

FCC EMC TEST REPORT

CERTIFICATE

according to

47 CFR FCC Part 15 Subpart B

Equipment : 150N Wireless LAN USB Adapter
Brand Name : EDIMAX
Model No. : EW-7711ULn, GWU-H7111ULn
Filing Type : New Application
Applicant : EDIMAX TECHNOLOGY CO., LTD.
Manufacturer : No.3, Wu Chuan 3rd Road, Wu-Ku Industrial Park.
Taipei Hsien, Taiwan
FCC ID : NDD9577111007
Received Date : Mar. 12, 2010
Final Test Date : Mar. 23, 2010
Multiple Listing : Please refer to section 2.2

Statement

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in **ANSI C63.4-2003** and **47 CFR FCC Part 15 Subpart B**.

The test equipment used to perform the test is calibrated and traceable to NML/ROC.

SPORTON International Inc.

No. 52 Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.

Table of Contents

CERTIFICATE OF COMPLIANCE.....	1
1 SUMMARY OF THE TEST RESULT	2
2 GENERAL INFORMATION.....	3
2.1 Product Details.....	3
2.2 Table for Multiple Listing	3
2.3 Table for Test Modes	3
2.4 Table for Testing Locations.....	3
2.5 Table for Supporting Units	3
2.6 EUT Operation during Test.....	3
2.7 Test Configuration.....	4
3 TEST RESULT	5
3.1 AC Power Line Conducted Emissions Measurement	5
3.2 Radiated Emissions Measurement	9
4 LIST OF MEASURING EQUIPMENTS.....	19
5 TEST LOCATION.....	20
6 NVLAP CERTIFICATE OF ACCREDITATION.....	21
APPENDIX A. TEST PHOTOS	A1 ~ A5
APPENDIX B. PHOTOGRAPHS OF EUT	B1 ~ B5

History of This Test Report

Original Issue Date: Oct. 27, 2011

Report No.: FC030517

- No additional attachment.
 - Additional attachment were issued as following record:

CERTIFICATE OF COMPLIANCE CERTIFICATE

according to

47 CFR FCC Part 15 Subpart B

Equipment : 150N Wireless LAN USB Adapter

Brand Name : EDIMAX

Model No. : EW-7711ULn, GWU-H7111ULn

Applicant : EDIMAX TECHNOLOGY CO., LTD.

No.3, Wu Chuan 3rd Road, Wu-Ku Industrial Park.
Taipei Hsien, Taiwan

WE HEREBY CERTIFY THAT:

The measurements shown in this test report were made in accordance with the procedures given in ANSI C63.4-2003 and the energy emitted by this equipment were passed 47 CFR FCC Part 15 Subpart B. Testing was carried out on Mar. 12, 2010 at SPORTON International Inc. LAB.

Wayne Hsu / Assistant Manager

SPORTON International Inc.

No. 52 Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.

1 SUMMARY OF THE TEST RESULT

Applied Standard: 47 CFR FCC Part 15 Subpart B				
Part	Rule Section	Description of Test	Result	Under Limit
3.1	15.107	AC Power Line Conducted Emissions	Complies	8.84 dB
3.2	15.109	Radiated Emissions	Complies	3.44 dB

Test Items	Uncertainty	Remark
AC Power Line Conducted Emissions	±2.3dB	Confidence levels of 95%
Radiated Emissions	±1.9dB	Confidence levels of 95%

2 GENERAL INFORMATION

2.1 Product Details

For more detailed features description, please refer to the specifications or user's manual.

2.2 Table for Multiple Listing

The models are exactly same in both physical and electrical. The different in model number for marketing purpose.

No.	Brand Name	Model Name
1	Edimax	EW-7711ULn, GWU-H711ULn
2	Logitec	LAN-W150N/U2WH, LAN-W150N/U2BK, LAN-W150N/U2KT, LAN-GMW/DS, LAN-GMW/PSP
3	Jensen	ALNANO
4	2L	C150NANO
5	BEWAN	BWIFI-USB150N
6	KAGA ELECTRONICS CO., LTD	EW-7711ULn

2.3 Table for Test Modes

Investigation has been done on the entire possible Configuration for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode
AC Power Line Conducted Emissions Radiated Emissions (30MHz~1GHz)	Normal Mode
Radiated Emissions (Above 1GHz)	CRX 802.11g 2437MHz CRX 802.11n 2437MHz (20MHz) CRX 802.11n 2437MHz (40MHz)

2.4 Table for Testing Locations

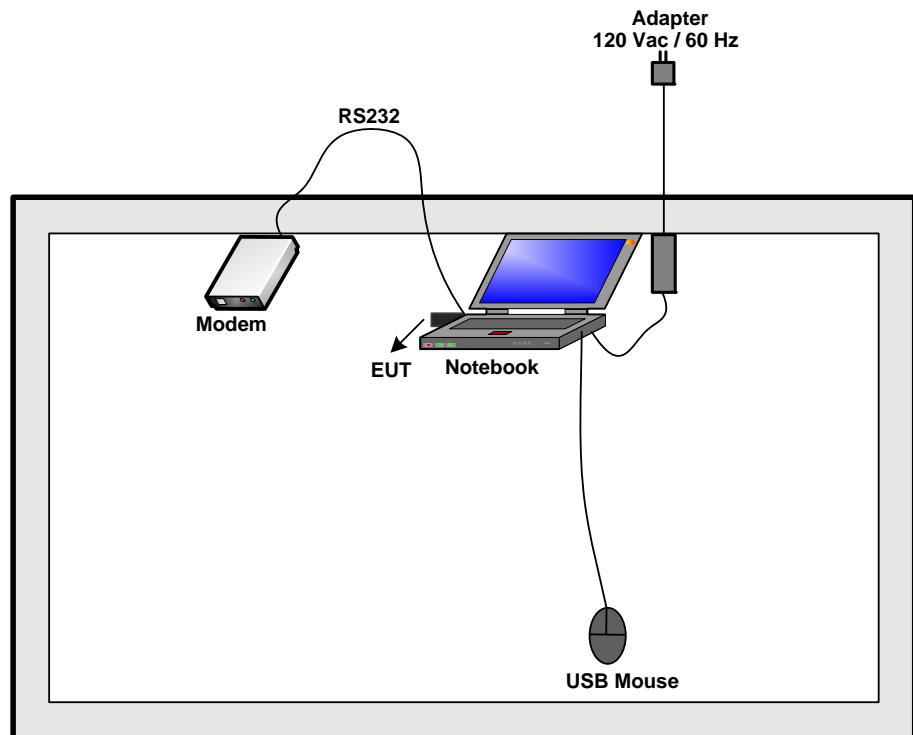
Test Site No.	Site Category	Location
CO01-HY	Conduction	Hwa Ya
03CH01-HY	SAC	Hwa Ya

Semi Anechoic Chamber (SAC).

2.5 Table for Supporting Units

Support Unit	Brand	Model	FCC ID
Notebook	DELL	E5500	DoC
USB Mouse	Microsoft	1004	DoC
Modem	ACEEX	DM1414	IFAXDM1414

2.6 EUT Operation during Test


An executive program, "EMCTEST.EXE" under WIN XP, which generates a complete line of continuously repeating "H" pattern was used as the test software.

The program was executed as follows :

- Turn on the power of all equipment.
- The NB reads the test program from the hard disk drive and runs it.
- The NB sends "H" messages to the pane and displays "H" patterns on the screen.
- The NB sends messages to the modem.
- Repeat the steps from c to d.

2.7 Test Configuration

2.7.1 Radiation Emissions Test Configuration

3 TEST RESULT

3.1 AC Power Line Conducted Emissions Measurement

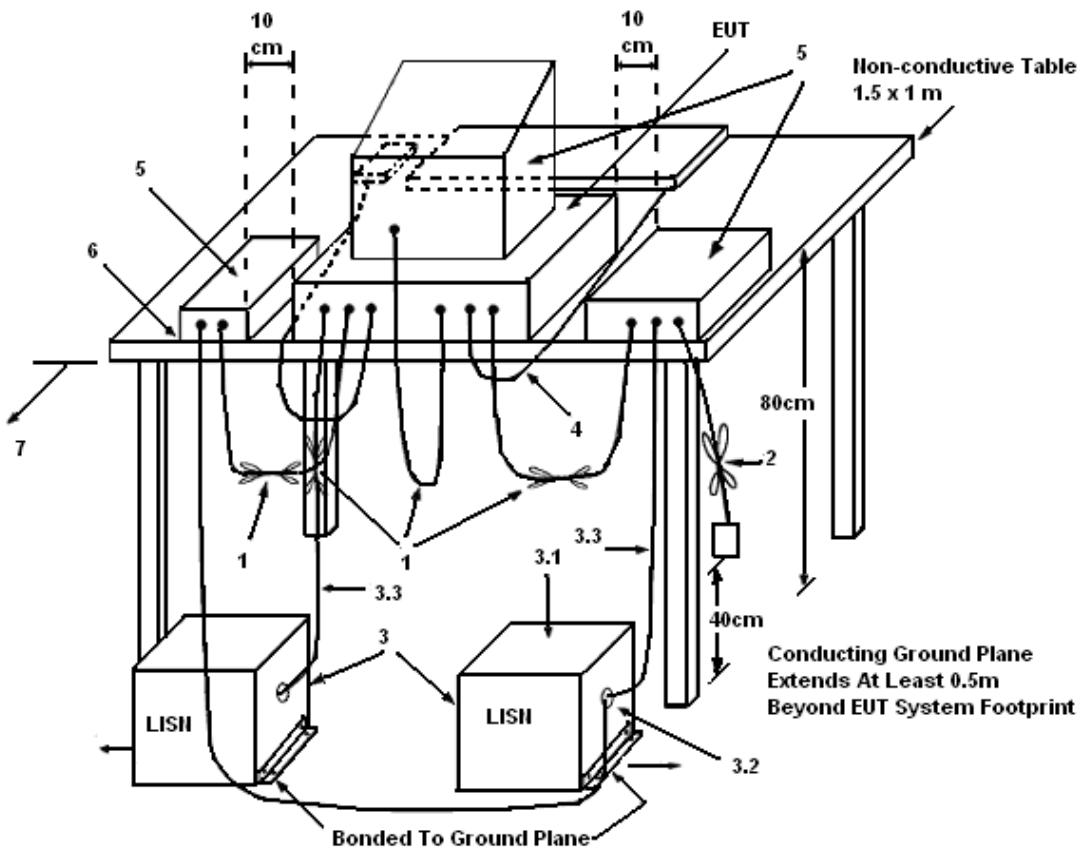
3.1.1 Limit

For this product which is designed to be connected to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 KHz to 30 MHz shall not exceed below limits table.

Class B

Frequency (MHz)	QP Limit (dBuV)	AV Limit (dBuV)
0.15~0.5	66~56	56~46
0.5~5	56	46
5~30	60	50

3.1.2 Measuring Instruments and Setting


Please refer to section 4 of equipments list in this report. The following table is the setting of the receiver.

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

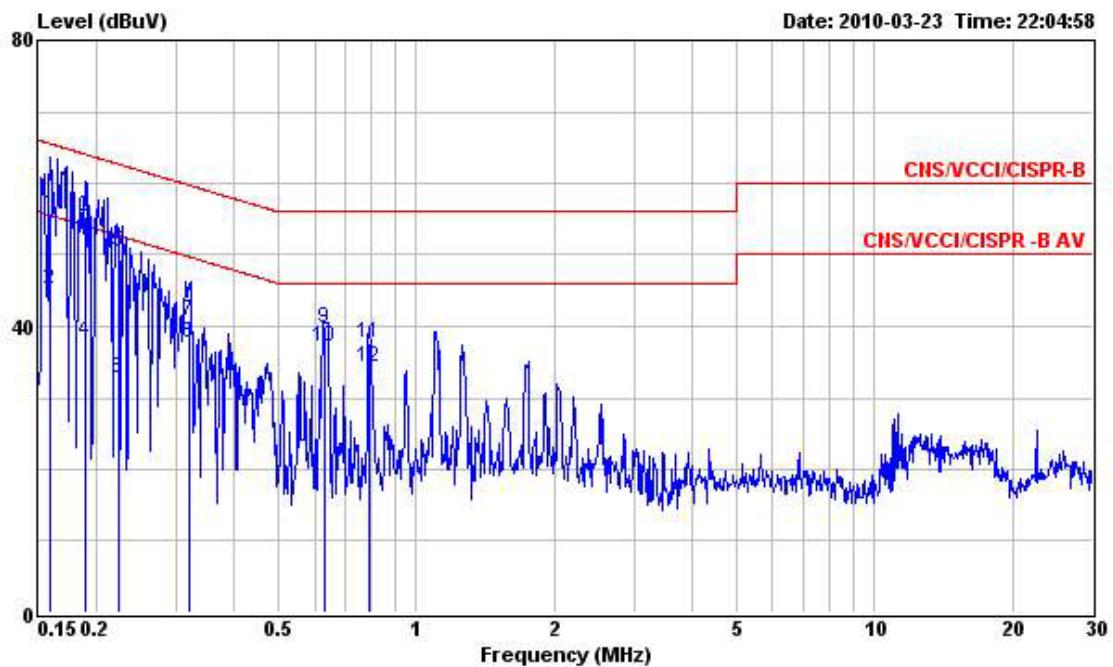
3.1.3 Test Procedures

1. Configure the EUT according to ANSI C63.4. The EUT or host of EUT has to be placed 0.4 meter far from the conducting wall of the shielding room and at least 80 centimeters from any other grounded conducting surface.
2. Connect EUT or host of EUT to the power mains through a line impedance stabilization network (LISN).
3. All the support units are connected to the other LISNs. The LISN should provide 50uH/50ohms coupling impedance.
4. The frequency range from 150 KHz to 30 MHz was searched.
5. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
6. The measurement has to be done between each power line and ground at the power terminal.

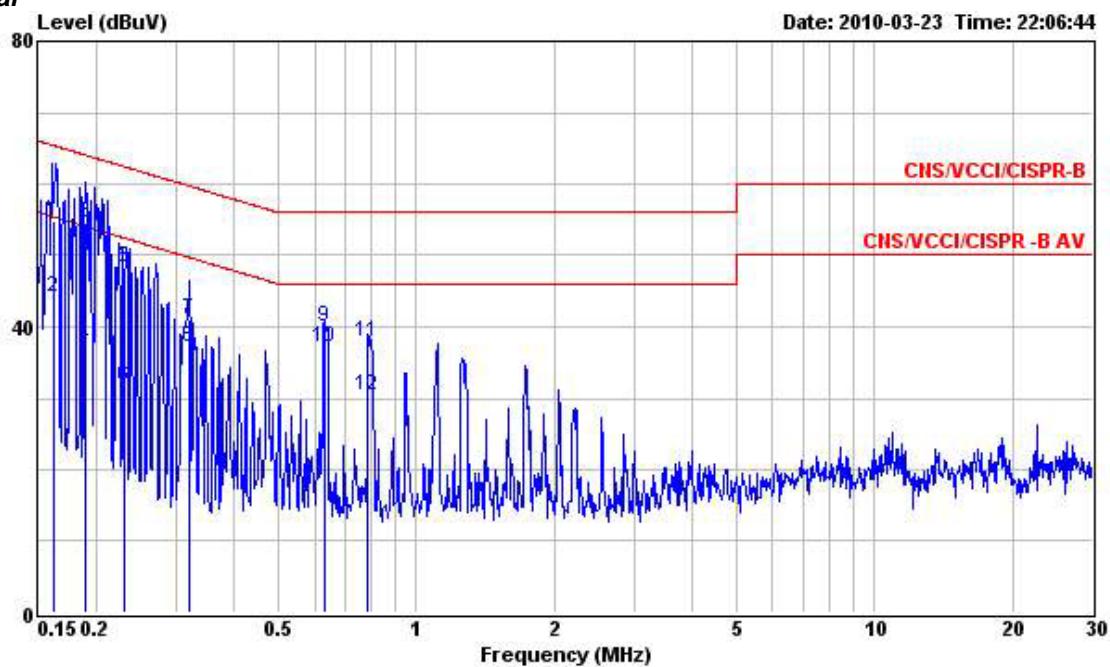
3.1.4 Test Setup Layout

LEGEND:

- (1) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
 - (2) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
 - (3) EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω. LISN can be placed on top of, or immediately beneath, reference ground plane.
 - (3.1) All other equipment powered from additional LISN(s).
 - (3.2) Multiple outlet strip can be used for multiple power cords of non-EUT equipment.
 - (3.3) LISN at least 80 cm from nearest part of EUT chassis.
 - (4) Cables of hand-operated devices, such as keyboards, mice, etc., shall be placed as for normal use.
 - (5) Non-EUT components of EUT system being tested.
 - (6) Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop.
 - (7) Rear of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane.


3.1.5 Test Deviation

There is no deviation with the original standard.


3.1.6 Results of AC Power Line Conducted Emissions Measurement

Final Test Date	Mar. 23, 2010	Test Site No.	CO01-HY
Temperature	20°C	Humidity	50%
Test Engineer	Steven	Configuration	Normal Mode

Line

Freq	Level	Over Limit	Limit	Read		Cable	Remark
				Line	Level		
MHz	dBuV	dB	dBuV	dBuV	dB	dB	
1	0.159	55.60	-9.92	65.52	55.45	0.08	0.07 QP
2	0.159	45.07	-10.45	55.52	44.92	0.08	0.07 Average
3	0.189	55.22	-8.86	64.08	55.08	0.08	0.06 QP
4	0.189	37.87	-16.21	54.08	37.73	0.08	0.06 Average
5	0.224	50.37	-12.30	62.67	50.23	0.08	0.06 QP
6	0.224	32.83	-19.84	52.67	32.69	0.08	0.06 Average
7	0.320	40.70	-19.01	59.71	40.54	0.09	0.07 QP
8	0.320	37.53	-12.18	49.71	37.37	0.09	0.07 Average
9	0.630	39.82	-16.18	56.00	39.62	0.10	0.10 QP
10	0.630	37.16	-8.84	46.00	36.96	0.10	0.10 Average
11	0.792	37.73	-18.27	56.00	37.51	0.10	0.12 QP
12	0.792	34.20	-11.80	46.00	33.98	0.10	0.12 Average

Neutral

Freq	Level	Over Limit	Limit Line	Read Level		Cable Loss	Remark
				dB	dBuV		
MHz	dBuV	dB	dBuV	dBuV	dB	dB	
1	0.162	54.80	-10.56	65.36	54.66	0.07	0.07 QP
2	0.162	44.16	-11.20	55.36	44.02	0.07	0.07 Average
3	0.189	54.47	-9.61	64.08	54.35	0.06	0.06 QP
4	0.189	37.40	-16.68	54.08	37.28	0.06	0.06 Average
5	0.230	48.38	-14.07	62.45	48.26	0.06	0.06 QP
6	0.230	31.62	-20.83	52.45	31.50	0.06	0.06 Average
7	0.320	40.92	-18.79	59.71	40.78	0.07	0.07 QP
8	0.320	37.23	-12.48	49.71	37.09	0.07	0.07 Average
9	0.630	39.92	-16.08	56.00	39.74	0.08	0.10 QP
10	0.630	37.02	-8.98	46.00	36.84	0.08	0.10 Average
11	0.783	37.85	-18.15	56.00	37.65	0.08	0.12 QP
12	0.783	30.49	-15.51	46.00	30.29	0.08	0.12 Average

Note:

Level = Read Level + LISN Factor + Cable Loss.

3.2 Radiated Emissions Measurement

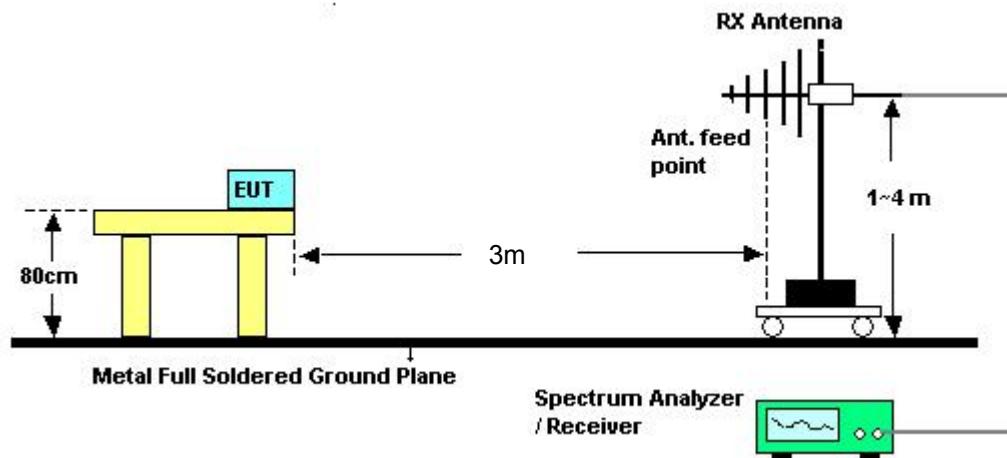
3.2.1 Limit

Measurements shall be made with a quasi-peak measuring receiver in the frequency range 30 MHz to 5th harmonic of highest frequency. The quasi-peak measuring receiver shall be in accordance with clause 2 of CISPR 16-1. Receivers with peak detectors shall be in accordance with clause 3 of CISPR 16-1, and shall have a 6 dB bandwidth in accordance with clause 2 of CISPR 16-1.

Frequency of Emission (MHz)	Field Strength QP Limit (dBuV/m) at 3m
30~88	40
88~216	43.5
216~960	46

3.2.2 Measuring Instruments and Setting

Please refer to section 4 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

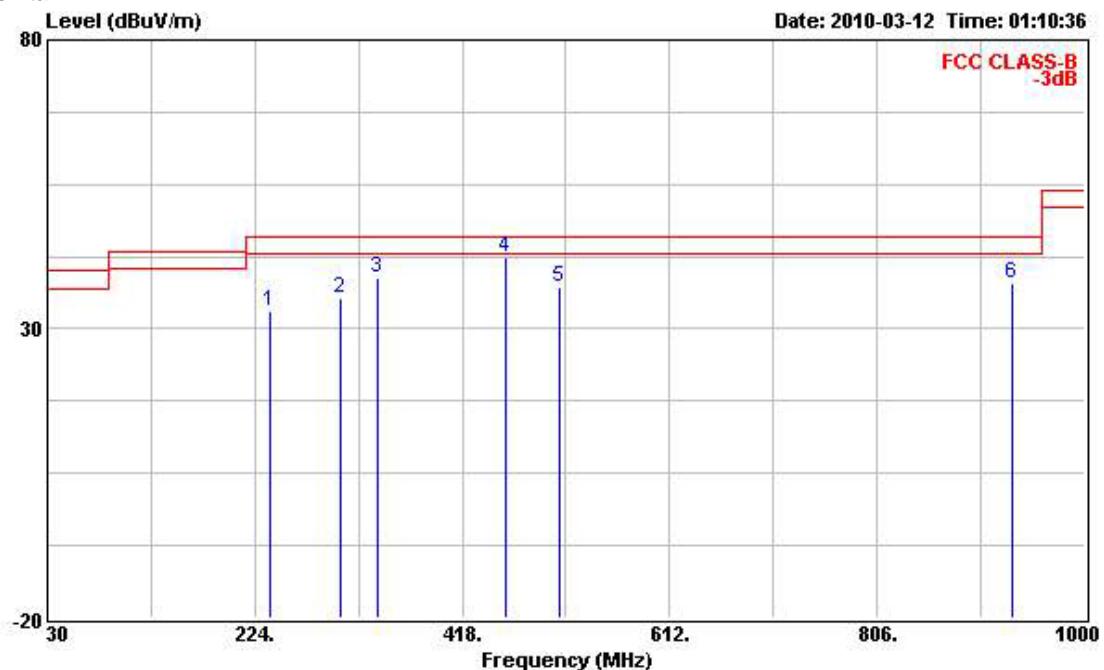

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

Spectrum Parameter	Setting
Start Frequency	1000 MHz
Stop Frequency	5th harmonic of highest frequency
RB / VB	1 MHz / 1MHz for Peak; 1 MHz / 10Hz for Average

3.2.3 Test Procedures

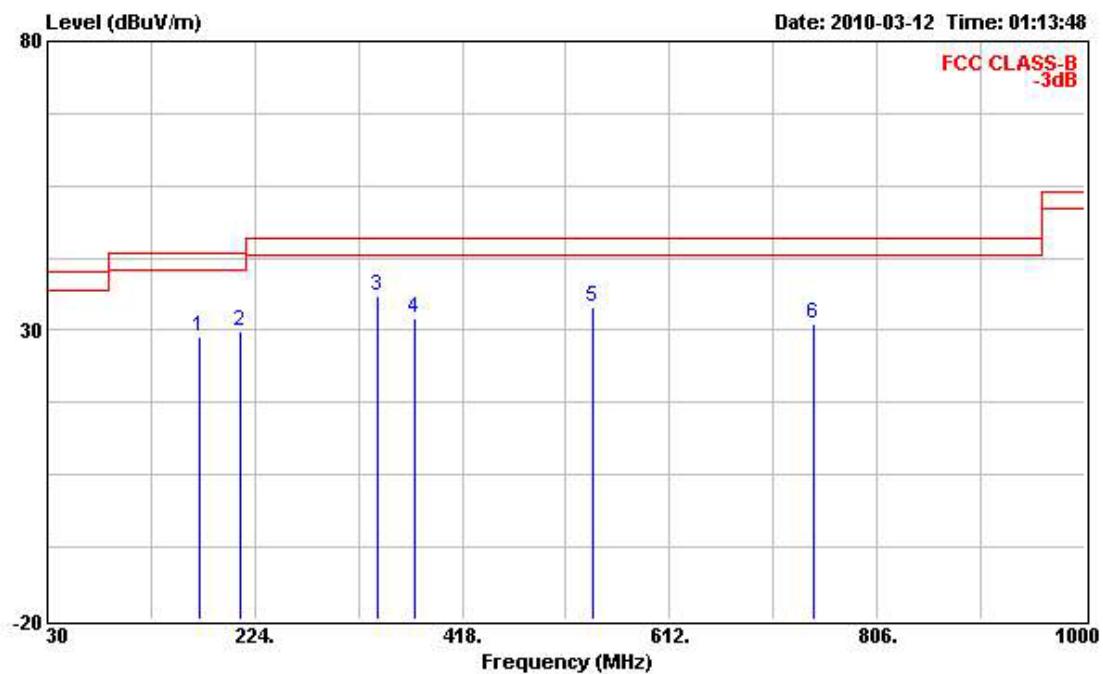
1. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.

3.2.4 Test Setup Layout


3.2.5 Test Deviation

There is no deviation with the original standard.

3.2.6 Results of Radiated Emissions (30MHz~1GHz)


Final Test Date	Mar. 12, 2010	Test Site No.	03CH01-HY
Temperature	20°C	Humidity	50%
Test Engineer	Steven	Configuration	Normal Mode

Horizontal

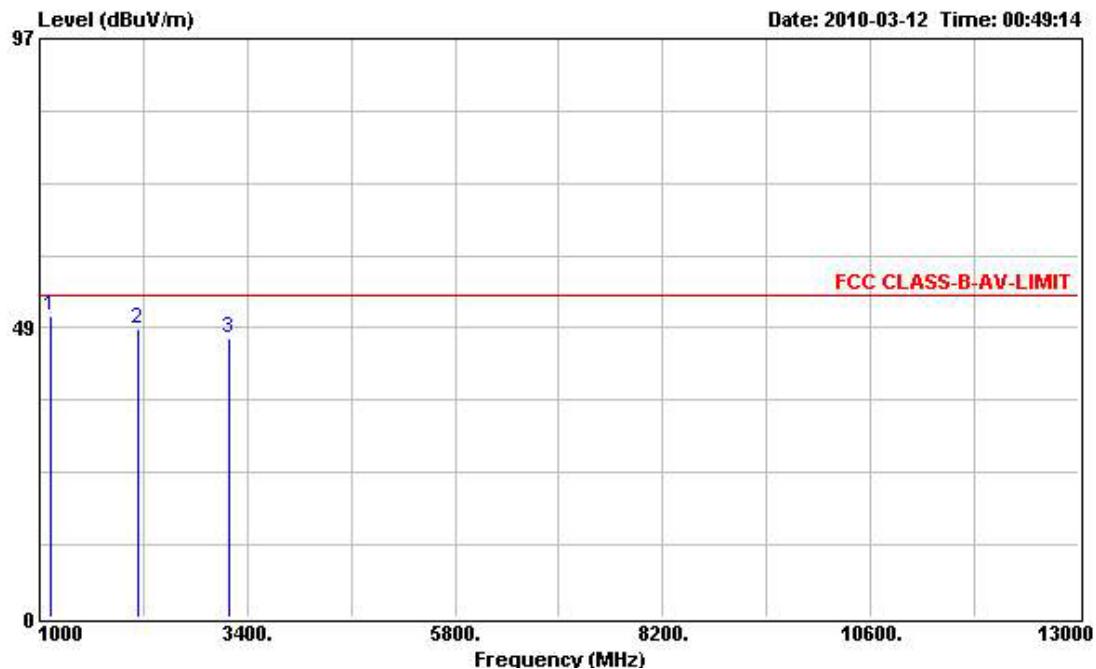
Freq	Level	Over	Limit	Read	Cable	Preamp	Ant	Table
		Limit	Line	Level	Loss	Factor		
MHz	dBuV/m	dB	dBuV/m	dBuV	dB	dB	cm	deg
1 238.550	32.94	-13.06	46.00	51.77	1.75	32.41	Peak	---
2 304.510	35.32	-10.68	46.00	52.08	2.07	32.32	Peak	---
3 338.460	38.93	-7.07	46.00	54.45	2.32	32.21	Peak	---
4 458.740	42.49	-3.51	46.00	54.65	2.90	32.06	Peak	---
5 509.180	37.35	-8.65	46.00	48.72	2.79	31.99	Peak	---
6 933.070	37.85	-8.15	46.00	44.30	4.39	31.59	Peak	---

Vertical

Freq	Level	Over	Limit	Read	Cable	Preamp	Ant	Table	
		Limit	Line	Level	Loss	Factor			
MHz	dBuV/m	dB	dBuV/m	dBuV	dB	dB		cm	deg
1	171.620	28.92	-14.58	43.50	50.48	1.45	32.52	Peak	---
2	210.420	29.76	-13.74	43.50	50.68	1.63	32.47	Peak	---
3	338.460	36.04	-9.96	46.00	51.56	2.32	32.21	Peak	---
4	373.380	32.23	-13.77	46.00	46.73	2.38	32.16	Peak	---
5	540.220	34.05	-11.95	46.00	44.66	3.14	31.95	Peak	---
6	746.830	31.28	-14.72	46.00	39.70	3.97	31.82	Peak	---

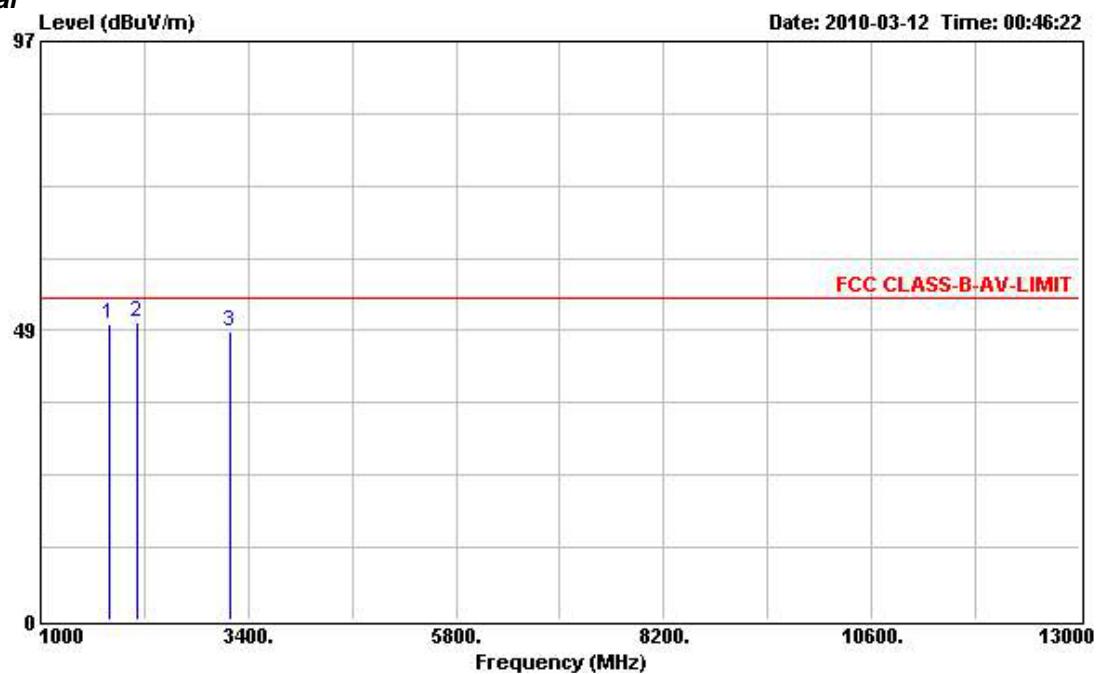
Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.


Emission level (dBuV/m) = 20 log Emission level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

3.2.7 Results for Radiated Emissions (1GHz~5th harmonic of highest frequency)

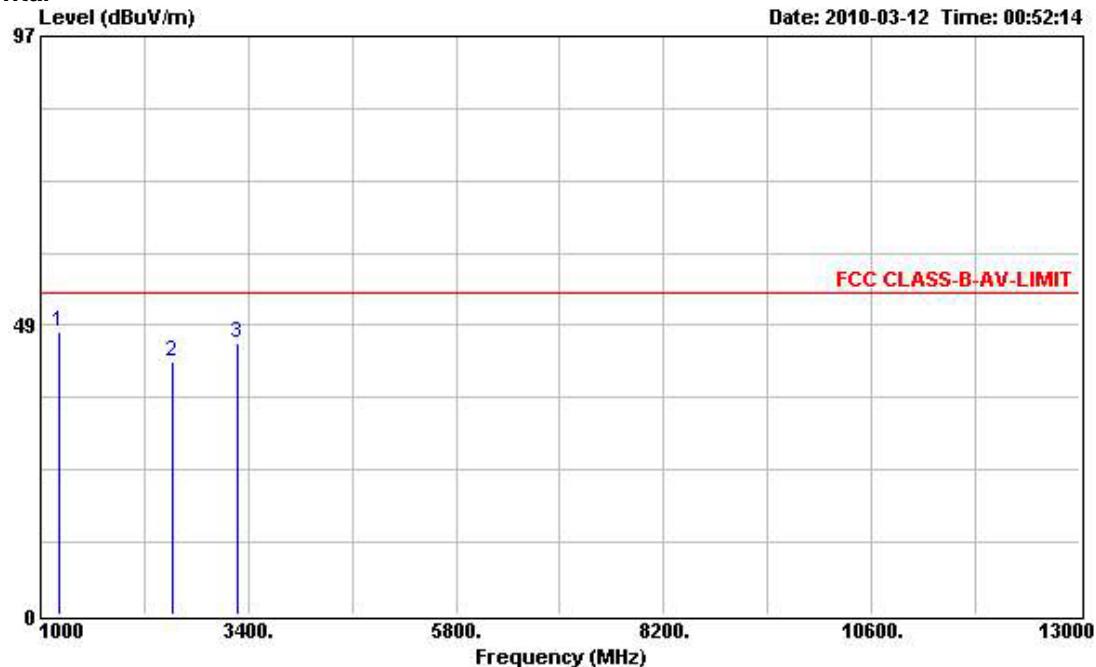

Final Test Date	Mar. 12, 2010	Test Site No.	03CH01-HY
Temperature	20°C	Humidity	50%
Test Engineer	Steven	Configuration	CRX 802.11g 2437MHz

Horizontal

Freq	Level	Over	Limit	Read	Cable	Preamp	Ant	Table
		Line	Level	dBuV	dB	dB		
MHz	dBuV/m	dB	dBuV/m	dBuV	dB	dB	cm	deg
1 1136.000	50.56	-3.44	54.00	57.83	2.14	33.87 Peak	---	---
2 2128.000	48.30	-5.70	54.00	49.75	3.20	32.39 Peak	---	---
3 3188.000	46.74	-7.26	54.00	44.43	4.22	32.39 Peak	---	---

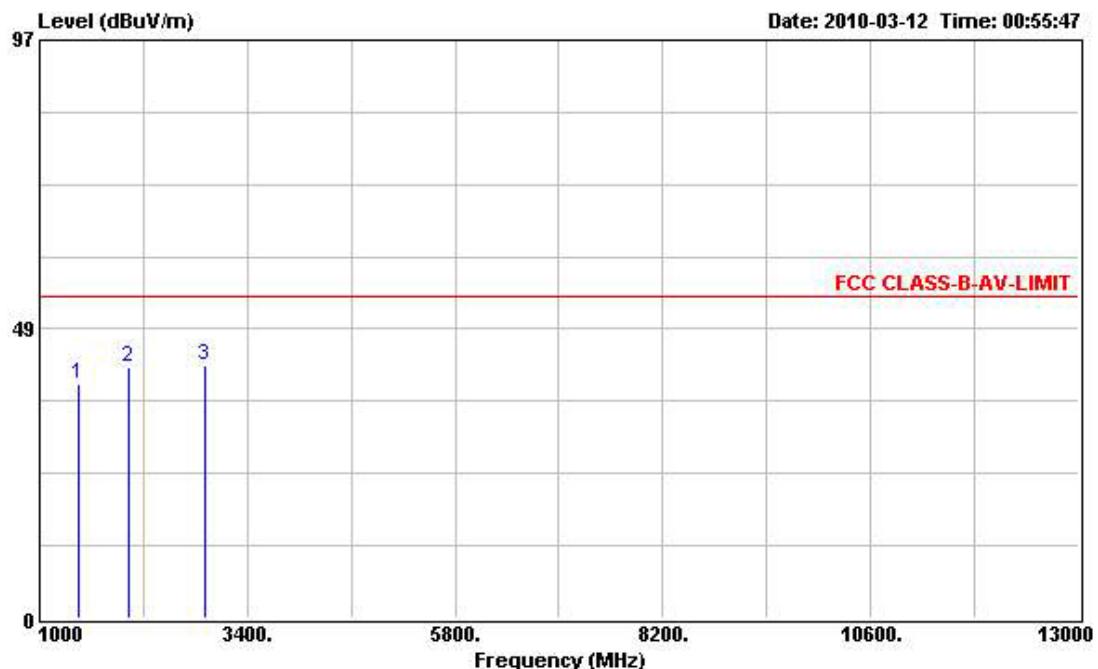
Vertical

Freq	Level	Over Limit	Limit Line	Read Level	Cable Preamp			Ant Pos	Table Pos
					Cable Loss	Preamp Factor	Remark		
MHz	dBuV/m	dB	dBuV/m	dBuV	dB	dB		cm	deg
1 1792.000	49.48	-4.52	54.00	52.66	2.79	32.63	Peak	---	---
2 2116.000	49.80	-4.20	54.00	51.25	3.20	32.39	Peak	---	---
3 3188.000	48.36	-5.64	54.00	46.05	4.22	32.39	Peak	---	---


Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = 20 log Emission level (uV/m).


Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

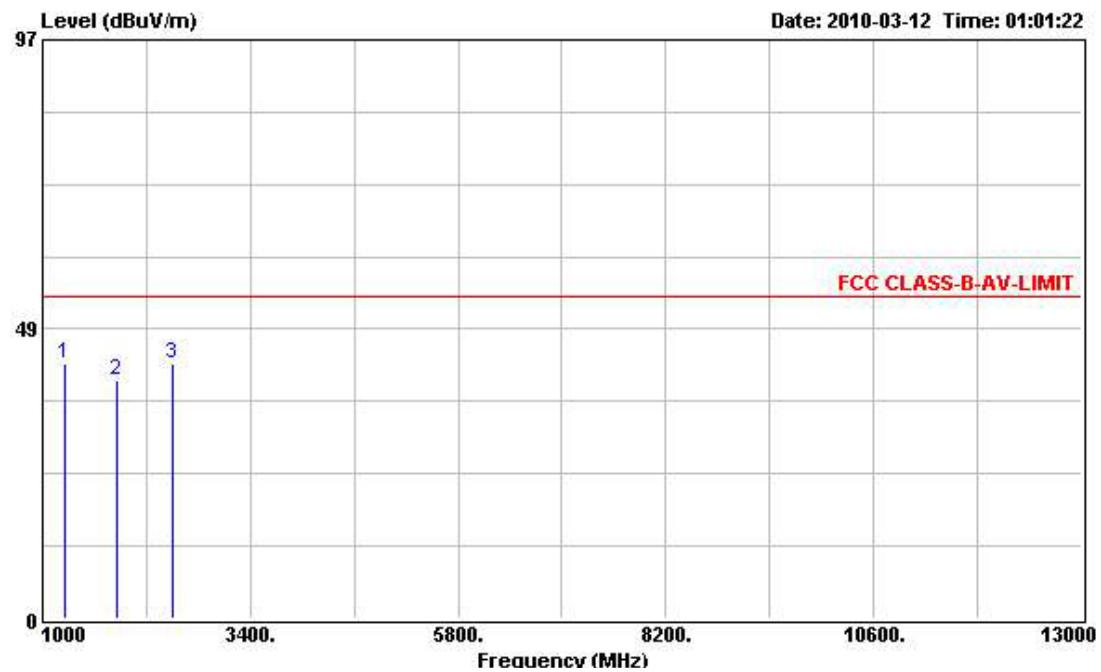
Final Test Date	Mar. 12, 2010	Test Site No.	03CH01-HY
Temperature	20°C	Humidity	50%
Test Engineer	Steven	Configuration	CRX 802.11n (20MHz) 2437MHz

Horizontal

Freq	Level	Over Limit	Limit	Read Line	Cable Preamp			Ant Pos	Table Pos
					dB	dBuV/m	dBuV		
MHz	dBuV/m							cm	deg
1 1216.000	47.44	-6.56	54.00	54.15	2.25	33.64	Peak	---	---
2 2524.000	42.48	-11.52	54.00	42.03	3.74	31.90	Peak	---	---
3 3276.000	45.44	-8.56	54.00	42.82	4.31	32.34	Peak	---	---

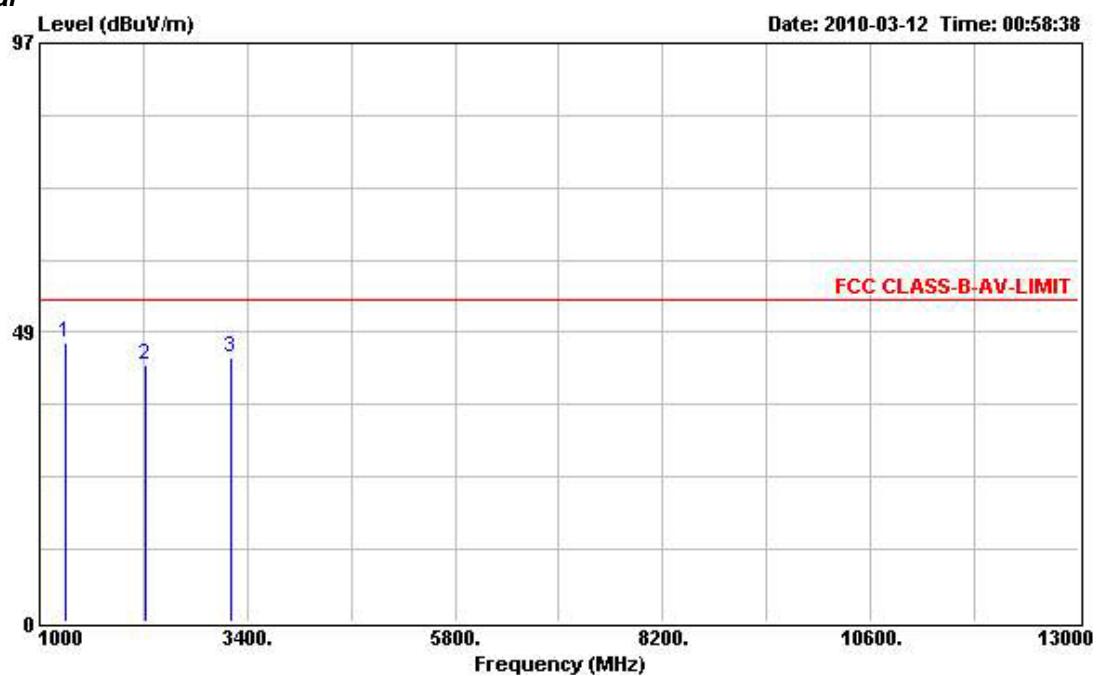
Vertical

Freq	Level	Over	Limit	Read	Cable	Preamp	Ant	Table
		Limit	Line	Level	Cable	Preamp		
MHz	dBuV/m	dB	dBuV/m	dBuV	dB	dB	cm	deg
1 1452.000	39.31	-14.69	54.00	44.41	2.47	32.88 Peak	---	---
2 2032.000	42.21	-11.79	54.00	44.09	3.09	32.54 Peak	---	---
3 2912.000	42.57	-11.43	54.00	41.20	4.02	32.43 Peak	---	---


Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = 20 log Emission level (uV/m).


Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Final Test Date	Mar. 12, 2010	Test Site No.	03CH01-HY
Temperature	20°C	Humidity	50%
Test Engineer	Steven	Configuration	CRX 802.11n (40MHz) 2437MHz

Horizontal

Freq	Level	Over Limit	Limit	Read Line	Cable Preamp			Ant Pos	Table Pos
					dB	dBuV/m	dB		
MHz	dBuV/m	dB	dBuV/m	dBuV	dB	dB	dB	cm	deg
1 1256.000	42.85	-11.15	54.00	49.28	2.29	33.49	Peak	---	---
2 1860.000	40.04	-13.96	54.00	42.84	2.87	32.61	Peak	---	---
3 2504.000	42.85	-11.15	54.00	42.47	3.74	31.86	Peak	---	---

Vertical

Freq	Level	Over	Limit	Read	Cable	Preamp	Ant Pos	Table Pos	
		Limit	Line	Level	Loss	Factor			
MHz	dBuV/m	dB	dBuV/m	dBuV	dB	dB		cm	deg
1	1300.000	46.84	-7.16	54.00	52.94	2.32	33.33	Peak	---
2	2224.000	43.02	-10.98	54.00	44.01	3.31	32.25	Peak	---
3	3212.000	44.23	-9.77	54.00	41.84	4.25	32.37	Peak	---

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = 20 log Emission level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

4 LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMC Receiver	R&S	ESCS 30	100132	9kHz – 2.75GHz	Sep. 01, 2009	Conduction (CO01-HY)
LISN	MessTec	NNB-2/16Z	2001/004	9kHz – 30MHz	Jan. 19, 2010	Conduction (CO01-HY)
LISN (Support Unit)	MessTec	NNB-2/16Z	2001/009	9kHz – 30MHz	Mar. 01, 2010	Conduction (CO01-HY)
RF Cable-CON	HUBER+SUHNER	RG213/U	07611832010001	9kHz – 30MHz	May 05, 2009	Conduction (CO01-HY)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH01-HY	30 MHz - 1 GHz 3m	May 04, 2009	Radiation (03CH01-HY)
Amplifier	COM-POWER	PA-103	161050	1 MHz - 1 GHz	Oct. 26, 2009	Radiation (03CH01-HY)
Spectrum Analyzer	R&S	FSP 7	100644/007	9 kHz – 40hjn GHz	Aug. 17, 2009	Radiation (03CH01-HY)
Receiver	SCHAFFNER	SCR 3501	415	9 kHz - 1 GHz	Feb. 08, 2010	Radiation (03CH01-HY)
Bilog Antenna	SCHAFFNER	CBL6112B	2678	30 MHz - 2 GHz	Oct. 17, 2009	Radiation (03CH01-HY)
Turn Table	HD	DS 420	420/648/00	0 - 360 degree	N/A	Radiation (03CH01-HY)
Antenna Mast	HD	MA 240	240/558/00	1 m - 4 m	N/A	Radiation (03CH01-HY)
RF Cable-R03m	Jye Bao	RG142	CB019	30 MHz - 1 GHz	Dec. 07, 2009	Radiation (03CH01-HY)
RF Cable-HIGH	SUHNER	SUCOFLEX106	33135/2	1GHz~40GHz	May 10, 2009	Radiation (03CH01-HY)
Horn Antenna	EMCO	3115	6741	1GHz~18GHz	Apr. 28, 2009	Radiation (03CH01-HY)
Amplifier	Agilent	8449B	3008A02120	1GHz – 26.5 GHz	Jul. 06, 2009	Radiation (03CH01-HY)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Loop Antenna	R&S	HFH2-Z2	860004/001	9 kHz - 30 MHz	Jul. 28, 2008*	Radiation (03CH02-HY)

Note: Calibration Interval of instruments listed above is two year.

5 TEST LOCATION

SHIJR	ADD : 6Fl., No. 106, Sec. 1, Shintai 5th Rd., Shijr City, Taipei, Taiwan 221, R.O.C. TEL : 886-2-2696-2468 FAX : 886-2-2696-2255
HWA YA	ADD : No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. TEL : 886-3-327-3456 FAX : 886-3-318-0055
LINKOU	ADD : No. 30-2, Dingfu Tsuen, Linkou Shiang, Taipei, Taiwan 244, R.O.C TEL : 886-2-2601-1640 FAX : 886-2-2601-1695
DUNGHU	ADD : No. 3, Lane 238, Kangle St., Neihu Chiu, Taipei, Taiwan 114, R.O.C. TEL : 886-2-2631-4739 FAX : 886-2-2631-9740
JUNGHE	ADD : 7Fl., No. 758, Jungjeng Rd., Junghe City, Taipei, Taiwan 235, R.O.C. TEL : 886-2-8227-2020 FAX : 886-2-8227-2626
NEIHU	ADD : 4Fl., No. 339, Hsin Hu 2 nd Rd., Taipei 114, Taiwan, R.O.C. TEL : 886-2-2794-8886 FAX : 886-2-2794-9777
JHUBEI	ADD : No.8, Lane 724, Bo-ai St., Jhubei City, HsinChu County 302, Taiwan, R.O.C. TEL : 886-3-656-9065 FAX : 886-3-656-9085

6 NVLAP CERTIFICATE OF ACCREDITATION

Certificate No. : L1190-110111

財團法人全國認證基金會
Taiwan Accreditation Foundation

Certificate of Accreditation

This is to certify that

Sporton International Inc.**EMC & Wireless Communications Laboratory**No.52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien,
Taiwan, R.O.C.**is accredited in respect of laboratory****Accreditation Criteria** : ISO/IEC 17025:2005**Accreditation Number** : 1190**Originally Accredited** : December 15, 2003**Effective Period** : January 10, 2010 to January 09, 2013**Accredited Scope** : Testing Field, see described in the Appendix**Specific Accreditation Program** : Accreditation Program for Designated Testing Laboratory

for Commodities Inspection

Accreditation Program for Telecommunication Equipment

Testing Laboratory

Accreditation Program for BSMI Mutual Recognition

Arrangement with Foreign Authorities

Jay-San Chen
President, Taiwan Accreditation Foundation
Date : January 11, 2011

PI, total 24 pages