operate in the frequency range 30 MHz to 960 MHz that provide terminals for the connection of a external receiving antenna may tested to demonstrate compliance with provisions of §15.109 with the antenna terminals shielded and terminated.

5.3.4 Description of Measurement

The receiver antenna terminal was connected to the spectrum analyzer. The frequency range was scanned for spurious emissions up to 5 GHz and recorded in the table below if it comes closer as 20 dB to the limit.

Spectrum analyser setting:

RBW: 100 kHz VBW: 100 kHz Detector: peak

5.3.5 Test result

SPURIOUS EMISSIONS								
f	Bandwidth	Level	f	Bandwidth	Level	f	Bandwidth	Level
(MHz)	(kHz)	(dBm)	(MHz)	(kHz)	(dBm)	(MHz)	(kHz)	(dBm)
Measurement uncertainty		± 3 dB						

Bandwidth (kHz); refers to the bandwidth of the measuring receiver

Limit according to FCC Part 15B, Section 15.111(a):

Frequency	Limit	Limit	
(MHz)	(nW)	(dBm)	
30-960	2.0	-57	
Above 960	2.0	-57	

Ohmstrasse 2-4 · 94342 Strasskirchen Tel.:+49(0)9424-94810 · Fax:+49(0)9424-9481240

Effective measurement range according to FCC Part 15A, Section 15.33(b)(1):

Highest frequency generated or used on which the EUT operates or tunes	Upper frequency of measurement range			
(MHz)	(MHz)			
Below 1.705	30.0			
1.705 - 108	1000.0			
108 – 500	2000.0			
500 – 1000	5000.0			
Above 1000	5 th harmonics of the highest frequency or			
	40 GHz, whichever is lower.			

Remarks:	The measurement is not applicable, because the EuT has no antenna connector.					

USED TEST EQUIPMENT AND ACCESSORIES

All test instruments used are calibrated and verified regularly. The calibration history is available on request.

Test ID	Model Type	Equipment No.	Next Calib.	Last Calib.	Next Verif.	Last Verif.
A 4	ESHS 30	02-02/03-05-002	11/07/2013	11/07/2012		
	ESH 2 - Z 5	02-02/20-05-004	12/05/2013	12/05/2012	23/07/2013	23/01/2013
	N-4000-BNC	02-02/50-05-138				
	N-1500-N	02-02/50-05-140				
	ESH 3 - Z 2	02-02/50-05-155			02/04/2013	02/10/2012
	SP 103 /3.5-60	02-02/50-05-182				
SER 1	FMZB 1516	01-02/24-01-018			16/02/2013	16/02/2012
	S10162-B	02-02/50-05-031				
	KK-EF393-21N-16	02-02/50-05-033				
	NW-2000-NB	02-02/50-05-113				
SER 2	ESVS 30	02-02/03-05-006	26/06/2013	26/06/2012		
	VULB 9168	02-02/24-05-005	16/03/2013	16/03/2012	08/04/2013	08/10/2012
	S10162-B	02-02/50-05-031				
	NW-2000-NB	02-02/50-05-113				
	KK-EF393/U-16N-21N_20m	02-02/50-12-018				