

SAR TEST REPORT

REPORT NO.: SA990316L11

MODEL NO.: EW-7712UMn (refer to item 2.1 for more details)

RECEIVED: Mar. 17, 2010

TESTED: Apr. 13, 2010

ISSUED: Apr. 15, 2010

APPLICANT: EDiMAX TECHNOLOGY CO., LTD.

ADDRESS: No.3, Wu Chuan 3rd Road, Wu-Ku Industrial Park, Taipei Hsien, Taiwan

ISSUED BY: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

LAB ADDRESS: No. 47, 14th Ling, Chia Pau Tsuen, Lin Kou Hsiang, Taipei Hsien 244, Taiwan, R.O.C.

TEST LOCATION: No. 19, Hwa Ya 2nd Rd, Wen Hwa Tsuen, Kwei Shan Hsiang, Taoyuan Hsien 333, Taiwan, R.O.C.

This test report consists of 25 pages in total except Appendix. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by TAF or any government agencies. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

1.	CERTIFICATION	3
2.	GENERAL INFORMATION	4
2.1	GENERAL DESCRIPTION OF EUT.....	4
2.2	GENERAL DESCRIPTION OF APPLIED STANDARDS.....	5
2.3	GENERAL INOFRMATION OF THE SAR SYSTEM	6
2.4	TEST EQUIPMENT	9
2.5	GENERAL DESCRIPTION OF THE SPATIAL PEAK SAR EVALUATION	10
3.	DESCRIPTION OF SUPPORT UNITS.....	13
4.	RECIPES FOR TISSUE SIMULATING LIQUIDS	14
5.	SYSTEM VALIDATION.....	17
5.1	TEST PROCEDURE	17
5.2	VALIDATION RESULTS	18
5.3	SYSTEM VALIDATION UNCERTAINTIES	19
6.	TEST RESULTS	20
6.1	TEST PROCEDURES.....	20
6.2	CONDUCTED POWER.....	22
6.3	DESCRIPTION OF TEST CONDITION.....	22
6.4	MEASURED SAR RESULT.....	23
6.5	SAR LIMITS	24
6.6	CHECK FOR SCAN RESOLUTION	24
7.	INFORMATION ON THE TESTING LABORATORIES	25
APPENDIX A: TEST CONFIGURATIONS AND TEST DATA		
APPENDIX B: ADT SAR MEASUREMENT SYSTEM		
APPENDIX C: PHOTOGRAPHS OF SYSTEM VALIDATION		
APPENDIX D: SYSTEM CERTIFICATE & CALIBRATION		

1. CERTIFICATION

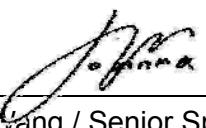
PRODUCT: Wireless-N USB Adapter

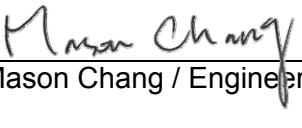
MODEL: EW-7712UMn (refer to item 2.1 for more details)

BRAND: EDIMAX (refer to item 2.1 for more details)

APPLICANT: EDIMAX TECHNOLOGY CO., LTD.

TESTED: Apr. 13, 2010


TEST SAMPLE: ENGINEERING SAMPLE


STANDARDS: FCC Part 2 (Section 2.1093)

FCC OET Bulletin 65, Supplement C (01-01)

RSS-102

The above equipment (model: EW-7712UMn) has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

PREPARED BY : , DATE : Apr. 15, 2010
Joanna Wang / Senior Specialist

**TECHNICAL
ACCEPTANCE** : , DATE : Apr. 15, 2010
Responsible for RF Mason Chang / Engineer

APPROVED BY : , DATE : Apr. 15, 2010
Gary Chang / Assistant Manager

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

EUT	Wireless-N USB Adapter
MODEL NO.	EW-7712UMn (refer to NOTE for more details)
FCC ID	NDD9577121010
POWER SUPPLY	5Vdc
MODULATION TYPE	CCK, DQPSK, DBPSK for DSSS 64QAM, 16QAM, QPSK, BPSK for OFDM
MODULATION TECHNOLOGY	DSSS, OFDM
TRANSFER RATE	802.11b: 11.0/ 5.5/ 2.0/ 1.0Mbps 802.11g: 54.0/ 48.0/ 36.0/ 24.0/ 18.0/ 12.0/ 9.0/ 6.0Mbps 802.11n: up to 135Mbps
OPERATING FREQUENCY	2412 ~ 2462MHz
NUMBER OF CHANNEL	11 for 802.11b, 802.11g, 802.11n (20MHz) 7 for 802.11n (40MHz)
MAXIMUM SAR (1g)	0.456W/kg
ANTENNA TYPE	Refer to NOTE 2 for more details
ANTENNA CONNECTOR	NA
DATA CABLE	NA
I/O PORTS	USB
ACCESSORY DEVICES	NA

NOTE:

1. The following models are electrically identical, different brand names and model names are for marketing purpose.

BRAND	MODEL
EDIMAX	EW-7712UMn
	GWU-H712Mn
Logitec	LAN-W300N/U2
BeWAN	BWIFI-USB315N

2. The antennas used in this EUT are listed as below table:

ANTENNA NO.	TYPE	CONNECTOR	GAIN (dBi)	MANUFACTURE / MODEL
Antenna 1	print	NA	-0.42	Ralink / RT3071
Antenna 2	print	NA	-1.19	Ralink / RT3071

* Antenna 1 was chosen for final test.

3. The EUT incorporates a MIMO function. Physically, the EUT provides one completed transmitter and two receivers.

MODULATION MODE	TX FUNCTION
802.11b	1TX
802.11g	1TX
802.11n (20MHz)	1TX
802.11n (40MHz)	1TX

4. The above EUT information was declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

2.2 GENERAL DESCRIPTION OF APPLIED STANDARDS

According to the specifications of the manufacturer, this product must comply with the requirements of the following standards:

FCC Part 2 (2.1093)

FCC OET Bulletin 65, Supplement C (01- 01)

RSS-102

IEEE 1528-2003

All test items have been performed and recorded as per the above standards.

2.3 GENERAL INFORMATION OF THE SAR SYSTEM

DASY4 (software 4.7 Build 80) consists of high precision robot, probe alignment sensor, phantom, robot controller, controlled measurement server and near-field probe. The robot includes six axes that can move to the precision position of the DASY4 software defined. The DASY4 software can define the area that is detected by the probe. The robot is connected to controlled box. Controlled measurement server is connected to the controlled robot box. The DAE includes amplifier, signal multiplexing, AD converter, offset measurement and surface detection. It is connected to the Electro-optical coupler (ECO). The ECO performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC.

EX3DV4 ISOTROPIC E-FIELD PROBE

CONSTRUCTION	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
FREQUENCY	10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
DIRECTIVITY	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)
DYNAMIC RANGE	10 μ W/g to > 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μ W/g)
DIMENSIONS	Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
APPLICATION	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.

NOTE

1. The Probe parameters have been calibrated by the SPEAG. Please reference "APPENDIX D" for the Calibration Certification Report.
2. For frequencies above 800MHz, calibration in a rectangular wave-guide is used, because wave-guide size is manageable.
3. For frequencies below 800MHz, temperature transfer calibration is used because the wave-guide size becomes relatively large.

TWIN SAM V4.0

CONSTRUCTION	The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528-2003, EN 62209-1 and IEC 62209. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points with the robot.
SHELL THICKNESS	2 ± 0.2mm
FILLING VOLUME	Approx. 25liters
DIMENSIONS	Height: 810mm; Length: 1000mm; Width: 500mm

SYSTEM VALIDATION KITS:

CONSTRUCTION	Symmetrical dipole with 1/4 balun enables measurement of feedpoint impedance with NWA matched for use near flat phantoms filled with brain simulating solutions. Includes distance holder and tripod adaptor
CALIBRATION	Calibrated SAR value for specified position and input power at the flat phantom in brain simulating solutions
FREQUENCY	2450MHz
RETURN LOSS	> 20dB at specified validation position
POWER CAPABILITY	> 100W (f < 1GHz); > 40W (f > 1GHz)
OPTIONS	Dipoles for other frequencies or solutions and other calibration conditions upon request

A D T

DEVICE HOLDER FOR SAM TWIN PHANTOM

CONSTRUCTION

The device holder for the mobile phone device is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles. The holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $\epsilon = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered. The device holder for the portable device makes up of the polyethylene foam. The dielectric parameters of material close to the dielectric parameters of the air.

DATA ACQUISITION ELECTRONICS

CONSTRUCTION

The data acquisition electronics (DAE3) consists of a highly sensitive electrometer grade preamplifier with auto-zeroing, a channel and gain-switching multiplex, a fast 16 bit AD converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The mechanical probe is mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection. The input impedance of the DAE3 box is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

2.4 TEST EQUIPMENT

FOR SAR MEASUREMENT

ITEM	NAME	BRAND	TYPE	SERIES NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
1	SAM Phantom	S & P	QD000 P40 CA	TP-1150	NA	NA
2	Signal Generator	Anritsu	68247B	984703	May 21, 2009	May 20, 2010
3	E-Field Probe	S & P	EX3DV4	3590	Mar. 25, 2010	Mar. 24, 2011
4	DAE	S & P	DAE4	861	Jan. 22, 2010	Jan. 21, 2011
5	Robot Positioner	Staubli Unimation	NA	NA	NA	NA
6	Validation Dipole	S & P	D2450V2	737	Feb. 19, 2010	Feb. 18, 2011

NOTE: Before starting the measurement, all test equipment shall be warmed up for 30min.

FOR TISSUE PROPERTY

ITEM	NAME	BRAND	TYPE	SERIES NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
1	Network Analyzer	Agilent	E8358A	US41480538	Dec. 03, 2009	Dec. 02, 2010
2	Dielectric Probe	Agilent	85070D	US01440176	NA	NA

NOTE:

1. Before starting, all test equipment shall be warmed up for 30min.
2. The tolerance ($k=1$) specified by Agilent for general dielectric measurements, deriving from inaccuracies in the calibration data, analyzer drift, and random errors, are usually $\pm 2.5\%$ and $\pm 5\%$ for measured permittivity and conductivity, respectively. However, the tolerances for the conductivity is smaller for material with large loss tangents, i.e., less than $\pm 2.5\%$ ($k=1$). It can be substantially smaller if more accurate methods are applied.

2.5 GENERAL DESCRIPTION OF THE SPATIAL PEAK SAR EVALUATION

The DASY4 post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the micro-volt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	- Sensitivity	Norm _i , a _{i0} , a _{i1} , a _{i2}
	- Conversion factor	ConvF _i
	- Diode compression point	dcp _i
Device parameters:	- Frequency	F
	- Crest factor	Cf
Media parameters:	- Conductivity	σ
	- Density	ρ

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \bullet \frac{cf}{dcp_i}$$

V _i	=compensated signal of channel i	(i = x, y, z)
U _i	=input signal of channel i	(i = x, y, z)
Cf	=crest factor of exciting field	(DASY parameter)
dcp _i	=diode compression point	(DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

$$\text{E-fieldprobes: } E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

$$\text{H-fieldprobes: } H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$

V_i	=compensated signal of channel i	$(i = x, y, z)$
$Norm_i$	=sensor sensitivity of channel i $\mu\text{V}/(\text{V}/\text{m})^2$ for E-field Probes	$(i = x, y, z)$
$ConvF$	= sensitivity enhancement in solution	
a_{ij}	= sensor sensitivity factors for H-field probes	
F	= carrier frequency [GHz]	
E_i	= electric field strength of channel i in V/m	
H_i	= magnetic field strength of channel i in A/m	

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

SAR	= local specific absorption rate in mW/g
E_{tot}	= total field strength in V/m
σ	= conductivity in [mho/m] or [$\text{Siemens}/\text{m}$]
ρ	= equivalent tissue density in g/cm^3

Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid. The entire evaluation of the spatial peak values is performed within the Post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

1. The extraction of the measured data (grid and values) from the Zoom Scan
2. The calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
3. The generation of a high-resolution mesh within the measured volume
4. The interpolation of all measured values from the measurement grid to the high-resolution grid
5. The extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
6. The calculation of the averaged SAR within masses of 1g and 10g.

The probe is calibrated at the center of the dipole sensors that is located 1 to 2.7mm away from the probe tip. During measurements, the probe stops shortly above the phantom surface, depending on the probe and the surface detecting system. Both distances are included as parameters in the probe configuration file. The software always knows exactly how far away the measured point is from the surface. As the probe cannot directly measure at the surface, the values between the deepest measured point and the surface must be extrapolated. The angle between the probe axis and the surface normal line is less than 30 degree.

The maximum search is automatically performed after each area scan measurement. It is based on splines in two or three dimensions. The procedure can find the maximum for most SAR distributions even with relatively large grid spacing. After the area scanning measurement, the probe is automatically moved to a position at the interpolated maximum. The following scan can directly use this position for reference, e.g., for a finer resolution grid or the cube evaluations. The 1g and 10g peak evaluations are only available for the predefined cube 7 x 7 x 7 scans. The routines are verified and optimized for the grid dimensions used in these cube measurements. The measured volume of 30 x 30 x 30mm contains about 30g of tissue. The first procedure is an extrapolation (incl. boundary correction) to get the points between the lowest measured plane and the surface. The next step uses 3D interpolation to get all points within the measured volume in a 1mm grid (42875 points). In the last step, a 1g cube is placed numerically into the volume and its averaged SAR is calculated. This cube is moved around until the highest averaged SAR is found. If the highest SAR is found at the edge of the measured volume, the system will issue a warning: higher SAR values might be found outside of the measured volume. In that case the cube measurement can be repeated, using the new interpolated maximum as the center.

3. DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	NOTEBOOK	DELL	PP18L	29144041120	CXSMM01BRD02D330

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	NA

NOTE: All power cords of the above support units are non shielded (1.8m).

4. RECIPES FOR TISSUE SIMULATING LIQUIDS

For the measurement of the field distribution inside the SAM phantom, the phantom must be filled with 25 litters of tissue simulation liquid.

The following ingredients are used :

- **WATER-** Deionized water (pure H₂O), resistivity ≥ 16 M - as basis for the liquid
- **DGMBE-** Diethylenglycol-monobutyl ether (DGMBE), Fluka Chemie GmbH, CAS # 112-34-5 - to reduce relative permittivity

THE RECIPES FOR 2450MHz SIMULATING LIQUID TABLE

INGREDIENT	HEAD SIMULATING LIQUID 2450MHz (HSL-2450)	MUSCLE SIMULATING LIQUID 2450MHz (MSL-2450)
Water	45%	69.83%
DGMBE	55%	30.17%
Dielectric Parameters at 22°C	$f = 2450\text{MHz}$ $\epsilon = 39.2 \pm 5\%$ $\sigma = 1.80 \pm 5\% \text{ S/m}$	$f = 2450\text{MHz}$ $\epsilon = 52.7 \pm 5\%$ $\sigma = 1.95 \pm 5\% \text{ S/m}$

Testing the liquids using the Agilent Network Analyzer E8358A and Agilent Dielectric Probe Kit 85070D. The testing procedure is following as

1. Turn Network Analyzer on and allow at least 30min. warm up.
2. Mount dielectric probe kit so that interconnecting cable to Network Analyzer will not be moved during measurements or calibration.
3. Pour de-ionized water and measure water temperature ($\pm 1^\circ$).
4. Set water temperature in Agilent-Software (Calibration Setup).
5. Perform calibration.
6. Validate calibration with dielectric material of known properties (e.g. polished ceramic slab with >8mm thickness $\epsilon' = 10.0$, $\epsilon'' = 0.0$). If measured parameters do not fit within tolerance, repeat calibration (± 0.2 for ϵ' : ± 0.1 for ϵ'').
7. Conductivity can be calculated from ϵ'' by $\sigma = \omega \epsilon_0 \epsilon'' = \epsilon'' f [\text{GHz}] / 18$.
8. Measure liquid shortly after calibration. Repeat calibration every hour.
9. Stir the liquid to be measured. Take a sample ($\sim 50\text{ml}$) with a syringe from the center of the liquid container.
10. Pour the liquid into a small glass flask. Hold the syringe at the bottom of the flask to avoid air bubbles.
11. Put the dielectric probe in the glass flask. Check that there are no air bubbles in front of the opening in the dielectric probe kit.
12. Perform measurements.
13. Adjust medium parameters in DASY4 for the frequencies necessary for the measurements ('Setup Config', select medium (e.g. Brain 900MHz) and press 'Option'-button).
14. Select the current medium for the frequency of the validation (e.g. Setup Medium Brain 900MHz).

FOR 2.4GHz BAND SIMULATING LIQUID

LIQUID TYPE	MSL-2450				
SIMULATING LIQUID TEMP.	22.5				
TEST DATE	Apr. 13, 2010				
TESTED BY	Aaron Liang				
FREQ. (MHz)	LIQUID PARAMETER	STANDARD VALUE	MEASUREMENT VALUE	ERROR PERCENTAGE (%)	LIMIT(%)
2450	Permitivity (ϵ)	52.70	53.50	1.52	± 5
2462		52.70	53.30	1.14	
2450	Conductivity (σ) S/m	1.95	2.00	2.56	
2462		1.97	2.01	2.03	

5. SYSTEM VALIDATION

The system validation was performed in the flat phantom with equipment listed in the following table. Since the SAR value is calculated from the measured electric field, dielectric constant and conductivity of the body tissue and the SAR is proportional to the square of the electric field. So, the SAR value will be also proportional to the RF power input to the system validation dipole under the same test environment. In our system validation test, 250mW RF input power was used.

5.1 TEST PROCEDURE

Before the system performance check, we need only to tell the system which components (probe, medium, and device) are used for the system performance check; the system will take care of all parameters. The dipole must be placed beneath the flat section of the SAM Twin Phantom with the correct distance holder in place. The distance holder should touch the phantom surface with a light pressure at the reference marking (little cross) and be oriented parallel to the long side of the phantom. Accurate positioning is not necessary, since the system will search for the peak SAR location, except that the dipole arms should be parallel to the surface. The device holder for mobile phones can be left in place but should be rotated away from the dipole.

1. The "Power Reference Measurement" and "Power Drift Measurement" jobs are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the amplifier output power. If it is too high (above ± 0.1 dB), the system performance check should be repeated; some amplifiers have very high drift during warm-up. A stable amplifier gives drift results in the DASY system below ± 0.02 dB.
2. The "Surface Check" job tests the optical surface detection system of the DASY system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1 mm). In that case it is better to abort the system performance check and stir the liquid.

3. The "Area Scan" job measures the SAR above the dipole on a plane parallel to the surface. It is used to locate the approximate location of the peak SAR. The proposed scan uses large grid spacing for faster measurement; due to the symmetric field, the peak detection is reliable. If a finer graphic is desired, the grid spacing can be reduced. Grid spacing and orientation have no influence on the SAR result.
4. The "Zoom Scan" job measures the field in a volume around the peak SAR value assessed in the previous "Area Scan" job (for more information see the application note on SAR evaluation).

About the validation dipole positioning uncertainty, the constant and low loss dielectric spacer is used to establish the correct distance between the top surface of the dipole and the bottom surface of the phantom, the error component introduced by the uncertainty of the distance between the liquid (i.e., phantom shell) and the validation dipole in the DASY4 system is less than $\pm 0.1\text{mm}$.

$$SAR_{tolerance} [\%] = 100 \times \left(\frac{(a + d)^2}{a^2} - 1 \right)$$

As the closest distance is 10mm, the resulting tolerance $SAR_{tolerance} [\%]$ is <2%.

5.2 VALIDATION RESULTS

SYSTEM VALIDATION TEST OF SIMULATING LIQUID					
FREQUENCY (MHz)	REQUIRED SAR (mW/g)	MEASURED SAR (mW/g)	DEVIATION (%)	SEPARATION DISTANCE	TESTED DATE
MSL2450	13.10 (1g)	12.80	-2.29	10mm	Apr. 13, 2010

NOTE: Please see Appendix for the photo of system validation test.

5.3 SYSTEM VALIDATION UNCERTAINTIES

In the table below, the system validation uncertainty with respect to the analytically assessed SAR value of a dipole source as given in the IEEE 1528 standard is given. This uncertainty is smaller than the expected uncertainty for mobile phone measurements due to the simplified setup and the symmetric field distribution.

Error Description	Tolerance ($\pm\%$)	Probability Distribution	Divisor	(C _i)		Standard Uncertainty ($\pm\%$)		(v _i)
				(1g)	(10g)	(1g)	(10g)	
Measurement System								
Probe Calibration	5.50	Normal	1	1	1	5.50	5.50	∞
Axial Isotropy	4.70	Rectangular	$\sqrt{3}$	0.7	0.7	1.90	1.90	∞
Hemispherical Isotropy	9.60	Rectangular	$\sqrt{3}$	0.7	0.7	3.88	3.88	∞
Boundary effects	1.00	Rectangular	$\sqrt{3}$	1	1	0.58	0.58	∞
Linearity	4.70	Rectangular	$\sqrt{3}$	1	1	2.71	2.71	∞
System Detection Limits	1.00	Rectangular	$\sqrt{3}$	1	1	0.58	0.58	∞
Readout Electronics	0.30	Normal	1	1	1	0.30	0.30	∞
Response Time	0.80	Rectangular	$\sqrt{3}$	1	1	0.46	0.46	∞
Integration Time	2.60	Rectangular	$\sqrt{3}$	1	1	1.50	1.50	∞
RF Ambient Noise	3.00	Rectangular	$\sqrt{3}$	1	1	1.73	1.73	∞
RF Ambient Reflections	3.00	Rectangular	$\sqrt{3}$	1	1	1.73	1.73	∞
Probe Positioner	0.40	Rectangular	$\sqrt{3}$	1	1	0.23	0.23	∞
Probe Positioning	2.90	Rectangular	$\sqrt{3}$	1	1	1.67	1.67	∞
Max. SAR Eval.	1.00	Rectangular	$\sqrt{3}$	1	1	0.58	0.58	∞
Dipole Related								
Dipole Axis to Liquid Distance	2.00	Rectangular	$\sqrt{3}$	1	1	1.15	1.15	145
Input Power Drift	5.00	Rectangular	$\sqrt{3}$	1	1	2.89	2.89	∞
Phantom and Tissue parameters								
Phantom Uncertainty	4.00	Rectangular	$\sqrt{3}$	1	1	2.31	2.31	∞
Liquid Conductivity (target)	5.00	Rectangular	$\sqrt{3}$	0.64	0.43	1.85	1.24	∞
Liquid Conductivity (measurement)	3.26	Normal	1	0.64	0.43	2.09	1.40	∞
Liquid Permittivity (target)	5.00	Rectangular	$\sqrt{3}$	0.6	0.49	1.73	1.41	∞
Liquid Permittivity (measurement)	2.53	Normal	1	0.6	0.49	1.52	1.24	∞
Combined Standard Uncertainty							9.84	9.53
Coverage Factor for 95%							K_p=2	
Expanded Uncertainty (K=2)							19.67	19.05

NOTE: About the system validation uncertainty assessment, please reference the section 7.

6. TEST RESULTS

6.1 TEST PROCEDURES

The EUT plugged into the notebook. Use the software to control the EUT channel and transmission power. Then record the conducted power before the testing. Place the EUT to the specific test location. After the testing, must writing down the conducted power of the EUT into the report. The SAR value was calculated via the 3D spline interpolation algorithm that has been implemented in the software of DASY4 SAR measurement system manufactured and calibrated by SPEAG. According to the IEEE 1528 standards, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- Power reference measurement
- Verification of the power reference measurement
- Area scan
- Zoom scan
- Power reference measurement

The area scan was performed for the highest spatial SAR location. The zoom scan with 30mm x 30mm x 30mm volume was performed for SAR value averaged over 1g and 10g spatial volumes.

A D T

In the zoom scan, the distance between the measurement point at the probe sensor location (geometric center behind the probe tip) and the phantom surface is 3mm and maintained at a constant distance of ± 0.5 mm during a zoom scan to determine peak SAR locations. The distance is 3mm between the first measurement point and the bottom surface of the phantom. The secondary measurement point to the bottom surface of the phantom is with 8mm separation distance. The cube size is $7 \times 7 \times 7$ points consists of 343 points and the grid space is 5mm.

The measurement time is 0.5s at each point of the zoom scan. The probe boundary effect compensation shall be applied during the SAR test. Because of the tip of the probe to the Phantom surface separated distances are longer than half a tip probe diameter.

In the area scan, the separation distance is 3mm between the each measurement point and the phantom surface. The scan size shall be included the transmission portion of the EUT. The measurement time is the same as the zoom scan. At last the reference power drift shall be less than $\pm 5\%$.

A D T

6.2 CONDUCTED POWER

TEST MODE		802.11b		802.11g	
CHAN.	FREQ. (MHz)	PEAK	AVG	PEAK	AVG
1	2412 (Low)	19.2	17.0	23.3	15.1
6	2437 (Mid.)	19.3	17.0	23.4	15.2
11	2462 (High)	19.4	17.1	23.2	15.0

TEST MODE		802.11n (20MHz)		TEST MODE		802.11n (40MHz)	
CHAN.	FREQ. (MHz)	PEAK	AVG	CHAN.	FREQ. (MHz)	PEAK	AVG
1	2412 (Low)	23.3	15.2	1	2422 (Low)	23.1	15.1
6	2437 (Mid.)	23.1	15.0	4	2437 (Mid.)	23.2	15.0
11	2462 (High)	23.2	15.1	7	2452 (High)	23.3	15.2

NOTE: SAR for 802.11g/802.11n (20MHz)/802.11n (40MHz) mode is not required since max average power of 802.11g/802.11n (20MHz)/802.11n (40MHz) is less than 802.11b.

6.3 DESCRIPTION OF TEST CONDITION

TEST DATE	TEST ITEM	TEMPERATURE(°C)		HUMIDITY(%RH)	TESTED BY
		AMBENT	LIQUID		
Apr. 13, 2010	1 ~ 5	23.0	22.5	62	Aaron Liang

6.4 MEASURED SAR RESULT

TEST POSITION	TEST ITEM	TEST MODE	CHAN.	FREQ. (MHz)	MEASURED 1g SAR (W/kg)
Horizontal-Up	1	802.11b	11	2462 (High)	0.456
Horizontal-Down	2	802.11b	11	2462 (High)	0.432
Vertical-Front	3	802.11b	11	2462 (High)	0.154
Vertical-Back	4	802.11b	11	2462 (High)	0.348
Tip	5	802.11b	11	2462 (High)	0.083

NOTE:

1. SAR for 802.11g/802.11n (20MHz)/802.11n (40MHz) mode is not required since max average power of 802.11g/802.11n (20MHz)/802.11n (40MHz) is less than 802.11b.
2. In this testing, the limit for General Population Spatial Peak averaged over 1g, 1.6 W/kg, is applied.
3. Please see the Appendix A for the data.
4. The variation of the EUT conducted power measured before and after SAR testing should not over 5%.
5. Per KDB 447498, when 1-g SAR for the highest output channel is less than 0.8 W/kg, testing for the other channels is not required

6.5 SAR LIMITS

HUMAN EXPOSURE	SAR (W/kg)	
	(GENERAL POPULATION / UNCONTROLLED EXPOSURE ENVIRONMENT)	(OCCUPATIONAL / CONTROLLED EXPOSURE ENVIRONMENT)
Spatial Average (whole body)	0.08	0.4
Spatial Peak (averaged over 1 g)	1.6	8.0
Spatial Peak (hands / wrists / feet / ankles averaged over 10 g)	4.0	20.0

NOTE:

1. This limits accord to 47 CFR 2.1093 – Safety Limit.
2. The EUT property been complied with the partial body exposure limit under the general population environment.

6.6 CHECK FOR SCAN RESOLUTION

Compare with different scan resolution

With EUT hold on the worst case configuration with no any change in position or setting, 2 scans with different resolutions are preformed to evaluate the impact on the SAR value.

Test data as below:

AREA SCAN RESOLUTION	ZOOM SCAN RESOLUTION	SAR VALUE(W/kg)
5mm	5mm	0.456
5mm	2.5mm	0.461

Conclusion: No meaningful change detected.

A D T

7. INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site: www.adt.com.tw/index.5/phtml. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab:

Tel: 886-2-26052180
Fax: 886-2-26051924

Hsin Chu EMC/RF Lab:

Tel: 886-3-5935343
Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety/Telecom Lab:

Tel: 886-3-3183232
Fax: 886-3-3185050

Web Site: www.adt.com.tw

The address and road map of all our labs can be found in our web site also.

---END---

APPENDIX A: TEST DATA

Liquid Level Photo

Tissue MSL2450MHz D=152mm

Test Laboratory: Bureau Veritas ADT

M01-Horizontal-Up-11B-CH11

DUT: Wireless-N USB Adapter ; Type: EW-7712UMn

Communication System: 802.11b ; Frequency: 2462 MHz ; Duty Cycle: 1:1 ; Modulation type: DBPSK
 Medium: MSL2450 Medium parameters used: $f = 2462$ MHz; $\sigma = 2.01$ mho/m; $\epsilon_r = 53.3$; $\rho = 1000$ kg/m³
 Phantom section: Flat Section ; Separation distance : 5 mm (The Horizontal-Up side of the EUT to the Phantom)

DASY4 Configuration:

- Probe: EX3DV4 - SN3590 ; ConvF(8.2, 8.2, 8.2) ; Calibrated: 2010/3/25
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn861 ; Calibrated: 2010/1/22
- Phantom: SAM 12 ; Type: SAM V4.0 ; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80 ; Postprocessing SW: SEMCAD, V1.8 Build 186

High Channel 11/Area Scan (9x20x1): Measurement grid: dx=5mm, dy=5mm

Maximum value of SAR (measured) = 0.606 mW/g

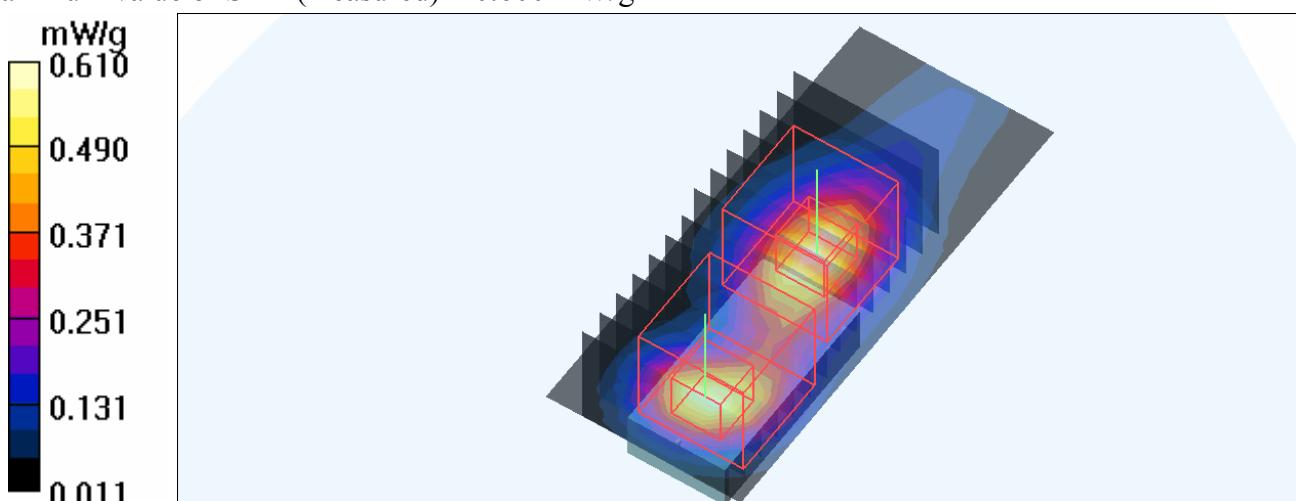
High Channel 11/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 15.5 V/m; Power Drift = -0.108 dB

Peak SAR (extrapolated) = 0.968 W/kg

SAR(1 g) = 0.456 mW/g; SAR(10 g) = 0.204 mW/g

Maximum value of SAR (measured) = 0.610 mW/g


High Channel 11/Zoom Scan (7x7x9)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 15.5 V/m; Power Drift = -0.108 dB

Peak SAR (extrapolated) = 1.08 W/kg

SAR(1 g) = 0.427 mW/g; SAR(10 g) = 0.171 mW/g

Maximum value of SAR (measured) = 0.600 mW/g

Test Laboratory: Bureau Veritas ADT

M02-Horizontal-Down-11B-CH11

DUT: Wireless-N USB Adapter ; Type: EW-7712UMn

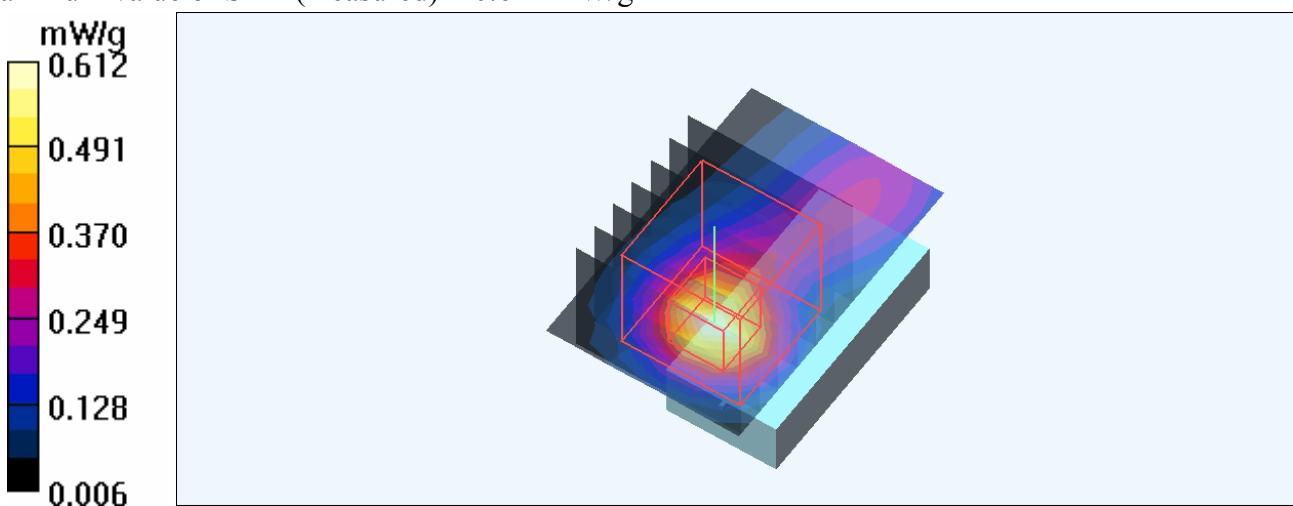
Communication System: 802.11b ; Frequency: 2462 MHz ; Duty Cycle: 1:1 ; Modulation type: DBPSK
 Medium: MSL2450 Medium parameters used: $f = 2462$ MHz; $\sigma = 2.01$ mho/m; $\epsilon_r = 53.3$; $\rho = 1000$ kg/m³
 Phantom section: Flat Section ; Separation distance : 5 mm (The Horizontal-Down side of the EUT to the Phantom)

DASY4 Configuration:

- Probe: EX3DV4 - SN3590 ; ConvF(8.2, 8.2, 8.2) ; Calibrated: 2010/3/25
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn861 ; Calibrated: 2010/1/22
- Phantom: SAM 12 ; Type: SAM V4.0 ; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80 ; Postprocessing SW: SEMCAD, V1.8 Build 186

High Channel 11 /Area Scan (8x12x1): Measurement grid: dx=5mm, dy=5mm

Maximum value of SAR (measured) = 0.643 mW/g


High Channel 11 /Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 14.8 V/m; Power Drift = -0.054 dB

Peak SAR (extrapolated) = 1.06 W/kg

SAR(1 g) = 0.432 mW/g; SAR(10 g) = 0.172 mW/g

Maximum value of SAR (measured) = 0.612 mW/g

Test Laboratory: Bureau Veritas ADT

M03-Vertical-Front -11B-CH11

DUT: Wireless-N USB Adapter ; Type: EW-7712UMn

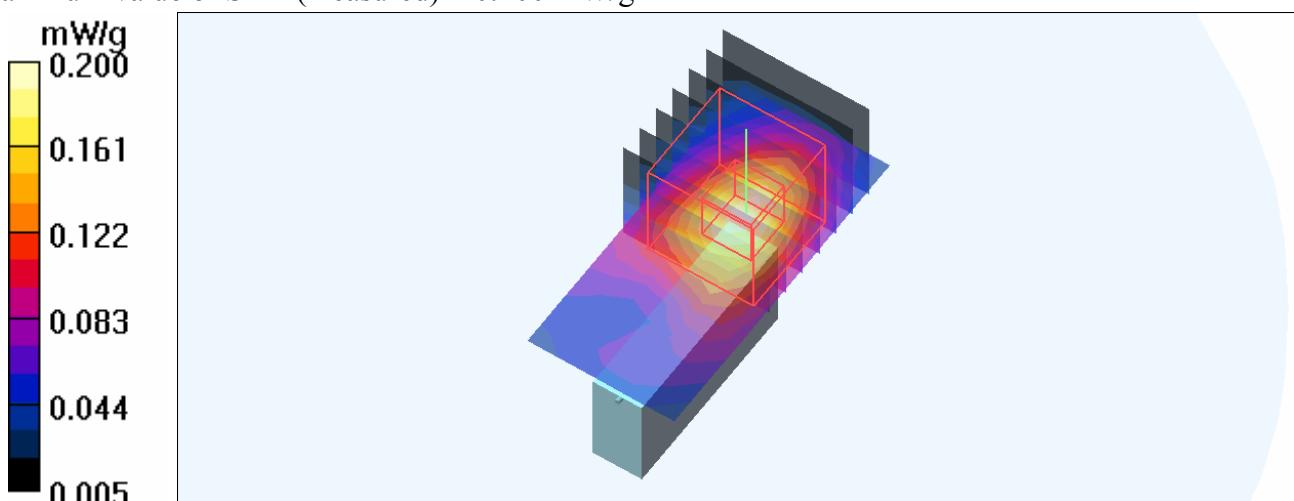
Communication System: 802.11b ; Frequency: 2462 MHz ; Duty Cycle: 1:1 ; Modulation type: DBPSK
 Medium: MSL2450 Medium parameters used: $f = 2462$ MHz; $\sigma = 2.01$ mho/m; $\epsilon_r = 53.3$; $\rho = 1000$ kg/m³
 Phantom section: Flat Section ; Separation distance : 5 mm (The Vertical-Front side of the EUT to the Phantom)

DASY4 Configuration:

- Probe: EX3DV4 - SN3590 ; ConvF(8.2, 8.2, 8.2) ; Calibrated: 2010/3/25
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn861 ; Calibrated: 2010/1/22
- Phantom: SAM 12 ; Type: SAM V4.0 ; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80 ; Postprocessing SW: SEMCAD, V1.8 Build 186

High Channel 11 /Area Scan (7x14x1): Measurement grid: dx=5mm, dy=5mm

Maximum value of SAR (measured) = 0.198 mW/g


High Channel 11 /Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 5.80 V/m; Power Drift = -0.090 dB

Peak SAR (extrapolated) = 0.318 W/kg

SAR(1 g) = 0.154 mW/g; SAR(10 g) = 0.077 mW/g

Maximum value of SAR (measured) = 0.200 mW/g

Test Laboratory: Bureau Veritas ADT

M04-Vertical-Back-11B-CH11

DUT: Wireless-N USB Adapter ; Type: EW-7712UMn

Communication System: 802.11b ; Frequency: 2462 MHz ; Duty Cycle: 1:1 ; Modulation type: DBPSK
 Medium: MSL2450 Medium parameters used: $f = 2462$ MHz; $\sigma = 2.01$ mho/m; $\epsilon_r = 53.3$; $\rho = 1000$ kg/m³
 Phantom section: Flat Section ; Separation distance : 5 mm (The Vertical-Back side of the EUT to the Phantom)

DASY4 Configuration:

- Probe: EX3DV4 - SN3590 ; ConvF(8.2, 8.2, 8.2) ; Calibrated: 2010/3/25
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn861 ; Calibrated: 2010/1/22
- Phantom: SAM 12 ; Type: SAM V4.0 ; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80 ; Postprocessing SW: SEMCAD, V1.8 Build 186

High Channel 11/Area Scan (7x12x1): Measurement grid: dx=5mm, dy=5mm

Maximum value of SAR (measured) = 0.442 mW/g

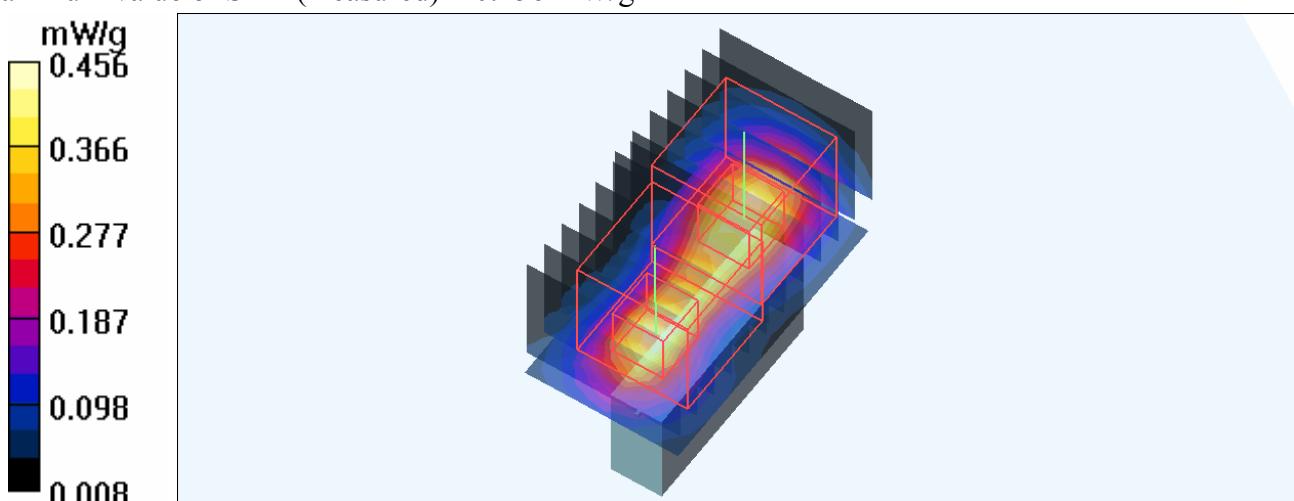
High Channel 11/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 12.2 V/m; Power Drift = 0.155 dB

Peak SAR (extrapolated) = 0.999 W/kg

SAR(1 g) = 0.343 mW/g; SAR(10 g) = 0.133 mW/g

Maximum value of SAR (measured) = 0.526 mW/g


High Channel 11/Zoom Scan (7x7x9)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 12.2 V/m; Power Drift = 0.155 dB

Peak SAR (extrapolated) = 0.708 W/kg

SAR(1 g) = 0.348 mW/g; SAR(10 g) = 0.162 mW/g

Maximum value of SAR (measured) = 0.456 mW/g

Test Laboratory: Bureau Veritas ADT

M05-Tip-11B-CH11

DUT: Wireless-N USB Adapter ; Type: EW-7712UMn

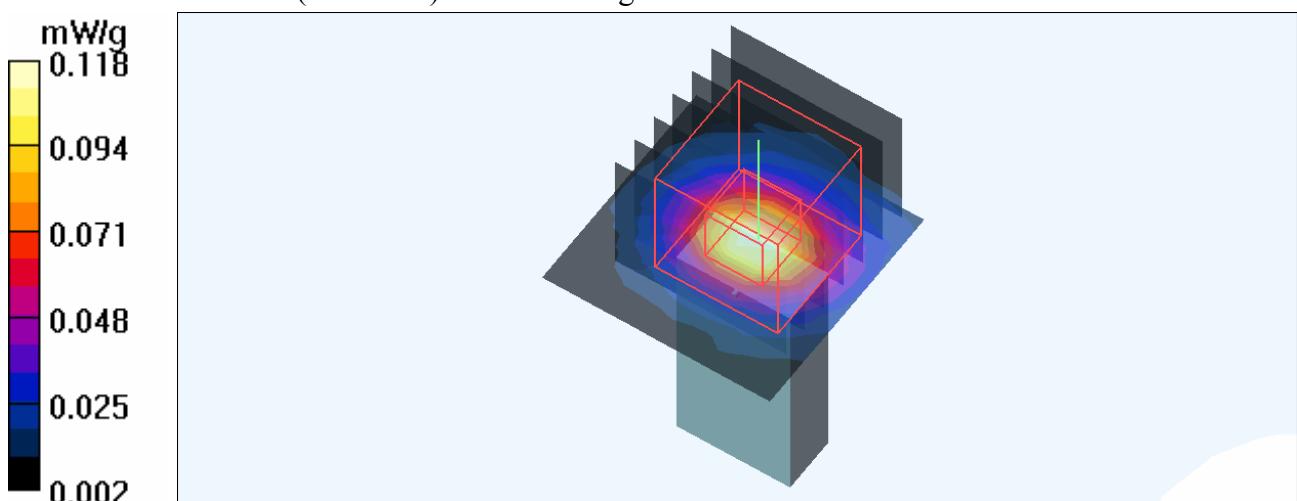
Communication System: 802.11b ; Frequency: 2462 MHz ; Duty Cycle: 1:1 ; Modulation type: DBPSK
 Medium: MSL2450 Medium parameters used: $f = 2462$ MHz; $\sigma = 2.01$ mho/m; $\epsilon_r = 53.3$; $\rho = 1000$ kg/m³
 Phantom section: Flat Section ; Separation distance : 5 mm (The Tip side of the EUT to the Phantom)

DASY4 Configuration:

- Probe: EX3DV4 - SN3590 ; ConvF(8.2, 8.2, 8.2) ; Calibrated: 2010/3/25
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn861 ; Calibrated: 2010/1/22
- Phantom: SAM 12 ; Type: SAM V4.0 ; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80 ; Postprocessing SW: SEMCAD, V1.8 Build 186

High Channel 11/Area Scan (9x9x1): Measurement grid: dx=5mm, dy=5mm

Maximum value of SAR (measured) = 0.119 mW/g


High Channel 11/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 7.94 V/m; Power Drift = -0.151 dB

Peak SAR (extrapolated) = 0.200 W/kg

SAR(1 g) = 0.083 mW/g; SAR(10 g) = 0.032 mW/g

Maximum value of SAR (measured) = 0.118 mW/g

Test Laboratory: Bureau Veritas ADT

M06-Horizontal-Up-Step Minimum Size-11B-CH11

DUT: Wireless-N USB Adapter ; Type: EW-7712UMn

Communication System: 802.11b ; Frequency: 2462 MHz ; Duty Cycle: 1:1 ; Modulation type: DBPSK
 Medium: MSL2450 Medium parameters used: $f = 2462$ MHz; $\sigma = 2.01$ mho/m; $\epsilon_r = 53.3$; $\rho = 1000$ kg/m³
 Phantom section: Flat Section ; Separation distance : 5 mm (The Horizontal-Up side of the EUT to the Phantom)

DASY4 Configuration:

- Probe: EX3DV4 - SN3590 ; ConvF(8.2, 8.2, 8.2) ; Calibrated: 2010/3/25
- Sensor-Surface: 1.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn861 ; Calibrated: 2010/1/22
- Phantom: SAM 12 ; Type: SAM V4.0 ; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80 ; Postprocessing SW: SEMCAD, V1.8 Build 186

High Channel 11 /Area Scan (9x20x1): Measurement grid: dx=5mm, dy=5mm

Maximum value of SAR (measured) = 0.414 mW/g

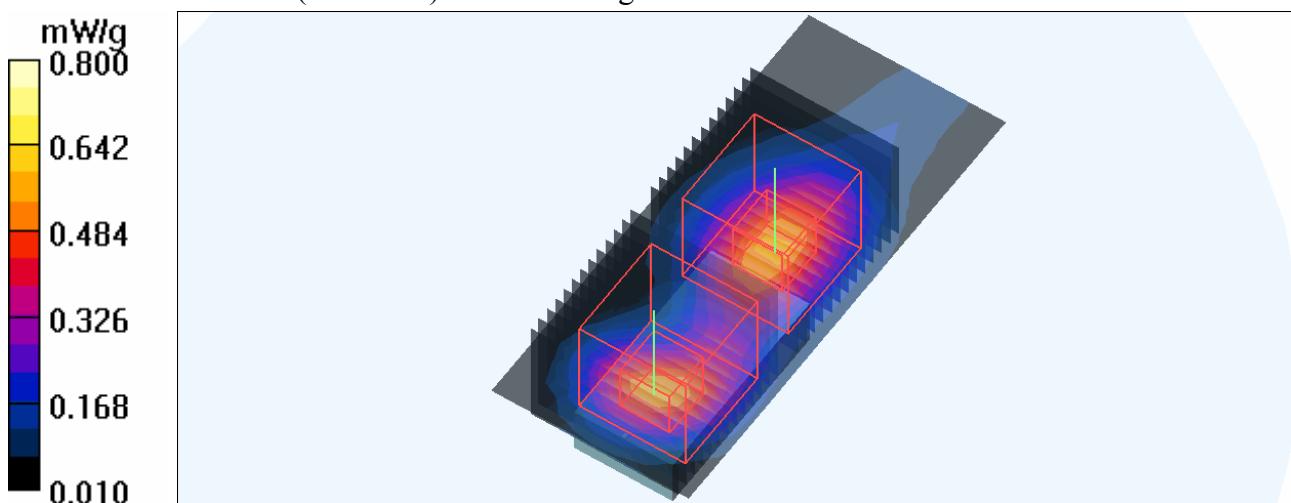
High Channel 11 /Zoom Scan (13x13x17)/Cube 0: Measurement grid: dx=2.5mm, dy=2.5mm, dz=1.5mm

Reference Value = 13.3 V/m; Power Drift = 0.175 dB

Peak SAR (extrapolated) = 1.02 W/kg

SAR(1 g) = 0.461 mW/g; SAR(10 g) = 0.211 mW/g

Maximum value of SAR (measured) = 0.787 mW/g


High Channel 11/Zoom Scan (13x13x17)/Cube 1: Measurement grid: dx=2.5mm, dy=2.5mm, dz=1.5mm

Reference Value = 13.3 V/m; Power Drift = 0.175 dB

Peak SAR (extrapolated) = 1.11 W/kg

SAR(1 g) = 0.417 mW/g; SAR(10 g) = 0.168 mW/g

Maximum value of SAR (measured) = 0.800 mW/g

Test Laboratory: Bureau Veritas ADT

System Validation Check-MSL 2450MHz

DUT: Dipole 2450 MHz ; Type: D2450V2 ; Serial: 737 ; Test Frequency: 2450 MHz

Communication System: CW ; Frequency: 2450 MHz; Duty Cycle: 1:1; Modulation type: CW

Medium: MSL2450; Medium parameters used: $f = 2450$ MHz; $\sigma = 2$ mho/m; $\epsilon_r = 53.5$; $\rho = 1000$ kg/m³ ;

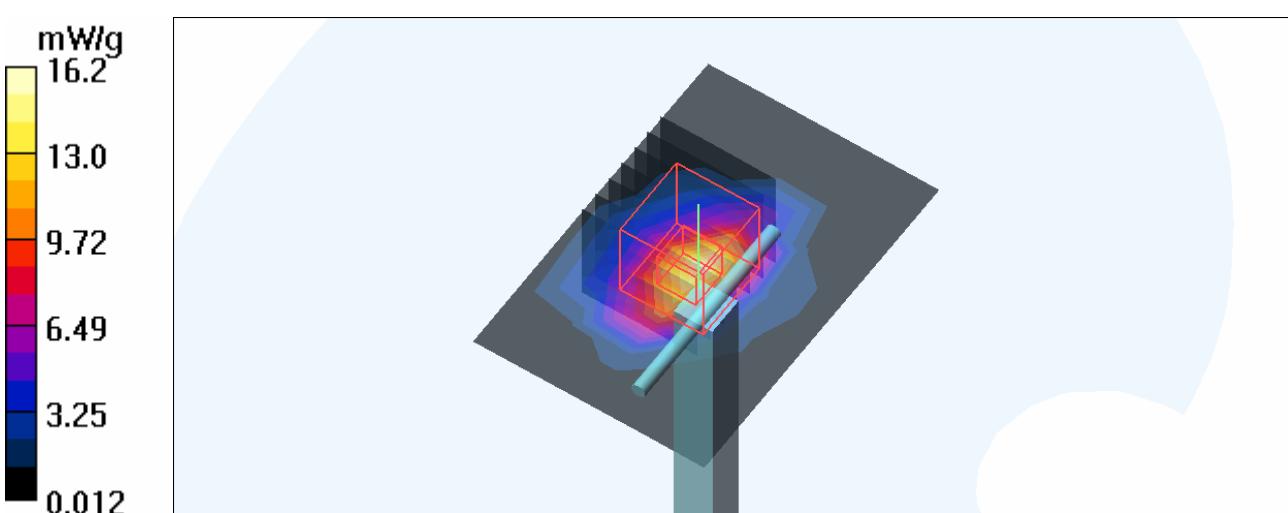
Liquid level : 152 mm

Phantom section: Flat Section ; Separation distance : 10 mm (The feetpoint of the dipole to the Phantom) Air temp. : 23 degrees ; Liquid temp. : 22.5 degrees

DASY4 Configuration:

- Probe: EX3DV4 - SN3590 ; ConvF(8.2, 8.2, 8.2) ; Calibrated: 2010/3/25
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn861; Calibrated: 2010/1/22
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP 1202
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=250mW/Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm
 Maximum value of SAR (measured) = 16.2 mW/g


d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 91.8 V/m; Power Drift = 0.029 dB

Peak SAR (extrapolated) = 27.8 W/kg

SAR(1 g) = 12.8 mW/g; SAR(10 g) = 5.77 mW/g

Maximum value of SAR (measured) = 17.0 mW/g

APPENDIX B: BV ADT SAR MEASUREMENT SYSTEM

APPENDIX C: PHOTOGRAPHS OF SYSTEM VALIDATION

