

**FCC CFR47 PART 15 SUBPART C
CLASS II PERMISSIVE CHANGE
TEST REPORT
FOR**

Wireless Ethernet Bridge Access Point (Point to Multipoint)

MODEL NUMBER: M5830S-AP-EXT

FCC ID: NCYM5830SAP60

REPORT NUMBER: 06U10148-2, Revision B

ISSUE DATE: MAY 1, 2006

Prepared for
TRANGO SYSTEMS
15070 AVENUE OF SCIENCE, SUITE 200
SAN DIEGO, CA 92128
U.S.A.

Prepared by
COMPLIANCE CERTIFICATION SERVICES
561F MONTEREY ROAD,
MORGAN HILL, CA 95037, USA
TEL: (408) 463-0885
FAX: (408) 463-0888

Revision History

Rev.	Issue Date	Revisions	Revised By
A	04/13/06	Initial Issue	D. Garcia
B	5/1/06	Clarified antenna specifications	MH

TABLE OF CONTENTS

1. ATTESTATION OF TEST RESULTS.....	4
2. TEST METHODOLOGY	5
3. FACILITIES AND ACCREDITATION	5
4. CALIBRATION AND UNCERTAINTY.....	5
4.1. <i>MEASURING INSTRUMENT CALIBRATION.....</i>	<i>5</i>
4.2. <i>MEASUREMENT UNCERTAINTY.....</i>	<i>5</i>
5. EQUIPMENT UNDER TEST.....	6
5.1. <i>DESCRIPTION OF EUT</i>	<i>6</i>
5.2. <i>DESCRIPTION OF CLASS II PERMISSIVE CHANGE</i>	<i>6</i>
5.3. <i>DESCRIPTION OF ADDITIONAL ANTENNAS</i>	<i>6</i>
5.4. <i>SOFTWARE AND FIRMWARE</i>	<i>6</i>
5.5. <i>WORST-CASE CONFIGURATION AND MODE.....</i>	<i>7</i>
5.6. <i>DESCRIPTION OF TEST SETUP</i>	<i>7</i>
6. TEST AND MEASUREMENT EQUIPMENT	9
7. LIMITS AND RESULTS	10
7.1. <i>AVERAGE POWER.....</i>	<i>10</i>
7.2. <i>MAXIMUM PERMISSIBLE EXPOSURE</i>	<i>11</i>
7.3. <i>RADIATED EMISSIONS.....</i>	<i>14</i>
7.3.1. TRANSMITTER RADIATED SPURIOUS EMISSIONS	<i>14</i>
7.3.2. TRANSMITTER ABOVE 1 GHz FOR 5725 TO 5850 MHz BAND	<i>16</i>
7.3.3. WORST-CASE RADIATED EMISSIONS BELOW 1 GHz	<i>19</i>
7.4. <i>POWERLINE CONDUCTED EMISSIONS</i>	<i>23</i>
8. SETUP PHOTOS	27

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: TRANGO SYSTEMS
 15070 AVENUE OF SCIENCE, SUITE 200
 SAN DIEGO, CA 92128
 U.S.A.

EUT DESCRIPTION: Wireless Ethernet Bridge Access Point (Point to Multipoint)

MODEL: M5830S-AP-EXT

SERIAL NUMBER: 00021935

DATE TESTED: MARCH 15 – APRIL 1, 2006

APPLICABLE STANDARDS	
STANDARD	TEST RESULTS
FCC PART 15 SUBPART C	NO NON-COMPLIANCE NOTED

Compliance Certification Services, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By:

Tested By:

MH

MIKE HECKROTTE
 ENGINEERING MANAGER
 COMPLIANCE CERTIFICATION SERVICES

Can Chung

CAN CHUNG
 EMC ENGINEER
 COMPLIANCE CERTIFICATION SERVICES

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2 and FCC CFR 47 Part 15.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <http://www.ccsemc.com>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 200 MHz	+/- 3.3 dB
Radiated Emission, 200 to 1000 MHz	+4.5 / -2.9 dB
Radiated Emission, 1000 to 2000 MHz	+4.5 / -2.9 dB
Power Line Conducted Emission	+/- 2.9 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

Wireless Ethernet Bridge Access Point (Point to Multipoint).

5.2. DESCRIPTION OF CLASS II PERMISSIVE CHANGE

Changed antenna port connectors to reverse SMA type connectors and adding 3 additional antenna options (see antenna descriptions below).

5.3. DESCRIPTION OF ADDITIONAL ANTENNAS

- 1) Omni Antenna, model: OD58-12, 12 dBi gain.
- 2) 120° 16 dBi, 5.725 – 5.85 GHz Horizontally Polarized Sector Antenna, model: SAH58-120-16, 16 dBi Gain
- 3) 90° 5.25-5.85 GHz Sector Antenna, model: SEC-55D90-16, 16 dBi gain.

5.4. SOFTWARE AND FIRMWARE

The firmware installed in the EUT during testing was 1p0a2.

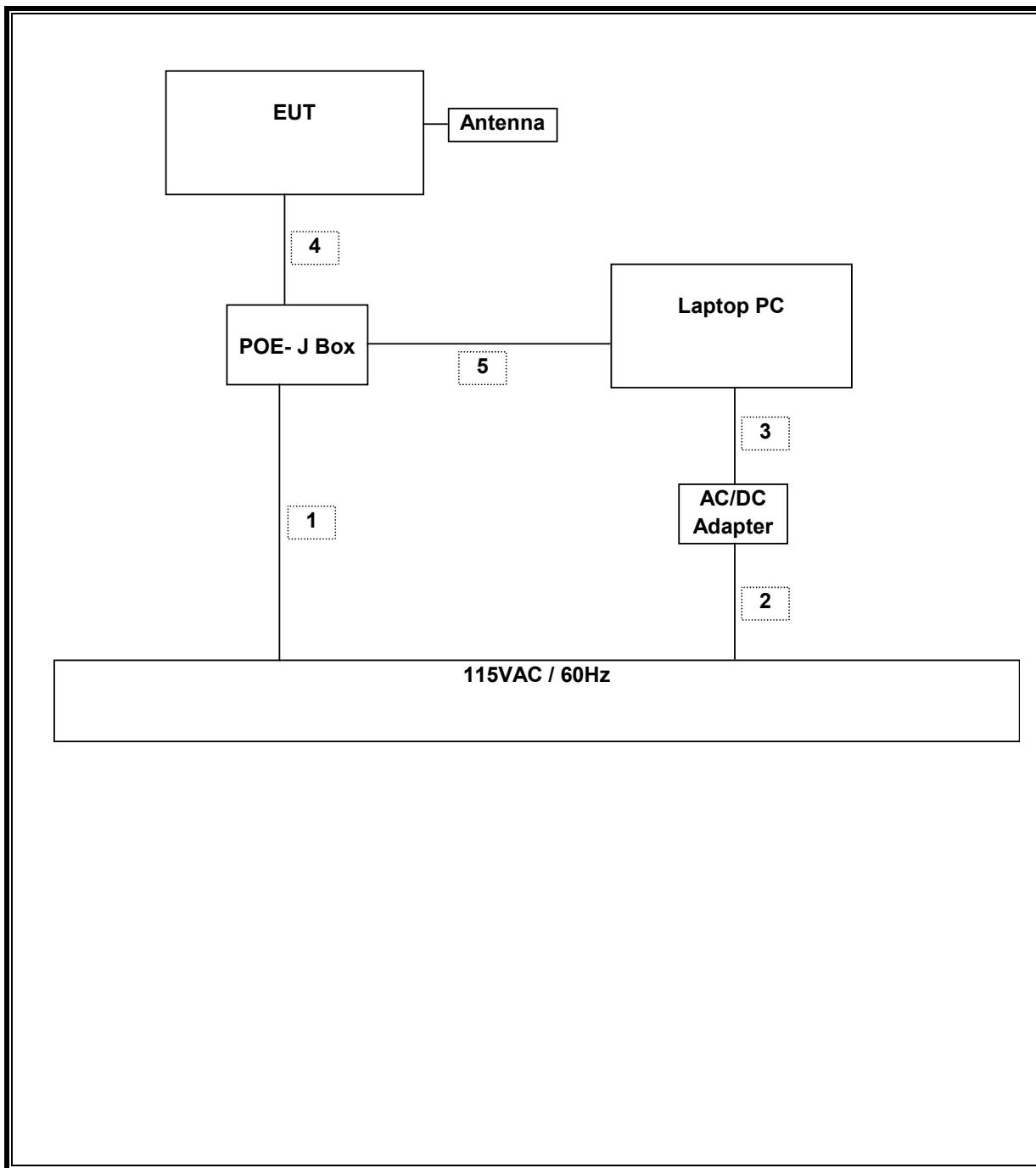
The test utility software used during testing was telnet.

5.5. WORST-CASE CONFIGURATION AND MODE

The worst-case channel is determined as the channel with the highest output power. The highest measured output power was at 5836 MHz.

The worst-case data rate for this channel is determined to be 11 Mb/s.

Thus all emissions tests were made in the 802.11a mode, 5836 MHz, 11 Mb/s.


5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST				
Description	Manufacturer	Model	Serial Number	FCC ID
Laptop PC	Sony	PCG-R505EL	CS01695	DoC
AC/DC Adapter	Sony	PCGA-AC19V1	0044D0183529	N/A
POE J-Box	Trango	N/A	CS01696	N/A
AC/DC Adapter	HON-KWANG	D24-10P	0505C	N/A

I/O CABLES

I/O CABLE LIST						
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length	Remarks
1	DC	1	DC	Unshielded	1.6m	N/A
2	AC	1	AC	Unshielded	0.5m	N/A
3	DC	1	DC	Unshielded	1.5m	N/A
4	Radio	1	RJ45	Shielded	4m	N/A
5	Ethenet	1	RJ45	Unshielded	30m	N/A

SETUP DIAGRAM FOR TESTS

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST				
Description	Manufacturer	Model	Serial Number	Cal Due
Antenna, Horn 1 ~ 18 GHz	EMCO	3115	6717	04/22/06
Antenna, Horn 18 ~ 26 GHz	ARA	MWH-1826/B	1049	09/12/06
Antenna, Horn 26 ~ 40 GHz	ARA	MWH-2640/B	1029	12/29/05
Preamplifier, 1 ~ 26.5 GHz	Agilent / HP	8449B	3008A00561	10/03/07
Preamplifier, 26 ~ 40 GHz	Miteq	NSP4000-SP2	924343	08/18/06
7.6 GHz HPF	Micro Tronics	HPM13195	1	N/A
Spectrum Analyzer 3 Hz ~ 44 GHz	Agilent / HP	E4446A	US42510266	10/19/06
EMI Test Receiver	R & S	ESHS 20	827129/006	06/03/06
LISN, 10 kHz ~ 30 MHz	FCC	LISN-50/250-25-2	2023	08/30/06
EMI Receiver, 9 kHz ~ 2.9 GHz	Agilent / HP	8542E	3942A00286	02/04/07
RF Filter Section	Agilent / HP	85420E	3705A00256	02/04/07
Antenna, Bilog 30 MHz ~ 2 Ghz	Sunol Sciences	JB1	A121003	09/03/06

7. LIMITS AND RESULTS

7.1. AVERAGE POWER

AVERAGE POWER LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

No non-compliance noted:

The cable assembly insertion loss of 12.1 dB (including 10 dB pad and 2.1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency (MHz)	Average Power (dBm)
Low	5736	21.35
Middle	5776	22.00
High	5836	22.36

7.2. MAXIMUM PERMISSIBLE EXPOSURE

LIMITS

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)
(A) Limits for Occupational/Controlled Exposures				
0.3–3.0	614	1.63	*(100)	6
3.0–30	1842/f	4.89/f	*(900/f ²)	6
30–300	61.4	0.163	1.0	6
300–1500	f/300	6
1500–100,000	5	6
(B) Limits for General Population/Uncontrolled Exposure				
0.3–1.34	614	1.63	*(100)	30
1.34–30	824/f	2.19/f	*(180/f ²)	30

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)—Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)
30–300	27.5	0.073	0.2	30
300–1500	f/1500	30
1500–100,000	1.0	30

f = frequency in MHz

* = Plane-wave equivalent power density

NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

CALCULATIONS

Given

$$E = \sqrt{(30 * P * G) / d}$$

and

$$S = E^2 / 3770$$

where

E = Field Strength in Volts/meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

$$d = \sqrt{((30 * P * G) / (3770 * S))}$$

Changing to units of Power to mW and Distance to cm, using:

$$P (\text{mW}) = P (\text{W}) / 1000 \text{ and}$$

$$d (\text{cm}) = 100 * d (\text{m})$$

yields

$$d = 100 * \sqrt{((30 * (P / 1000) * G) / (3770 * S))}$$

$$d = 0.282 * \sqrt{(P * G / S)}$$

where

d = distance in cm

P = Power in mW

G = Numeric antenna gain

S = Power Density in mW/cm²

Substituting the logarithmic form of power and gain using:

$$P (\text{mW}) = 10^{(P (\text{dBm}) / 10)} \text{ and}$$

$$G (\text{numeric}) = 10^{(G (\text{dBi}) / 10)}$$

yields

$$d = 0.282 * 10^{((P + G) / 20)} / \sqrt{S}$$

where

d = MPE distance in cm

P = Power in dBm

G = Antenna Gain in dBi

S = Power Density Limit in mW/cm²

Rearranging terms to calculate the power density at a specific distance yields

$$S = 0.0795 * 10^{((P + G) / 10)} / (d^2)$$

LIMITS

From §1.1310 Table 1 (B), the maximum value of S = 1.0 mW/cm²

RESULTS

No non-compliance noted:

Mode	Power Density Limit (mW/cm ²)	Output Power (dBm)	Antenna Gain (dBi)	MPE Distance (cm)
802.11a	1.0	22.36	16.00	23.35

7.3. RADIATED EMISSIONS

7.3.1. TRANSMITTER RADIATED SPURIOUS EMISSIONS

LIMITS

§15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

§15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

§15.209 (b) In the emission table above, the tighter limit applies at the band edges.

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each 5 GHz band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

7.3.2. TRANSMITTER ABOVE 1 GHz FOR 5725 TO 5850 MHz BAND

HARMONICS AND SPURIOUS EMISSIONS (802.11a MODE) with Omni Antenna

03/20/06 High Frequency Measurement Compliance Certification Services, Morgan Hill Open Field Site																																																																									
<p>Test Engineer: Frank Ibrahim Project #: 06U10148 Company: Trango System EUT Description: Wireless Ethernet Bridge Access Point (Point to Multipoint), with Omni Antenna EUT M/N: M5830S-AP-EXT EUT S/N: 21935 Test Target: FCC 15.205 Mode Of Operation: TX ON</p>																																																																									
<p>Test Equipment:</p> <table border="1"> <tr> <td>Horn 1-18GHz</td> <td>Pre-amplifier 1-26GHz</td> <td>Pre-amplifier 26-40GHz</td> <td colspan="4">Horn > 18GHz</td> <td>Limit</td> </tr> <tr> <td>T73; S/N: 6717 @3m</td> <td>T145 Agilent 3008A0056</td> <td></td> <td colspan="4">T89; ARA 18-26GHz; S/N:1049</td> <td>FCC 15.205</td> </tr> <tr> <td colspan="15">Hi Frequency Cables</td> </tr> <tr> <td colspan="2">2 foot cable</td> <td colspan="2">3 foot cable</td> <td colspan="2">12 foot cable</td> <td>HPF</td> <td>Reject Filter</td> <td colspan="6"> Peak Measurements RBW=VBW=1MHz Average Measurements RBW=1MHz ; VBW=10Hz </td> </tr> <tr> <td colspan="2"> Frank 177080001 </td> <td colspan="2"> Frank 187209001 </td> <td colspan="2"></td> <td>HPF_7.6GHz</td> <td></td> <td colspan="6"></td> </tr> </table>															Horn 1-18GHz	Pre-amplifier 1-26GHz	Pre-amplifier 26-40GHz	Horn > 18GHz				Limit	T73; S/N: 6717 @3m	T145 Agilent 3008A0056		T89; ARA 18-26GHz; S/N:1049				FCC 15.205	Hi Frequency Cables															2 foot cable		3 foot cable		12 foot cable		HPF	Reject Filter	Peak Measurements RBW=VBW=1MHz Average Measurements RBW=1MHz ; VBW=10Hz						Frank 177080001		Frank 187209001				HPF_7.6GHz							
Horn 1-18GHz	Pre-amplifier 1-26GHz	Pre-amplifier 26-40GHz	Horn > 18GHz				Limit																																																																		
T73; S/N: 6717 @3m	T145 Agilent 3008A0056		T89; ARA 18-26GHz; S/N:1049				FCC 15.205																																																																		
Hi Frequency Cables																																																																									
2 foot cable		3 foot cable		12 foot cable		HPF	Reject Filter	Peak Measurements RBW=VBW=1MHz Average Measurements RBW=1MHz ; VBW=10Hz																																																																	
Frank 177080001		Frank 187209001				HPF_7.6GHz																																																																			
f GHz	Dist (m)	Read Pk dBuV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	Fltr dB	Peak dBuVm	Avg dBuVm	Pk Lim dBuVm	Avg Lim dBuVm	Pk Mar dB	Avg Mar dB	Notes (V/H)																																																										
Low Channel (5736 MHz)																																																																									
11.472	3.0	48.2	36.4	38.3	5.2	-33.1	0.0	0.7	59.3	47.5	74	54	-14.7	-6.5	V																																																										
11.472	3.0	44.0	32.1	38.3	5.2	-33.1	0.0	0.7	55.1	43.2	74	54	-18.9	-10.8	H																																																										
Mid Channel (5776 MHz)																																																																									
11.552	3.0	51.7	40.4	38.3	5.2	-33.0	0.0	0.7	62.9	51.6	74	54	-11.1	-2.4	V																																																										
11.552	3.0	45.5	34.7	38.3	5.2	-33.0	0.0	0.7	56.8	45.9	74	54	-17.2	-8.1	H																																																										
High Channel (5836 MHz)																																																																									
11.672	3.0	52.9	40.4	38.4	5.3	-32.9	0.0	0.7	64.3	51.9	74	54	-9.7	-2.1	V																																																										
11.672	3.0	46.2	35.5	38.4	5.3	-32.9	0.0	0.7	57.7	47.0	74	54	-16.3	-7.0	H																																																										
f Measurement Frequency					Amp Preamp Gain					Avg Lim Average Field Strength Limit																																																															
Dist Distance to Antenna					D Corr Distance Correct to 3 meters					Pk Lim Peak Field Strength Limit																																																															
Read Analyzer Reading					Avg Average Field Strength @ 3 m					Avg Mar Margin vs. Average Limit																																																															
AF Antenna Factor					Peak Calculated Peak Field Strength					Pk Mar Margin vs. Peak Limit																																																															
CL Cable Loss					HPF High Pass Filter																																																																				
EUT was scanned from 1 GHz to 40 GHz, no other signals were detected above the system noise floor.																																																																									

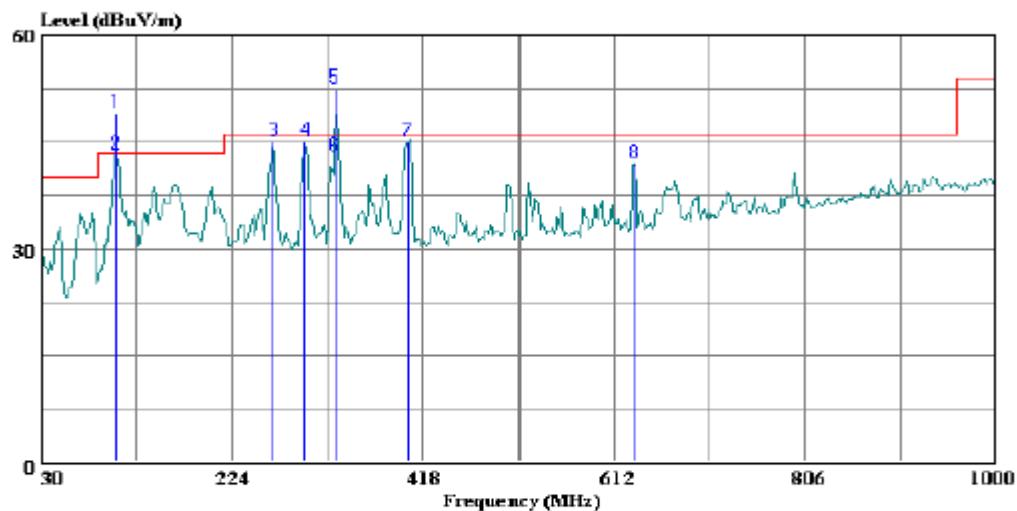
HARMONICS AND SPURIOUS EMISSIONS (802.11a MODE) with 90° Sector Antenna

04/07/06 High Frequency Measurement Compliance Certification Services, Morgan Hill Open Field Site																																																	
<p>Test Engineer: Frank Ibrahim Project #: 06U10148 Company: Trango System EUT Description: Wireless Ethernet Bridge Access Point (Point to Multipoint), with 90 degree Sector Antenna EUT M/N: M5830S-AP-EXT EUT S/N: 00021935 Test Target: FCC 15.205 Mode Of Operation: Continous Tx</p>																																																	
Test Equipment:																																																	
Horn 1-18GHz				Pre-amplifier 1-26GHz				Pre-amplifier 26-40GHz				Horn > 18GHz				Limit																																	
T60; S/N: 2238 @3m				T34 HP 8449B								T89; ARA 18-26GHz; S/N:1049				FCC 15.205																																	
<p>Hi Frequency Cables</p> <table border="1"> <tr> <td colspan="2">2 foot cable</td> <td colspan="2">3 foot cable</td> <td colspan="2">12 foot cable</td> <td colspan="2">HPF</td> <td colspan="2">Reject Filter</td> <td colspan="6"> Peak Measurements RBW=VBW=1MHz Average Measurements RBW=1MHz ; VBW=10Hz </td> </tr> <tr> <td colspan="2">Frank 177080001</td> <td colspan="2">Frank 187209001</td> <td colspan="2"></td> <td colspan="2">HPF_7.6GHz</td> <td colspan="2"></td> <td colspan="6"></td> </tr> </table>																		2 foot cable		3 foot cable		12 foot cable		HPF		Reject Filter		Peak Measurements RBW=VBW=1MHz Average Measurements RBW=1MHz ; VBW=10Hz						Frank 177080001		Frank 187209001				HPF_7.6GHz									
2 foot cable		3 foot cable		12 foot cable		HPF		Reject Filter		Peak Measurements RBW=VBW=1MHz Average Measurements RBW=1MHz ; VBW=10Hz																																							
Frank 177080001		Frank 187209001				HPF_7.6GHz																																											
f GHz	Dist (m)	Read Pk dBuV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	Fltr dB	Peak dBuV/m	Avg dBuV/m	Pk Lim dBuV/m	Avg Lim dBuV/m	Pk Mar dB	Avg Mar dB	Notes (V/H)																																		
Low Channel (5736 MHz)																																																	
11.472	3.0	57.1	45.1	38.2	5.7	-35.9	0.0	0.7	65.8	53.8	74	54	-8.2	-0.2	V																																		
11.471	3.0	56.0	44.1	38.2	5.7	-35.9	0.0	0.7	64.7	52.8	74	54	-9.3	-1.2	V																																		
11.552	3.0	56.3	43.9	38.2	5.7	-35.8	0.0	0.7	65.1	52.7	74	54	-8.9	-1.3	V																																		
11.552	3.0	55.2	43.2	38.2	5.7	-35.8	0.0	0.7	64.0	52.0	74	54	-10.0	-2.0	V																																		
Mid Channel (5776 MHz)																																																	
11.552	3.0	54.0	41.9	38.2	5.2	-32.5	0.0	0.7	65.6	53.5	74	54	-8.4	-0.5	V																																		
23.100	1.0	60.4	54.0	33.6	7.9	-32.9	-9.5	0.0	59.6	53.2	74	54	-14.4	-0.8	V																																		
11.552	3.0	44.3	31.8	38.2	5.2	-32.5	0.0	0.7	56.0	43.4	74	54	-18.0	-10.6	H																																		
High Channel (5836 MHz)																																																	
11.672	3.0	53.0	39.6	38.5	5.3	-32.5	0.0	0.7	65.0	51.6	74	54	-9.0	-2.4	V																																		
11.672	3.0	48.8	34.0	38.5	5.3	-32.5	0.0	0.7	60.7	46.0	74	54	-13.3	-8.0	H																																		
11.672	3.0	53.0	39.6	38.3	5.7	-35.7	0.0	0.7	61.9	48.5	74	54	-12.1	-5.5	H																																		
11.672	3.0	44.0	30.6	38.3	5.7	-35.7	0.0	0.7	52.9	39.5	74	54	-21.1	-14.5	H																																		
f Measurement Frequency Dist Distance to Antenna Read Analyzer Reading AF Antenna Factor CL Cable Loss Amp Preamp Gain D Corr Distance Correct to 3 meters Avg Average Field Strength @ 3 m Peak Calculated Peak Field Strength HPF High Pass Filter Avg Lim Average Field Strength Limit Pk Lim Peak Field Strength Limit Avg Mar Margin vs. Average Limit Pk Mar Margin vs. Peak Limit																																																	
EUT was scanned from 1 GHz to 40 GHz, no other emissions from EUT above noise floor were found																																																	

HARMONICS AND SPURIOUS EMISSIONS (802.11a MODE) with 120° Sector Antenna

03/25/06 High Frequency Measurement Compliance Certification Services, Morgan Hill Open Field Site																																																																																																																																																																																																																																																																																																		
<p>Test Engineer: Frank Ibrahim Project #: 06U10148 Company: Trango System EUT Description: Wireless Ethernet Bridge Access Point (Point to Multipoint), with 120 degree Sector Antenna EUT M/N: M5830S-AP-EXT EUT S/N: 21935 Test Target: FCC 15.205 Mode Of Operation: TX ON</p> <p>Test Equipment:</p> <table border="1"> <tr> <td>Horn 1-18GHz</td> <td>Pre-amplifier 1-26GHz</td> <td>Pre-amplifier 26-40GHz</td> <td colspan="3">Horn > 18GHz</td> <td>Limit</td> </tr> <tr> <td>T120; S/N: 29310 @3m</td> <td>T34 HP 8449B</td> <td></td> <td colspan="3">T89; ARA 18-26GHz; S/N:1049</td> <td>FCC 15.205</td> </tr> <tr> <td colspan="15">Hi Frequency Cables</td> </tr> <tr> <td>2 foot cable</td> <td>3 foot cable</td> <td>12 foot cable</td> <td>HPF</td> <td>Reject Filter</td> <td colspan="10"> Peak Measurements RBW=VBW=1MHz Average Measurements RBW=1MHz ; VBW=10Hz </td> </tr> <tr> <td>f GHz</td> <td>Dist (m)</td> <td>Read Pk dBuV</td> <td>Read Avg. dBuV</td> <td>AF dB/m</td> <td>CL dB</td> <td>Amp dB</td> <td>D Corr dB</td> <td>Fltr dB</td> <td>Peak dBuV/m</td> <td>Avg dBuV/m</td> <td>Pk Lim dBuV/m</td> <td>Avg Lim dBuV/m</td> <td>Pk Mar dB</td> <td>Avg Mar dB</td> <td>Notes (V/H)</td> </tr> <tr> <td colspan="15">Low Channel (5736 MHz)</td> </tr> <tr> <td>11.472</td> <td>3.0</td> <td>43.3</td> <td>32.1</td> <td>38.5</td> <td>5.2</td> <td>-32.5</td> <td>0.0</td> <td>0.7</td> <td>55.2</td> <td>44.0</td> <td>74</td> <td>54</td> <td>-18.8</td> <td>-10.0</td> <td>H</td> </tr> <tr> <td>11.472</td> <td>3.0</td> <td>42.7</td> <td>31.6</td> <td>38.5</td> <td>5.2</td> <td>-32.5</td> <td>0.0</td> <td>0.7</td> <td>54.6</td> <td>43.5</td> <td>74</td> <td>54</td> <td>-19.4</td> <td>-10.5</td> <td>V</td> </tr> <tr> <td colspan="15">Mid Channel (5776 MHz)</td> </tr> <tr> <td>11.552</td> <td>3.0</td> <td>43.6</td> <td>32.1</td> <td>38.5</td> <td>5.2</td> <td>-32.5</td> <td>0.0</td> <td>0.7</td> <td>55.5</td> <td>44.0</td> <td>74</td> <td>54</td> <td>-18.5</td> <td>-10.0</td> <td>H</td> </tr> <tr> <td>11.552</td> <td>3.0</td> <td>43.9</td> <td>31.7</td> <td>38.5</td> <td>5.2</td> <td>-32.5</td> <td>0.0</td> <td>0.7</td> <td>55.8</td> <td>43.6</td> <td>74</td> <td>54</td> <td>-18.2</td> <td>-10.4</td> <td>V</td> </tr> <tr> <td colspan="15">High Channel (5836 MHz)</td> </tr> <tr> <td>11.672</td> <td>3.0</td> <td>43.7</td> <td>31.4</td> <td>38.5</td> <td>5.3</td> <td>-32.5</td> <td>0.0</td> <td>0.7</td> <td>55.6</td> <td>43.3</td> <td>74</td> <td>54</td> <td>-18.4</td> <td>-10.7</td> <td>H</td> </tr> <tr> <td>11.672</td> <td>3.0</td> <td>51.8</td> <td>40.0</td> <td>38.5</td> <td>5.3</td> <td>-32.5</td> <td>0.0</td> <td>0.7</td> <td>63.8</td> <td>52.0</td> <td>74</td> <td>54</td> <td>-10.2</td> <td>-2.0</td> <td>V</td> </tr> <tr> <td colspan="5">f Measurement Frequency</td> <td colspan="5">Amp Preamp Gain</td> <td colspan="5">Avg Lim Average Field Strength Limit</td> </tr> <tr> <td colspan="5">Dist Distance to Antenna</td> <td colspan="5">D Corr Distance Correct to 3 meters</td> <td colspan="5">Pk Lim Peak Field Strength Limit</td> </tr> <tr> <td colspan="5">Read Analyzer Reading</td> <td colspan="5">Avg Average Field Strength @ 3 m</td> <td colspan="5">Avg Mar Margin vs. Average Limit</td> </tr> <tr> <td colspan="5">AF Antenna Factor</td> <td colspan="5">Peak Calculated Peak Field Strength</td> <td colspan="5">Pk Mar Margin vs. Peak Limit</td> </tr> <tr> <td colspan="5">CL Cable Loss</td> <td colspan="5">HPF High Pass Filter</td> <td colspan="5"></td> </tr> </table> <p>EUT was scanned from 1 GHz to 40 GHz, no other signals were detected above the system noise floor.</p>															Horn 1-18GHz	Pre-amplifier 1-26GHz	Pre-amplifier 26-40GHz	Horn > 18GHz			Limit	T120; S/N: 29310 @3m	T34 HP 8449B		T89; ARA 18-26GHz; S/N:1049			FCC 15.205	Hi Frequency Cables															2 foot cable	3 foot cable	12 foot cable	HPF	Reject Filter	Peak Measurements RBW=VBW=1MHz Average Measurements RBW=1MHz ; VBW=10Hz										f GHz	Dist (m)	Read Pk dBuV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	Fltr dB	Peak dBuV/m	Avg dBuV/m	Pk Lim dBuV/m	Avg Lim dBuV/m	Pk Mar dB	Avg Mar dB	Notes (V/H)	Low Channel (5736 MHz)															11.472	3.0	43.3	32.1	38.5	5.2	-32.5	0.0	0.7	55.2	44.0	74	54	-18.8	-10.0	H	11.472	3.0	42.7	31.6	38.5	5.2	-32.5	0.0	0.7	54.6	43.5	74	54	-19.4	-10.5	V	Mid Channel (5776 MHz)															11.552	3.0	43.6	32.1	38.5	5.2	-32.5	0.0	0.7	55.5	44.0	74	54	-18.5	-10.0	H	11.552	3.0	43.9	31.7	38.5	5.2	-32.5	0.0	0.7	55.8	43.6	74	54	-18.2	-10.4	V	High Channel (5836 MHz)															11.672	3.0	43.7	31.4	38.5	5.3	-32.5	0.0	0.7	55.6	43.3	74	54	-18.4	-10.7	H	11.672	3.0	51.8	40.0	38.5	5.3	-32.5	0.0	0.7	63.8	52.0	74	54	-10.2	-2.0	V	f Measurement Frequency					Amp Preamp Gain					Avg Lim Average Field Strength Limit					Dist Distance to Antenna					D Corr Distance Correct to 3 meters					Pk Lim Peak Field Strength Limit					Read Analyzer Reading					Avg Average Field Strength @ 3 m					Avg Mar Margin vs. Average Limit					AF Antenna Factor					Peak Calculated Peak Field Strength					Pk Mar Margin vs. Peak Limit					CL Cable Loss					HPF High Pass Filter									
Horn 1-18GHz	Pre-amplifier 1-26GHz	Pre-amplifier 26-40GHz	Horn > 18GHz			Limit																																																																																																																																																																																																																																																																																												
T120; S/N: 29310 @3m	T34 HP 8449B		T89; ARA 18-26GHz; S/N:1049			FCC 15.205																																																																																																																																																																																																																																																																																												
Hi Frequency Cables																																																																																																																																																																																																																																																																																																		
2 foot cable	3 foot cable	12 foot cable	HPF	Reject Filter	Peak Measurements RBW=VBW=1MHz Average Measurements RBW=1MHz ; VBW=10Hz																																																																																																																																																																																																																																																																																													
f GHz	Dist (m)	Read Pk dBuV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	Fltr dB	Peak dBuV/m	Avg dBuV/m	Pk Lim dBuV/m	Avg Lim dBuV/m	Pk Mar dB	Avg Mar dB	Notes (V/H)																																																																																																																																																																																																																																																																																			
Low Channel (5736 MHz)																																																																																																																																																																																																																																																																																																		
11.472	3.0	43.3	32.1	38.5	5.2	-32.5	0.0	0.7	55.2	44.0	74	54	-18.8	-10.0	H																																																																																																																																																																																																																																																																																			
11.472	3.0	42.7	31.6	38.5	5.2	-32.5	0.0	0.7	54.6	43.5	74	54	-19.4	-10.5	V																																																																																																																																																																																																																																																																																			
Mid Channel (5776 MHz)																																																																																																																																																																																																																																																																																																		
11.552	3.0	43.6	32.1	38.5	5.2	-32.5	0.0	0.7	55.5	44.0	74	54	-18.5	-10.0	H																																																																																																																																																																																																																																																																																			
11.552	3.0	43.9	31.7	38.5	5.2	-32.5	0.0	0.7	55.8	43.6	74	54	-18.2	-10.4	V																																																																																																																																																																																																																																																																																			
High Channel (5836 MHz)																																																																																																																																																																																																																																																																																																		
11.672	3.0	43.7	31.4	38.5	5.3	-32.5	0.0	0.7	55.6	43.3	74	54	-18.4	-10.7	H																																																																																																																																																																																																																																																																																			
11.672	3.0	51.8	40.0	38.5	5.3	-32.5	0.0	0.7	63.8	52.0	74	54	-10.2	-2.0	V																																																																																																																																																																																																																																																																																			
f Measurement Frequency					Amp Preamp Gain					Avg Lim Average Field Strength Limit																																																																																																																																																																																																																																																																																								
Dist Distance to Antenna					D Corr Distance Correct to 3 meters					Pk Lim Peak Field Strength Limit																																																																																																																																																																																																																																																																																								
Read Analyzer Reading					Avg Average Field Strength @ 3 m					Avg Mar Margin vs. Average Limit																																																																																																																																																																																																																																																																																								
AF Antenna Factor					Peak Calculated Peak Field Strength					Pk Mar Margin vs. Peak Limit																																																																																																																																																																																																																																																																																								
CL Cable Loss					HPF High Pass Filter																																																																																																																																																																																																																																																																																													

7.3.3. WORST-CASE RADIATED EMISSIONS BELOW 1 GHz


SPURIOUS EMISSIONS 30 TO 1000 MHz (HORIZONTAL)

HORIZONTAL PLOT

561F Monterey Road
Morgan Hill, CA 95037
Tel: (408) 463-0888
Fax: (408) 463-0885

Data#: 5 File#: rad0325.EMI Date: 03-25-2006 Time: 14:05:51

(Audit ATC)

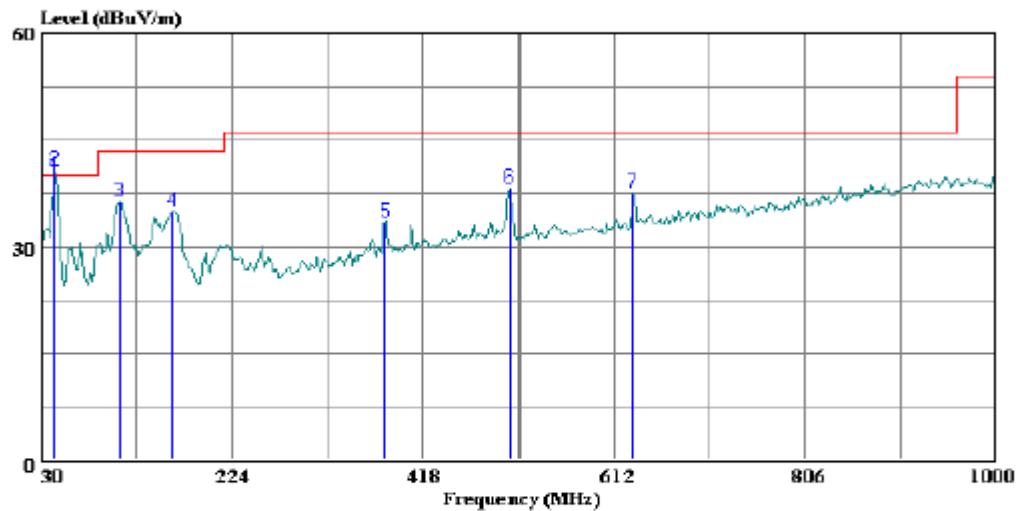
Trace: 1

Ref Trace:

Condition: FCC CLASS-B HORIZONTAL
 Test Operator : Frank Ibrahim
 Project # : 06U10148
 Company : Trango
 EUT : Wireless Ethernet Bridge Access Point
 : (Point to Multipoint)
 Model No : M5830S-AP-EXT
 Configuration : EUT, Antenna, POE, Laptop
 Mode of operation: TX ON at Mid Channel (5776 MHz)
 Target of Test : FCC 15.209

HORIZONTAL DATA

Freq	Read		Limit		Over		Remark
	Level	Factor	Level	Line	Limit	dB	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
1	162.890	25.00	13.68	38.68	43.50	-4.82	Peak
2	255.040	19.66	14.09	33.75	46.00	-12.25	Peak
3	407.330	17.82	18.21	36.03	46.00	-9.97	Peak
4	505.300	16.94	20.28	37.21	46.00	-8.79	Peak
5	633.340	17.78	22.05	39.83	46.00	-6.17	Peak
6	727.430	15.36	23.53	38.89	46.00	-7.11	Peak


SPURIOUS EMISSIONS 30 TO 1000 MHz (VERTICAL)

VERTICAL PLOT

561F Monterey Road
Morgan Hill, CA 95037
Tel: (408) 463-0888
Fax: (408) 463-0885

Data#: 11 File#: rad0325.EMI Date: 03-25-2006 Time: 14:49:54

(Audit ATC)

Trace: 8

Ref Trace:

Condition: FCC CLASS-B VERTICAL
 Test Operator : Frank Ibrahim
 Project # : 06U10148
 Company : Trango
 BUT : Wireless Ethernet Bridge Access Point
 : (Point to Multipoint)
 Model No : M5830S-AP-EXT
 Configuration : EUT, Antenna, POE, Laptop
 Mode of operation: TX ON at Mid Channel (5776 MHz)
 Target of Test : FCC 15.209

VERTICAL DATA

Freq	Read		Level	Limit	Over	Over
	Level	Factor				
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB
1	43.580	26.20	13.58	39.78	40.00	-0.22 QP
2 *	43.580	27.68	13.02	40.70	40.00	0.70 Peak
3	109.540	22.89	13.44	36.33	43.50	-7.17 Peak
4	163.860	21.17	13.66	34.83	43.50	-8.67 Peak
5	380.170	15.92	17.59	33.50	46.00	-12.50 Peak
6	507.240	17.95	20.31	38.26	46.00	-7.74 Peak
7	630.430	15.57	22.00	37.57	46.00	-8.43 Peak

7.4. POWERLINE CONDUCTED EMISSIONS

LIMIT

§15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

The lower limit applies at the boundary between the frequency ranges.

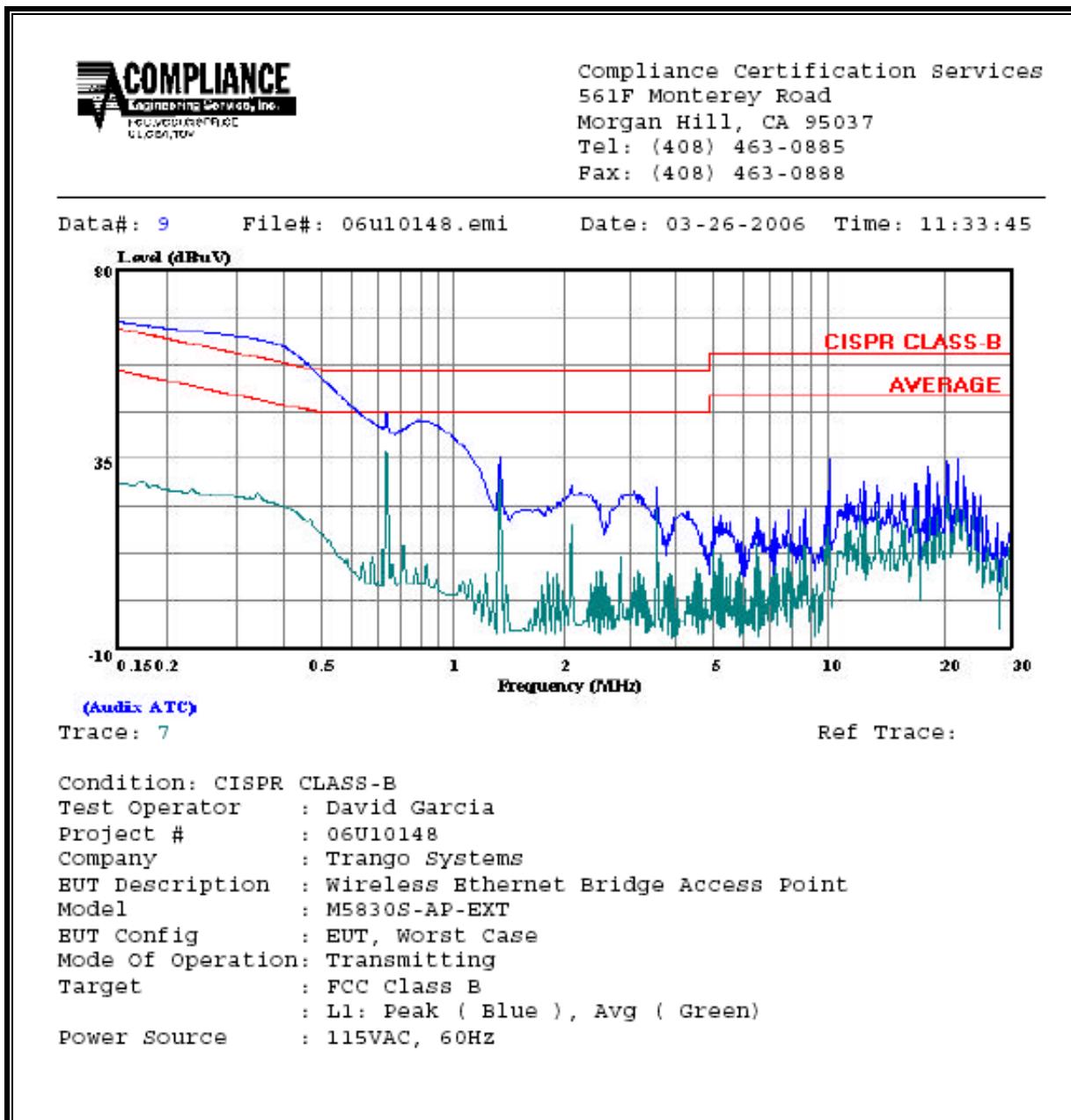
Frequency of Emission (MHz)	Conducted Limit (dBuV)	
	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

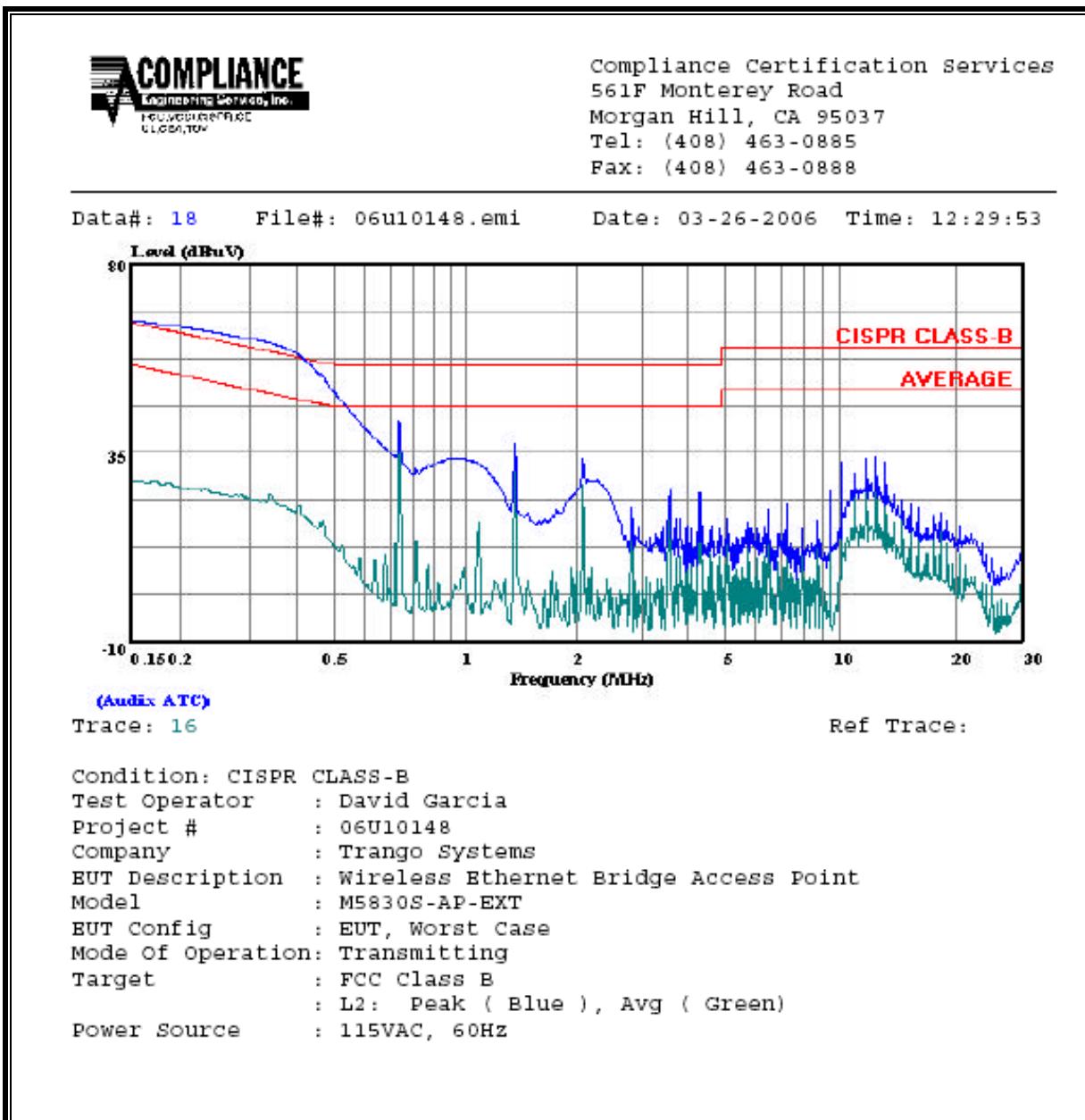
* Decreases with the logarithm of the frequency.

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

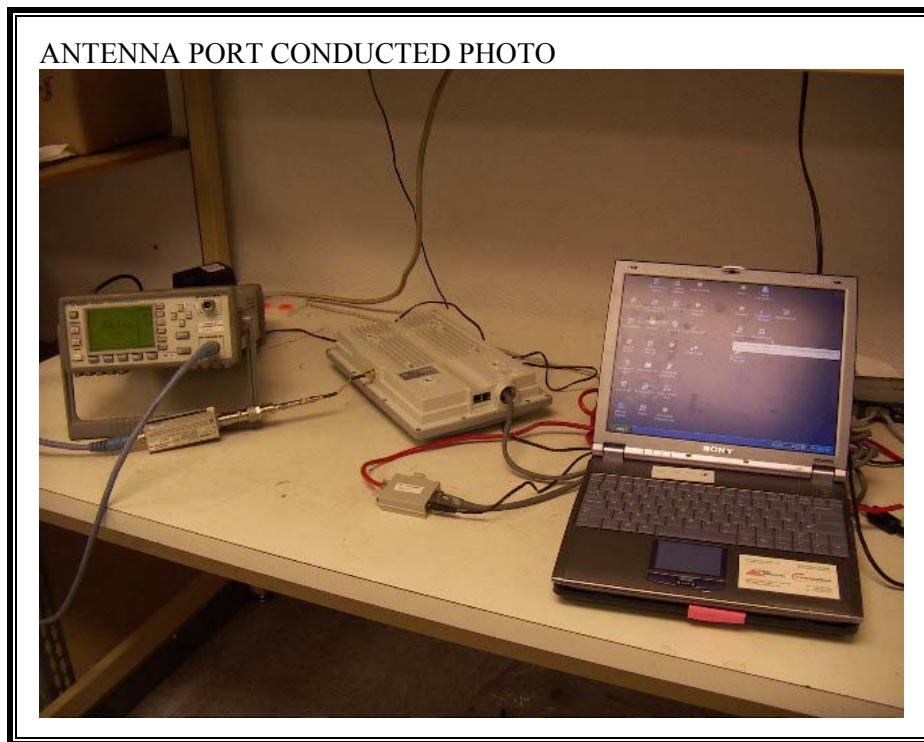
The resolution bandwidth is set to 9 kHz for both peak detection and quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.


Line conducted data is recorded for both NEUTRAL and HOT lines.


RESULTS

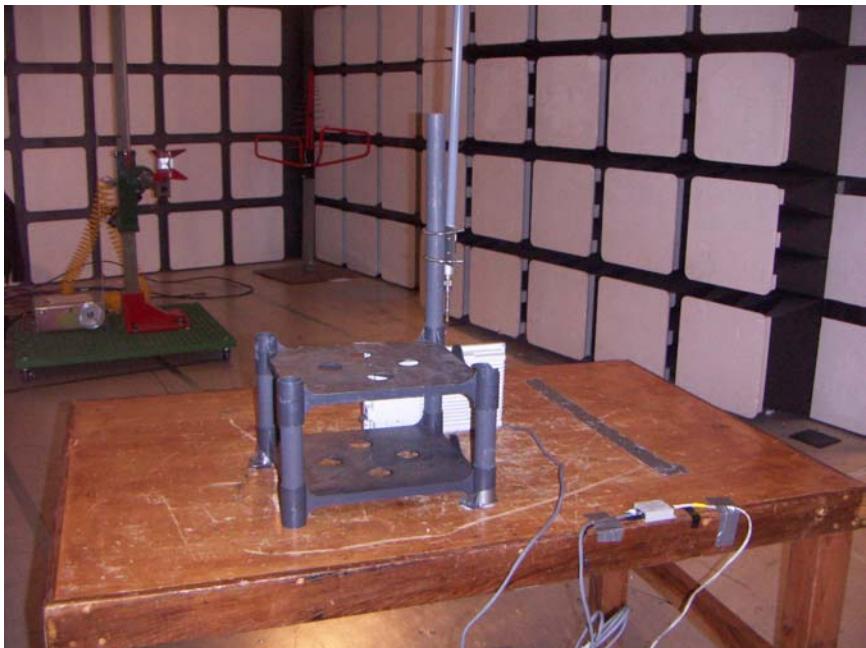
No non-compliance noted:

6 WORST EMISSIONS


CONDUCTED EMISSIONS DATA (115VAC 60Hz)									
Freq. (MHz)	Reading			Closs (dB)	Limit QP	FCC_B AV	Margin		Remark L1 / L2
	PK (dBuV)	QP (dBuV)	AV (dBuV)				QP (dB)	AV (dB)	
0.15	67.42	60.20	29.13	0.00	66.00	56.00	-5.80	-26.87	L1
0.30	64.20	57.00	26.75	0.00	60.27	50.27	-3.27	-23.52	L1
0.37	62.93	55.80	24.73	0.00	58.61	48.61	-2.81	-23.88	L1
0.15	66.60	59.90	28.23	0.00	65.89	55.89	-5.99	-27.66	L2
0.27	63.12	57.30	25.22	0.00	61.15	51.15	-3.85	-25.93	L2
0.33	61.38	55.60	25.14	0.00	59.35	49.35	-3.75	-24.21	L2
6 Worst Data									

LINE 1 RESULTS

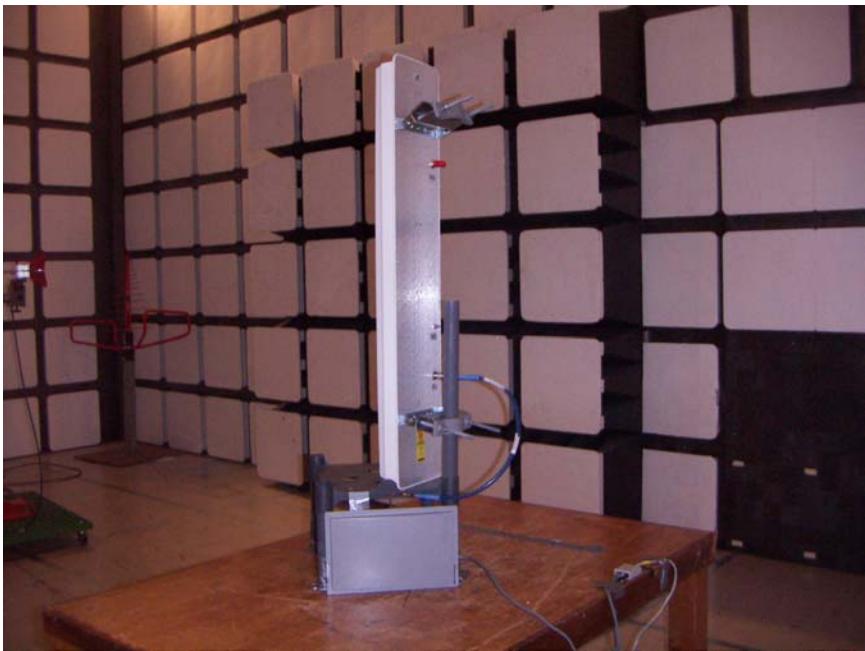
LINE 2 RESULTS


8. SETUP PHOTOS

ANTENNA PORT CONDUCTED RF MEASUREMENT SETUP

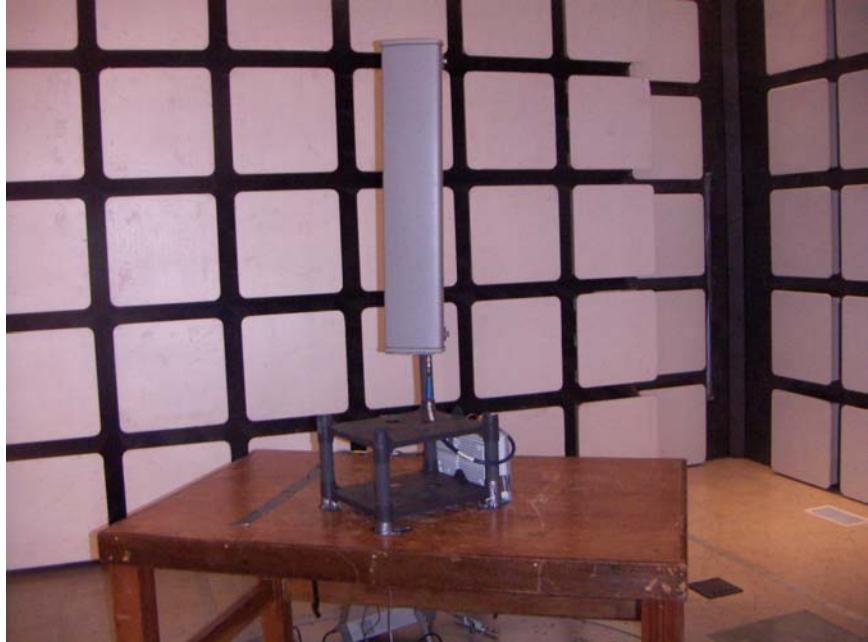
RADIATED RF MEASUREMENT SETUP with Omni Antenna

RADIATED BACK PHOTO

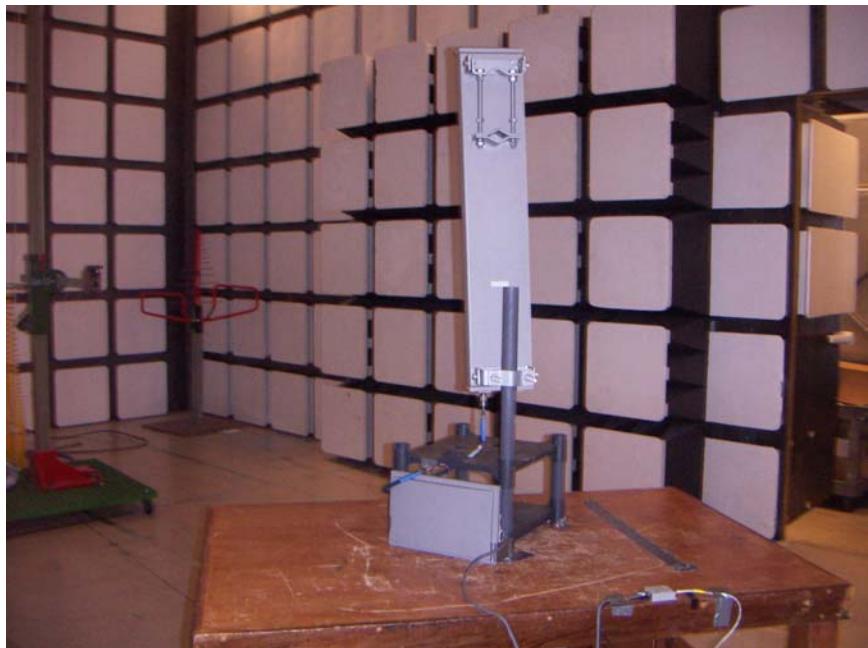


RADIATED RF MEASUREMENT SETUP with 90° Sector Antenna

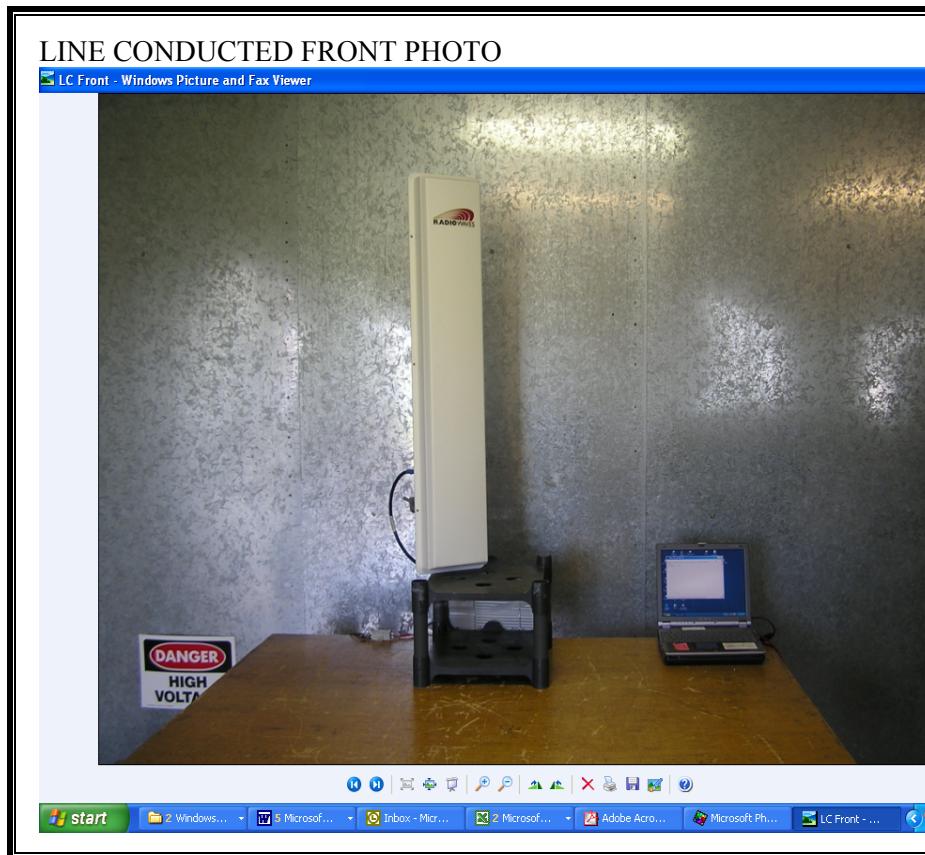
RADIATED FRONT PHOTO



RADIATED BACK PHOTO



RADIATED RF MEASUREMENT SETUP with 120° Sector Antenna


RADIATED FRONT PHOTO

RADIATED BACK PHOTO

POWERLINE CONDUCTED EMISSIONS MEASUREMENT SETUP

LINE CONDUCTED BACK PHOTO

END OF REPORT