8. Radio Frequency Exposure

8.1. Applicable Standards

8.1. Applicable Stand	laius								
	The available maximum time-averaged power is no more than 1 mW,								
§1.1307(b)(3)(i)(A)	regardless of separation distance.								
	ERP is below a th antenna / radiatino	g structu	ıre, \	where R	> \(\lambda\) /2	π.		·	erson and
	TABLE B.1—THRESHOLDS FOR SINGLE RF SOURCES SUBJECT TO ROUTINE ENVIRONMENTAL EVALUATION								
	RF Source Frequency			Minimum Distance			Threshold ERP		
\[\] \[\]		f _L MHz	ley	f _H MHz	$\lambda_L / 2\pi$		$\lambda_{H} / 2\pi$	W	
§1.1307(b)(3)(l)(c)		0.3	_	1.34	159 m	_	35.6 m	1,920 R ²	
		1.34	_	30	35.6 m	_	1.6 m	3,450 R ² /f ²	
		30	_	300	1.6 m	_	159 mm	3.83 R ²	
		300	_	1,500	159 mm	_	31.8 mm	0.0128 R ² f	
		1,500	-	100,00	31.8 mm	-	0.5 mm	19.2R ²	
	Subscripts L and H are low and high; λ is wavelength. From § 1.1307(b)(3)(i)(C), modified by adding Minimum Distance columns.								
	Device operates b	etween	300	MHz ar	nd 6 GHz a	and	the maxim	num time-averag	
	power or effective radiated power (ERP), whichever is greater, <= Pth								
		ı	P _{th} (n	$nW) = \begin{cases} E \\ E \end{cases}$	RP _{20 cm} (d/2	20 cm	$d \le 20$	0 cm $0 < d \le 40 \text{ cm}$	
	Where				20 cm				
\[\tag{1.1307(b)(3)(i)(B).}	$x = -\log_{10}\left(\frac{60}{ERP_{20\ cm}\sqrt{f}}\right) \text{ and } f \text{ is in GHz};$								
	and								
				ERP ₂₀	_{cm} (mW) =	${204 \choose 306}$	0 <i>f</i> 0.3 GH 0 1.5 GH	$z \le f < 1.5 \mathrm{GHz}$ $z \le f \le 6 \mathrm{GHz}$	
	<pre>d = the separation distance (cm);</pre>								

Cerpass Technology Corp. T-FD-504-0 Ver 1.5 Issued date : Feb. 24, 2023
Page No. : 42 of 43
FCC ID. : NDPC10-1E

Report No.: 22110139-TRFCC01

8.2. EUT Specification

Frequency band (Operating)	13.553MHz ~ 13.567MHz				
Device category	☐ Portable (<20cm separation)				
Device category					
	Single antenna				
	☐ Multiple antennas				
Antenna diversity	☐ Tx diversity				
	Rx diversity				
	☐ Tx/Rx diversity				
Evaluation applied	MPE-based Exemption				
	SAR-based Exemption				
Remark:					
1. The maximum Fund	damental Emission is <u>61.41dBuV/m</u> at <u>13.56MHz</u> (with <u>0.6dBi antenna</u>				
 DTS device is not s compliance. 	ubject to routine RF evaluation; MPE estimate is used to justify the				
•	location transmitters, no SAR consideration applied.				

8.3. Test Results

Channel Frequency (MHz)	Fundamental Emission (dBm)	Antenna Gain (dBi)	Conducted Power (dBm)	Max. Tune up power (dBm)	Fundamental Emission (mW)	Limit (mW)
13.56	-34.42	0.60	-35.02	-34.52	0.0004	1

Antenna Gain (dBi)	Antenna Gain (linear)	Distance (m)	Fundamental Emission (dBuV/m)	Fundamental Emission (V/m)	Fundamental Emission (W)	Fundamental Emission (dBm)
0.6	1.148153621	3	61.41	0.00117625	0.0000004	-34.418787

No non-compliance noted.

THE E	END OF	REPORT	

 Cerpass Technology Corp.
 Issued date
 : Feb. 24, 2023

 T-FD-504-0 Ver 1.5
 Page No.
 : 43 of 43

FCC ID. : NDPC10-1E

Report No.: 22110139-TRFCC01