

The Testcenter facility 'Dosimetric Test Lab' within IMST GmbH is accredited by the German National 'Deutsche Akkreditierungsstelle GmbH (DAkkS)' for testing according to the scope as listed in the accreditation certificate: D-PL-12139-01-01.

Report

Dosimetric Assessment of the Portable Device Gl0644 from Option tested in one Host Product (FCC ID: NCMOGl0644)

According to the FCC Requirements

March 08, 2012

IMST GmbH

Carl-Friedrich-Gauß-Str. 2 D-47475 Kamp-Lintfort

Customer

7layers AG Borsigstrasse 11 D-40880 Ratingen

The test results only relate to the items tested. This report shall not be reproduced except in full without the written approval of the testing laboratory.

Executive Summary

The device GI0644 is a new USB stick from Option operating in the 850 MHz, 900 MHz, 1800 MHz, 1900 MHz and 2450 MHz frequency range. The device has two integrated antennas and the system concepts used are the GPRS/EDGE 850, GPRS/EDGE 900, GPRS/EDGE 1800, GPRS/EDGE 1900, WCDMA I (FDD), WCDMA II (FDD), WCDMA V (FDD) and IEEE 802.11 b/g/n standards. The USB stick provides HSDPA and HSUPA in WCDMA. In simultaneous transmission mode a WLAN and WWAN connection could be active at the same time.

The objective of the measurements done by IMST was the dosimetric assessment of one device in body worn configuration in the WCDMA V (FDD) standard.

Following the manufacturer, the USB dongle XYfi from Option, assessed in "SAR_Report_7layers_6620_858_FCC_Body_850_1900_WCDMAII_802.11_XYfi_3" [IMST SAR], is technical identical with the Gl0644. Therefore for the Gl0644 in the GPRS 850 (Class 11), GPRS 1900 (Class 12), WCDMA II (FDD) and IEEE 802.11 b standards, SAR assessment was conducted only for the worst case configuration shown in above mentioned SAR report.

The measurements were performed in combination with one host product (Dell Latitude X300). According to Fig. 2 the device was tested in six positions in 180° configurations with a maximum distance of 5 mm between DUT and phantom. Since the device is equipped with a swivel antenna which can be used in 180° and 90° angel, additional measurements in worst case configuration for the 90° mode has been conducted. The examinations have been carried out with the dosimetric assessment system "DASY4".

The measurements were made according to the Supplement C to OET Bulletin 65 of the Federal Communications Commission (FCC) Guidelines [OET 65] for evaluating compliance of mobile and portable devices with FCC limits for human exposure (general population) to radiofrequency emissions.

Additional information and guidelines given by the following FCC documents were used:

- SAR Measurement Procedures for 3G Devices [KDB 941225]
- Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies [KDB 447498]
- SAR Measurement Procedure for 802.11 a/b/g Transmitter [KDB 248227]
- SAR Evaluation Considerations for Handsets with Multiple Transmitter and Antennas [KDB 648474]

All measurements have been performed in accordance to the recommendations given by SPEAG.

Dasy Report FCC Body Card 850 1900 WCDMA II WCDMA V 1.4.doc/20.06.2008/ABo

For the USB dongle XYfi from Option a PBA was send to the authorities. According to the FCC reply, the USB stick was tested in the following configurations:

According to Fig. 2 the device was tested in six positions in 180° configuration for WCDMA V (FD) with a maximum distance of 5 mm between DUT and phantom. In addition, body SAR was also measured in HSDPA using Subtest 1 and HSUPA using Subtest 5 at the highest body SAR configuration without HSDPA and HSUPA.

GPRS/EDGE 850 (Class 11), GPRS/EDGE 1900 (Class 12) and WCDMA II (FDD) was assessed in worst case configuration according to "SAR_Report_7layers_ 6620_858_FCC_Body_850_1900_WCDMAII_802.11_XYfi_3" [IMST SAR]. The device was tested with one host product (Dell Latitude X300).

According the output power measurements, for GPRS 850 Class 11 and GPRS 1900 Class 12 delivers the highest output power. Therefore the SAR tests are conducted in GPRS Class 11 for GPRS/EDGE 850 and Class 12 for GPRS/EDGE 1900.

Additionally, "bottom tip" (position 6) and the position that delivers the highest SAR value was assessed in 90° configuration.

prepared by:

reviewed by: (0.01. 15000)

Alexander Rahn test engineer

André van den Bosch quality assurance engineer

Table of Contents

1	SUE	BJECT OF INVESTIGATION	5
2	THE	EIEEE STANDARD C95.1 AND THE FCC EXPOSURE CRITERIA	5
	2.1	DISTINCTION BETWEEN EXPOSED POPULATION, DURATION OF EXPOSURE AND FREQUENCIES	6
	2.2	DISTINCTION BETWEEN MAXIMUM PERMISSIBLE EXPOSURE AND SAR LIMITS	6
	2.3	GENERAL SAR LIMIT	7
	2.4	KDB 447498 SAR LIMIT	7
3	THE	FCC MEASUREMENT PROCEDURE	7
	3.1	GENERAL REQUIREMENTS	7
	3.2	TEST TO BE PERFORMED FOR MODULES IN PORTABLE DEVICES (PCMCIA CARDS, USB STICKS)	8
4	THE	MEASUREMENT SYSTEM	9
	4.1	PHANTOM	10
	4.2	PROBE	11
	4.3	MEASUREMENT PROCEDURE	12
	4.4	Additional Information for 802.11 a/b/g Transmitters	13
	4.5	UNCERTAINTY ASSESSMENT	15
5	SAI	R RESULTS	16
6	CO-	·LOCATED SAR RESULTS	18
7	OU.	TPUT POWER VALUES	19
8	EVA	ALUATION	20
9	API	PENDIX	24
	9.1	ADMINISTRATIVE DATA	24
	9.2	DEVICE UNDER TEST AND TEST CONDITIONS	24
	9.3	TISSUE RECIPES	25
	9.4	MATERIAL PARAMETERS	26
	9.5	SIMPLIFIED PERFORMANCE CHECKING	27
	9.6	ENVIRONMENT	32
	9.7	TEST EQUIPMENT	32
	9.8	CERTIFICATES OF CONFORMITY	34
	9.9	PICTURES OF THE DEVICE UNDER TEST	36
	9.10	TEST POSITIONS FOR THE DEVICE UNDER TEST	38
	9.11	PICTURES TO DEMONSTRATE THE REQUIRED LIQUID DEPTH	42
10) REI	FERENCES	43

1 Subject of Investigation

The device GI0644 is a new USB stick from Option operating in the 850 MHz, 900 MHz, 1800 MHz, 1900 MHz and 2450 MHz frequency range. The device has two integrated antennas and the system concepts used are the GPRS/EDGE 850, GPRS/EDGE 900, GPRS/EDGE 1800, GPRS/EDGE 1900, WCDMA I (FDD), WCDMA II (FDD), WCDMA V (FDD) and IEEE 802.11 b/g/n standards. The USB stick provides HSDPA and HSUPA in WCDMA. In simultaneous transmission mode a WLAN and WWAN connection could be active at the same time.

Fig. 1: Pictures of the device under test in 90° and 180° configuration.

The objective of the measurements done by IMST was the dosimetric assessment of one device in body worn configuration in the GPRS 850 (Class 11), GPRS 1900 (Class 12), WCDMA II (FDD) and IEEE 802.11 b standards. The measurements were performed in combination with one host product (Dell Latitude X300). According to Fig. 2 the device was tested in six positions in 180° configurations with a maximum distance of 5 mm between DUT and phantom. Since the device is equipped with a swivel antenna which can be used in 180° and 90° angel, additional measurements in worst case configuration for the 90° mode has been conducted. The examinations have been carried out with the dosimetric assessment system "DASY4" described below.

2 The IEEE Standard C95.1 and the FCC Exposure Criteria

In the USA the FCC exposure criteria [OET 65] are based on the withdrawn IEEE Standard C95.1-1999 [IEEE C95.1-1999]. This version was replaced by the IEEE Standard C95.1-2005 [IEEE C95.1-2005] in October, 2005.

Both IEEE standards sets limits for human exposure to radio frequency electromagnetic fields in the frequency range 3 kHz to 300 GHz. One of the major differences in the newly revised C95.1-2005 is the change in the basic restrictions for localized exposure, from 1.6 W/kg averaged over 1 g tissue to 2.0 W/kg averaged over 10 g tissue, which is now identical to the ICNIRP guidelines [ICNIRP 1998].

2.1 Distinction Between Exposed Population, Duration of Exposure and Frequencies

The American Standard [IEEE C95.1-1999] distinguishes between controlled and uncontrolled environment. Controlled environments are locations where there is exposure that may be incurred by persons who are aware of the potential for exposure as a concomitant of employment or by other cognizant persons. Uncontrolled environments are locations where there is the exposure of individuals who have no knowledge or control of their exposure. The exposures may occur in living quarters or workplaces. For exposure in controlled environments higher field strengths are admissible. In addition the duration of exposure is considered.

Due to the influence of frequency on important parameters, as the penetration depth of the electromagnetic fields into the human body and the absorption capability of different tissues, the limits in general vary with frequency.

2.2 Distinction between Maximum Permissible Exposure and SAR Limits

The biological relevant parameter describing the effects of electromagnetic fields in the frequency range of interest is the specific absorption rate SAR (dimension: power/mass). It is a measure of the power absorbed per unit mass. The SAR may be spatially averaged over the total mass of an exposed body or its parts. The SAR is calculated from the r.m.s. electric field strength E inside the human body, the conductivity σ and the mass density ρ of the biological tissue:

$$SAR = \sigma \frac{E^2}{\rho} = c \frac{\partial T}{\partial t} \Big|_{t \to 0+}$$
(1)

The specific absorption rate describes the initial rate of temperature rise $\partial T/\partial t$ as a function of the specific heat capacity c of the tissue. A limitation of the specific absorption rate prevents an excessive heating of the human body by electromagnetic energy.

As it is sometimes difficult to determine the SAR directly by measurement (e.g. whole body averaged SAR), the standard specifies more readily measurable maximum permissible exposures in terms of external electric E and magnetic field strength H and power density S, derived from the SAR limits. The limits for E, H and S have been fixed so that even under worst case conditions, the limits for the specific absorption rate SAR are not exceeded.

For the relevant frequency range the maximum permissible exposure may be exceeded if the exposure can be shown by appropriate techniques to produce SAR values below the corresponding limits.

2.3 General SAR Limit

In this report the comparison between the American exposure limits and the measured data is made using the spatial peak SAR; the power level of the device under test guarantees that the whole body averaged SAR is not exceeded.

Having in mind a worst case consideration, the SAR limit is valid for uncontrolled environment and mobile respectively portable transmitters. According to Table 2 the SAR values have to be averaged over a mass of 1 g (SAR_{1g}) with the shape of a cube.

Standard	Status	SAR limit [W/kg]
IEEE C95.1-1999	Replaced	1.6

Table 1: Relevant spatial peak SAR limit averaged over a mass of 1 g.

2.4 KDB 447498 SAR Limit

Additionally IMST compares the measured SAR values to the limits mentioned in the KDB 447498. For single platform approval the limit of 1.2 mW/g is applicable.

Standard	SAR limit [W/kg]
KDB 447498	1.2

Table 2: Relevant spatial peak SAR limit averaged over a mass of 1 g.

3 The FCC Measurement Procedure

The Federal Communications Commission (FCC) has published a report and order on the 1st of August 1996 [FCC 96-326], which requires routine dosimetric assessment of mobile telecommunications devices, either by laboratory measurement techniques or by computational modeling, prior to equipment authorization or use. In 2001 the Commission's Office of Engineering and Technology has released Edition 01-01 of Supplement C to OET Bulletin 65. This revised edition, which replaces Edition 97-01, provides additional guidance and information for evaluating compliance of mobile and portable devices with FCC limits for human exposure to radiofrequency emissions [OET 65].

3.1 General Requirements

The test shall be performed in a laboratory with an environment which avoids influence on SAR measurements by ambient EM sources and any reflection from the environment itself. The ambient temperature shall be in the range of 20°C to 26°C and 30-70% humidity.

3.2 Test to be performed for Modules in Portable devices (PCMCIA Cards, USB Sticks)

A device may be approved for use in a single platform when all hosts within the same platform have the same operating configurations and exposure conditions, with only minor configuration and construction differences. Following KDB 447498, the applicable SAR limit for portable transmitters, approved in a single platform, is 1.2 W/kg, which is averaged over any one gram of tissue defined as a tissue volume in the shape of a cube. Furthermore for USB-dongle transmitters a separation distance ≤ 0.5 cm is required for USB-dongle transmitters. According to Fig. 2 devices that can be connected to a host through a cable must be tested with the device positioned in four orientations against the flat phantom.

Fig. 2: Device with all applicable orientations.

For measurements in WCDMA without HSDPA or HSUPA, the default test configuration is to establish a radio link between the DUT and a communication test set using a 12.2 kbps RMC configured Test Loop Mode 1 and TPC bits configured to all "1". The SAR will be tested for all bands using a Rel99 call configured to transmit at maximum output power per 3GPP 34.121 [3GPP 34.121]. The Rel99 parameters are summarized in Table 14.

In addition, body SAR for HSDPA is measured using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, using the highest body SAR configuration in 12.2 kbps RMC without HSDPA. Maximum output power is verified according to 3GPP 34.121 and SAR must be measured according to these maximum output conditions.

Furthermore, body SAR for HSUPA is measured with E-DCH with H-Set 1 in Sub-test 5 and QPSK for FRC and a 12.2 kbps RMC configuration in Test Loop Mode 1 using the highest body SAR configuration in 12.2 kbps RMC without HSUPA. Maximum output power is verified according to 3GPP 34.121 and SAR must be measured according to these maximum output conditions as described in KDB 941225 [KDB 941225].

4 The Measurement System

DASY is an abbreviation of "<u>D</u>osimetric <u>A</u>ssessment <u>Sy</u>stem" and describes a system that is able to determine the SAR distribution inside a phantom of a human being according to different standards. The DASY4 system consists of the following items as shown in Fig: 3. Additional Fig: 4 shows the equipment, similar to the installations in other laboratories.

- High precision robot with controller
- Measurement server (for surveillance of the robot operation and signal filtering)
- Data acquisition electronics DAE (for signal amplification and filtering)
- Field probes calibrated for use in liquids
- Electro-optical converter EOC (conversion from the optical into a digital signal)
- Light beam (improving of the absolute probe positioning accuracy)
- Two SAM phantoms filled with tissue simulating liquid
- DASY4 software
- SEMCAD

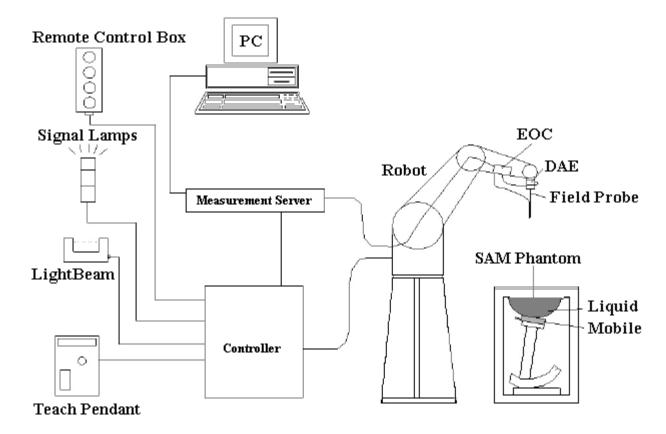


Fig. 3: The DASY4 measurement system.



Fig. 4: The measurement set-up with two SAM phantoms containing tissue simulating liquid.

The device operating at the maximum power level is placed by a non metallic device holder (delivered from Schmid & Partner) in the above described positions at a shell phantom of a human being. The distribution of the electric field strength E is measured in the tissue simulating liquid within the shell phantom. For this miniaturised field probes with high sensitivity and low field disturbance are used. Afterwards the corresponding SAR values are calculated with the known electrical conductivity σ and the mass density ρ of the tissue in the SEMCAD FDTD software. The software is able to determine the averaged SAR values (averaging region 1 g or 10 g) for compliance testing.

The measurements are done by two scans: first a coarse scan determines the region of the maximum SAR, afterwards the averaged SAR is measured in a second scan within the shape of a cube. The measurement time takes about 20 minutes.

4.1 Phantom

For the measurements the Specific Anthropomorphic Mannequin (SAM Twin Phantom V4.0) defined by the IEEE SCC-34/SC2 group and delivered by Schmid & Partner Engineering AG is used. The phantom is a fibreglass shell integrated in a wooden table. The thickness of the phantom amounts to $2 \text{ mm} \pm 0.2 \text{ mm}$. It enables the dosimetric evaluation of left and right hand phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a coverage (polyethylene), which prevents the evaporation of the liquid. The details and the Certificate of conformity can be found in Fig. 15.

4.2 Probe

For the measurements the Dosimetric E-Field Probes ET3DV6R or EX3DV4 with following specifications are used. They are manufactured and calibrated in accordance with FCC [OET 65] and IEEE [IEEE 1528-2003] recommendations annually by Schmid & Partner Engineering AG.

ET3DV6:

- Dynamic range: 5μW/g to > 100mW/g
- Tip diameter: 6.8 mm
- Probe linearity: ± 0.2 dB (30 MHz to 3 GHz)
- Axial isotropy: ± 0.2 dB
- Spherical isotropy: ± 0.4 dB
- Distance from probe tip to dipole centers: 2.7 mm
- Calibration range: 900MHz / 1850MHz for head and body simulating liquid
- Angle between probe axis (evaluation axis) and surface normal line: less than 30°

EX3DV4:

- Dynamic range: $10\mu W/g$ to > 100mW/g (noise typically < $1\mu W/g$)
- Tip diameter: 2.5 mm
- Probe linearity: ± 0.2 dB (30 MHz to 6 GHz)
- Axial isotropy: ± 0.2 dB
- Spherical isotropy: ± 0.4 dB
- Distance from probe tip to dipole centers: 1.0 mm
- Calibration range: 1950 MHz / 2450MHz / 3500 MHz / 5200 MHz / 5500 MHz / 5800 MHz for head and body simulating liquid
- Angle between probe axis (evaluation axis) and surface normal line: less than 30°

4.3 Measurement Procedure

The following steps are used for each test position:

- Establish a call with the maximum output power with a base station simulator. The
 connection between the mobile phone and the base station simulator is established
 via air interface.
- Measurement of the local E-field value at a fixed location (P1). This value serves as a reference value for calculating a possible power drift.
- Measurement of the SAR distribution with a grid spacing of 15 mm x 15 mm and a constant distance to the inner surface of the phantom. Since the sensors can not directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With this values the area of the maximum SAR is calculated by a interpolation scheme (combination of a least-square fitted function and a weighted average method). Additional all peaks within 2 dB of the maximum SAR are searched.
- Around this points, a cube of 30 mm x 30 mm x 30 mm is assessed by measuring 7 x 7 x 7 points whereby the first two measurement points are within the required 10 mm of the surface. With these data, the peak spatial-average SAR value can be calculated within the SEMCAD software.
- The used extrapolation and interpolation routines are all based on the modified Quadratic Shepard's method [DASY4].
- Repetition of the E-field measurement at the fixed location (P1) and repetition of the whole procedure if the two results differ by more than \pm 0.21dB.

4.4 Additional Information for 802.11 a/b/g Transmitters

In May 2007 the FCC published the revised issue of the SAR Measurement Procedures for 802 a/b/g transmitters to support the SAR measurements for demonstrating compliance with the FCC RF exposure guidelines. Additional information were required to establish specific device operating configurations to use during the measurements since the specific signal modulations, data rates, network conditions and other parameters were not considered within the current SAR measurement procedures (FCC, IEEE-1528).

Following the most important differences compared to the common SAR measurements of e.g. mobile phones working in the GSM or PCS standards were listed:

- Using of chipset based test mode software to ensure consistent and reliable results
- If the device supports switched diversity, the SAR should be measured with only one antenna transmitting (with fixed modulation and data rate) at a time
- The SAR is measured for the "default test channels" listed below as given by the FCC
- SAR measurements for 802.11 g channels when the maximum avg output power is less than ≥ 0.25 dB higher than the values for the corresponding 802.11b channels
- The avg. output power for 802.11a should be measured on all channels in each frequency band
- If the channel with the maximum avg. output power is not included in the default test channels, this channel should be tested instead of an adjacent default test channel
- For multiple channel bandwidth configurations, the configuration with the highest output power limit should be tested.
- Each channel should be tested at the lowest data rate in each a/b/g mode
- When the extrapolated maximum peak SAR for the maximum output channel is ≤ 1.6 W/kg and the 1g avg SAR is ≤ 0.8 W/kg, testing of other channels in the default test channel configuration is optional.
- If the device supports MIMO capability and the antennas are in close proximity to each other (within 3 cm 5 cm), it is necessary to summarize the SAR_{1g} values of the antennas.
- If the peak SAR locations from different antennas are more than 5 cm apart, spatial summing is optional.
- Each channel should be tested at the lowest data rate in each a-b/g mode.

					Defa	ult Test Cha	annels	
	Mode 802.11	Frequency [MHz]	Channel	Turbo Channel	§ 15	.247		
802.11		[IMITIZ]		Gilainiei		g	UNII	
		2412	1°		X	٨		
b / g		2437	6	6	X	٨		
		2462	11°		X	٨		
		5180					Х	
		5200	40	42				*
		5220	44	(5.21 GHz)				
		5240	48	50			X	
		5260	52	(5.29 GHz)			X	
		5280	56	58				*
		5300	60	(5.29 GHz)				*
		5320	64				X	
		5500	100					*
	UNII	5520	104				Х	
		5540	108					*
		5560	112					*
а		5580	116				Х	
		5600	120	Unknown				*
		5620	124				Х	
		5640	128					*
		5660	132					*
		5680	136				х	
		5700	140					*
		5745	149		X		X	
	UNII or	5765	153	152 (5.76 GHz)		*		*
	§15.247	5785	157		Х			*
		5805	161	160 (5.80 GHz)		*	Х	
	§15.247	5825	165		X			

Table 3: Default Test channels given by the FCC.

X: default test channels

- *: possible 802.11a channels with maximum avg output > the default test channels
- ^: possible 802.11g channels with maximum avg output ¼ dB ≥ the default test channels
- o: when output power is reduced for channel 1 and / or 11 to meet restricted band requirements the highest output channels closet to each of these channels should be tested

4.5 Uncertainty Assessment

Table 4 includes the worst case uncertainty budget suggested by the [IEEE 1528-2003] and determined by Schmid & Partner Engineering AG. The expanded uncertainty (K=2) is assessed to be \pm 21.7% and is valid up to 3.0 GHz.

Error Sources	Uncertainty Value	Probability Distribution	Divisor	C _i	Standard Uncertainty	v _i ² or v _{eff}
Measurement System						
Probe calibration	± 5.9 %	Normal	1	1	± 5.9 %	8
Axial isotropy	± 4.7 %	Rectangular	√3	0.7	± 1.9 %	8
Hemispherical isotropy	± 9.6 %	Rectangular	√3	0.7	± 3.9 %	8
Boundary effects	± 1.0 %	Rectangular	√3	1	± 0.6 %	8
Linearity	± 4.7 %	Rectangular	√3	1	± 2.7 %	8
System detection limit	± 1.0 %	Rectangular	√3	1	± 0.6 %	8
Readout electronics	± 1.0 %	Normal	1	1	± 1.0 %	8
Response time	± 0.8 %	Rectangular	√3	1	± 0.5 %	~
Integration time	± 2.6%	Rectangular	√3	1	± 1.5 %	8
RF ambient conditions	± 3.0 %	Rectangular	√3	1	± 1.7 %	8
Probe positioner	± 0.4 %	Rectangular	√3	1	± 0.2 %	8
Probe positioning	± 2.9 %	Rectangular	√3	1	± 1.7 %	8
Algorithm for max SAR eval.	± 1.0 %	Rectangular	√3	1	± 0.6 %	8
Test Sample Related						
Device positioning	± 2.9 %	Normal	1	1	± 2.9 %	145
Device holder	± 3.6 %	Normal	1	1	± 3.6 %	5
Power drift	± 5.0 %	Rectangular	√3	1	± 2.9 %	∞
Phantom and Set-up						
Phantom uncertainty	± 4.0 %	Rectangular	√3	1	± 2.3 %	∞
Liquid conductivity (target)	± 5.0 %	Rectangular	√3	0.64	± 1.8 %	∞
Liquid conductivity (meas.)	± 2.5 %	Normal	1	0.64	± 1.6 %	8
Liquid permittivity (target)	± 5.0 %	Rectangular	√3	0.6	± 1.7 %	8
Liquid permittivity (meas.)	± 2.5 %	Normal	1	0.6	± 1.5 %	8
Combined Uncertainty					± 10.8 %	

Table 4: Uncertainty budget of DASY4.

5 SAR Results

The Tables below contain the measured SAR values averaged over a mass of 1 g.

Test Position		SA	Tempe	Temperature		
(Liquid dep		Channel 4132 826.4 MHz	Channel 4183 836.6 MHz	Channel 4233 846.6 MHz	Ambient [° C]	Liquid [° C]
	Pos. 1		0.487 (-0.055)		22.4	22.1
	Pos. 2		0.528 (-0.126)		22.4	22.1
DMC	Pos. 3		0.275 (-0.150)		22.4	22.1
RMC	Pos. 4		0.459 (0.128)		22.4	22.1
	Pos. 5		0.073 (-0.116)		22.4	22.1
	Pos. 6		0.039 (-0.116)		22.4	22.1
HSDPA (subtest 1)	Pos. 1		0.470 (0.005)		22.4	22.1
HSUPA (subtest 5)	Pos. 1		0.474 (-0.111)		22.4	22.1

Table 5: Measurement results for WCDMA V (FDD) in RMC, HSDPA and HSUPA for the Option GI0644.

		SA	R _{1g} [W/kg] (Drift[d	B])	Tempe	rature
Test Po	osition oth 16.7 cm)	Channel 4132 826.4 MHz	Channel 4183 836.6 MHz	Channel 4233 846.6 MHz	Ambient [° C]	Liquid [° C]
RMC	Pos. 2		0.468 (-0.175)		22.4	22.1

Table 6: Measurement results for WCDMA V (FDD) in 90° configuration for the Option GI0644.

The Tables below contain the measured SAR values averaged over a mass of 1 g for the worst case configuration as determined in SAR report "SAR_Report_7layers_6620_858_FCC_Body_850_1900_WCDMAII_802.11_XYfi_3".

		SA	.R _{1g} [W/kg] (Drift[d	B])	Tempe	rature
Test Position (Liquid depth 16.7 cm)		Channel 128 824.2 MHz	Channel 190 836.4 MHz	Channel 251 848.8 MHz	Ambient [° C]	Liquid [° C]
GPRS	Pos. 2		0.785 (0.072)		22.4	22.0

Table 7: Measurement results for GPRS 850 (Class 11) for the Option GI0644.

		SA	R _{1g} [W/kg] (Drift[d	B])	Tempe	rature
Liquid dep	osition oth 18.5 cm)	Channel 512 1850.2 MHz	Channel 661 1880.0 MHz	Channel 810 1909.6 MHz	Ambient [° C]	Liquid [° C]
GPRS	Pos. 1	1.160 (-0.033)			22.1	21.9

Table 8: Measurement results for GPRS 1900 (Class 12) for the Option GI0644.

		SA	Temperature			
Test Position (Liquid depth 18.5 cm)		Channel 9262 1852.4 MHz	Channel 9400 1880.0 MHz	Channel 9538 1907.6 MHz	Ambient [° C]	Liquid [° C]
RMC	Pos. 1		1.380 (-0.144)		22.1	21.9

Table 9: Measurement results for WCDMA II (FDD) in RMC, HSDPA and HSUPA for the Option GI0644.

Test Position (Liquid depth 18.5 cm)		SA	R _{1g} [W/kg] (Drift[d	B])	Tempe	rature
		Channel 9262 1852.4 MHz	Channel 9400 1880.0 MHz	Channel 9538 1907.6 MHz	Ambient [° C]	Liquid [° C]
RMC	Pos. 1		1.200 (0.063)		22.1	21.9

Table 10: Measurement results for WCDMA II (FDD) in 90° configuration for the Option GI0644.

Test Position (Liquid depth 16.8 cm)		SA	Temperature			
		Channel 1 2412 MHz	Channel 6 2437 MHz	Channel 11 2462 MHz	Ambient [° C]	Liquid [° C]
IEEE 802.11 b (1 Mbps)	Pos. 2		0.189 (-0.078)		21.8	21.7

Table 11: Measurement results for IEEE 802.11 b for the Option GI0644.

Compared to GPRS, output power measurements in EDGE result lower power values. Nevertheless, for the cases where SAR values in GPRS mode are > 0.8 mW/g, SAR assessment was conducted only for the worst case configuration.

Since the output power in 802.11 b mode is higher than in g-mode or n-mode, SAR assessment was conducted in b mode only.

To control the output power stability during the SAR test the used DASY4 system calculates the power drift by measuring the e-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in the above tables labeled as: (Drift[dB]). This ensures that the power drift during one measurement is within 5%. Please note that we add the measured "power drift" values from the DASY4 system.

Moving device away from the phantom in 5 mm increments shows continual decrease of the local SAR level:

Test Position (Liquid depth 18.5 cm)	SAR _{1q} [W/kg] Multimeter	SAR _{1q} [W/kg] (Drift[dB])
Worst Case WCDMA II Position 1 Channel 9400 (Initial Position)	1.480	1.380 (-0.114)
Initial Device Position + 5 mm	0.690	N.A.
Initial Device Position + 10 mm	0.210	N.A.

Table 12: Measurement results for worst case configuration, moving the device away from the initial test position. An enhanced energy coupling is not detected.

6 Co-Located SAR Results

Table 13 shows the co-transmission modes for the worst case body worn configuration. For multi mode SAR the worst case SAR values of each mode are accumulated and compared to the corresponding limit.

		Highest	SAR _{1g} [W/kg]	
Test Position	Worst Case WWAN	Coresponding WiFi Value	Combined SAR	SAR Limit
Position 2	0.785	0.189	0.974	1.6

Table 13: Measurement results for co-transmission mode for WWAN – WiFi worst case configuration for the Option GI0644.

Conclusion:

Since the sum of measured SAR in co-transmission mode is below 1.6 mW/g, according KDB 648474 volume scan SAR is not necessary.

7 Output Power Values

For measurements in WCDMA without HSDPA or HSUPA, the default test configuration is to establish a radio link between the DUT and a communication test set using a 12.2 kbps RMC configured Test Loop Mode 1 and TPC bits configured to all "1". The SAR will be tested for all bands using a Rel99 call configured to transmit at maximum output power per 3GPP 34.121 [3GPP 34.121]. The Rel99 parameters are summarized in Table 14.

In addition, body SAR for HSDPA is measured using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, using the highest body SAR configuration in 12.2 kbps RMC without HSDPA. Maximum output power is verified according to 3GPP 34.121 and SAR must be measured according to these maximum output conditions.

Furthermore, body SAR for HSUPA is measured with E-DCH with H-Set 1 in Sub-test 5 and QPSK for FRC and a 12.2 kbps RMC configuration in Test Loop Mode 1 using the highest body SAR configuration in 12.2 kbps RMC without HSUPA. Maximum output power is verified according to 3GPP 34.121 and SAR must be measured according to these maximum output conditions as described in KDB 941225 [KDB 941225].

	Output Power [dBm]											
pu	ency łz]	nnel	WCDMA		нѕі	DPA .				HSUPA		
Band	Frequency [MHz]	Channel	RMC	Sub 1	Sub 2	Sub 3	Sub 4	Sub 1	Sub 2	Sub 3	Sub 4	Sub 5
>	826.4	4132	22.7	22.3	22.5	21.6	22.2	20.5	20.7	21.2	20.3	22.3
WCDMA V	836.6	4183	21.9	21.6	21.6	21.4	21.4	21.3	19.7	20.5	20.0	21.3
MC	846.6	4233	22.3	22.3	22.4	21.9	22.0	21.2	20.6	20.7	20.8	21.2
	βс			2/15	12/15	15/15	15/15	11/15	6/15	15/15	2/15	15/15
	βd			15/15	15/15	8/15	4/15	15/15	15/15	9/15	15/15	15/15
ΔACŁ	K, ΔNACK	, ΔCQI		8	8	8	8	8	8	8	8	8
	AGV							20	12	15	17	21

Table 14: According TS 34.121 table C10.1.4 measured max output power values for the used Option GI0644.

As stated by the manufacturer, the UE is fully compliant with 3GPP standards defining required UMTS spreading factors.

The UE is fully compliant with 3GPP standards defining required UMTS spreading factors.

- The DPCCH spreading factor is 256 per 3GPP TS 25.213 section 4.3.1.2.1.
- The DPDCH spreading factor is dependent on number of DPDCH channels and data rage. For a single channel the spreading factor can range from 4 to 256. For

- more then one DPDCH channel the spreading factor is 4. Further details are defined by 3GPP in TS 25.213 section 4.3.1.2.1.
- HS-DPCCH spreading factor is 256. Further details can be found in 3GPP TS 25.213 section 4.3.1.2.2.
- IMST confirms that the device operating parameters such as the different β and Δ values were configured properly and the power measurement procedures used have included the power setback considerations specified in 3GPP TS 34.121, and that the HSPA channels have remained active with the required E-TFCI and AG index values maintained during the durations of the measurements.
- IMST confirms that that the required HSPA test parameters, including stable TFCI and output power conditions, have been used for the HSPA SAR measurements.

8 Evaluation

In Figure 5 - 10 the flat phantom SAR results for GPRS 850, GPRS 1900, WCDMA II (FDD), WCDMA V (FDD) and IEEE 802.11 b given in Table 5 - 10 are summarized and compared to the limit.

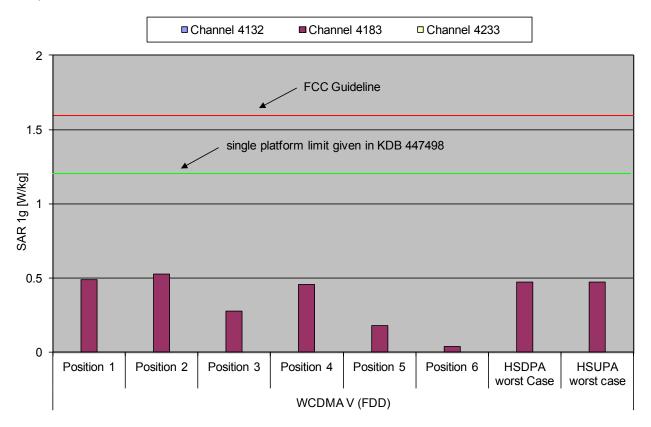


Fig. 5: The measured SAR values for the Option GI0644 for WCDMA V (FDD) in comparison to the FCC exposure limit.

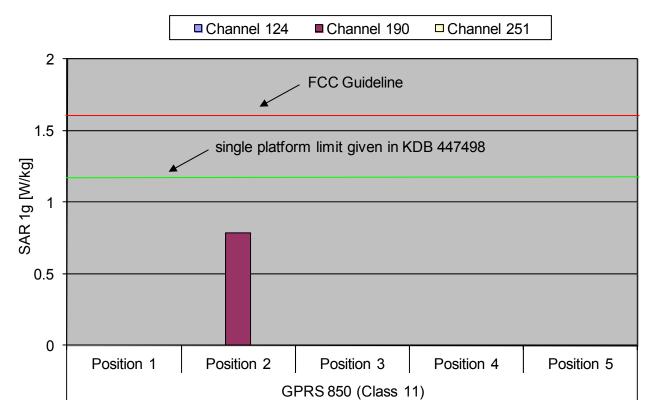


Fig. 6: The measured SAR values for the Option GI0644 for GPRS 850 (Class 11) in comparison to the FCC exposure limit.



Fig. 7: The measured SAR values for the Option GI0644 for GPRS 1900 (Class 12) in comparison to the FCC exposure limit.

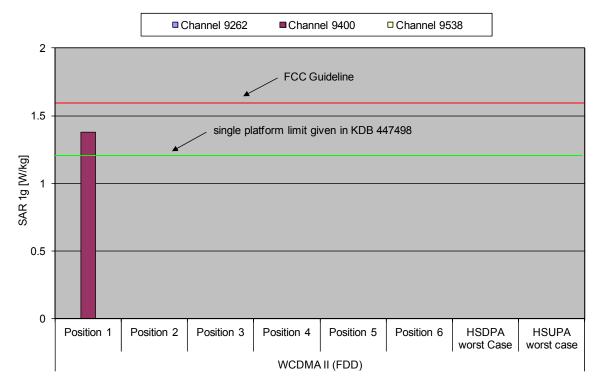


Fig. 8: The measured SAR values for the Option GI0644 for WCDMA II (FDD) in comparison to the FCC exposure limit.

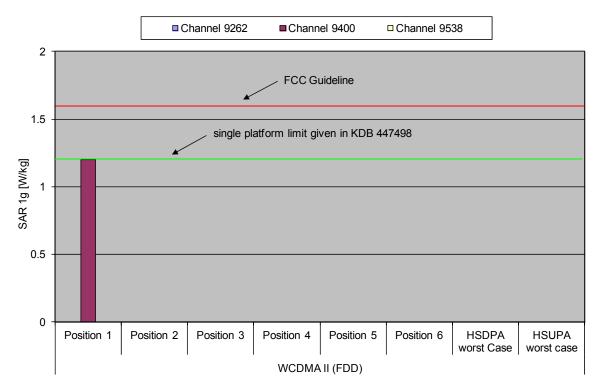


Fig. 9: The measured SAR values for the Option GI0644 for WCDMA II (FDD) in 90° configuration in comparison to the FCC exposure limit.

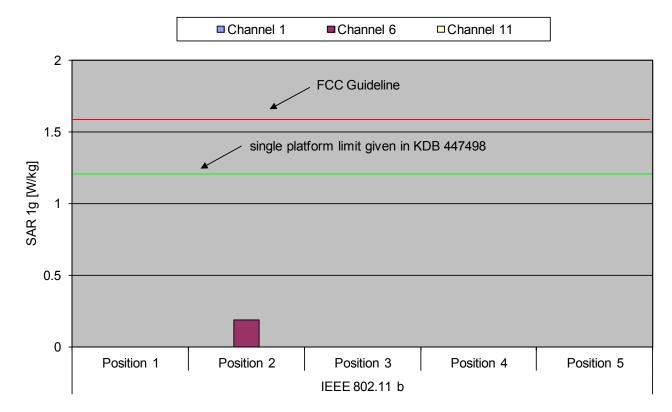


Fig. 10: The measured SAR values for the Option GI0644 for IEEE 802.11 b in comparison to the FCC exposure limit.

9 Appendix

9.1 Administrative Data

Date of validation: 835 MHz (GPRS 850): March 01, 2012

835 MHz (WCDMA V): March 01, 2012 1900 MHz (GPRS 1900): March 02, 2012 1900 MHz (WCDMA II): March 02, 2012 2450 MHz (WLAN): March 08, 2012

Date of measurement: March 01, 2012 – March 08, 2012

Data stored: 7layers_60320_6120061

Contact: IMST GmbH

Carl-Friedrich-Gauß-Str. 2

D-47475 Kamp-Lintfort. Germany

Tel.: +49- 2842-981 378. Fax: +49- 2842-981 399

email: vandenbosch@imst.de

9.2 Device under Test and Test Conditions

MTE: Option GI0644 (USB stick), identical prototype

Date of receipt: February 29, 2012 IMEI: 004401441450679 FCC ID: NCMOGI0644 Portable device

Power Class: GPRS 850: 5, tested with power level 5

GPRS 1900: 2, tested with power level 0

WCDMA II and V (FDD) 1900: 4

tested with max.allow. UE Power of 24dBm

RF exposure environment: General Population/ Uncontrolled

Power supply: Host Device

Antenna: Antenna Type: integrated swivel

Measured Standards: GPRS 850 (Class 12) with 4TX uplink; GPRS 1900

(Class 12) with 4 TX uplink, WCDMA II and V,

IEEE802.11b

Method to establish a call: GPRS 850, GPRS 1900, WCDMA II, V: Basestation

simulator, using the air interface

Modulation: GPRS: GMSK; WCDMA (FDD): QPSK;

IEEE802.11: DSSS

Used Phantom: SAM Twin Phantom V4.0. as defined by the IEEE SCC-

34/SC2 group and delivered by Schmid & Partner

Engineering AG

Option GI0644	TX Range [MHz]	RX Range [MHz]	Used Channels	Used Crest Factor
GPRS/EDGE 850	824.2 – 848.8	869.2 – 893.8	190	2.67
GPRS/EDGE 1900	1850.2 –1909.8	1930.2 – 1989.8	512	2
WCDMA V (FDD)	826.4 – 846.6	871.4 – 891.6	4183	1
WCDMA II (FDD)	1852.4 – 1907.6	1932.4 – 1987.6	9400	1
IEEE802.11 b	2412.0 – 2462.0	2412.0 – 2462.0	6	1

Table 15: Used channels and crest factors during the test.

9.3 Tissue Recipes

The following recipes are provided in percentage by weight.

835 MHz. Body:	52.40 % 01.50 % 45.00 % 00.10 % 01.00 %	De-Ionized Water Salt Sugar Preventol D7 Hydroxyetyl-Cellulose
1900 MHz. Body:	29.68% 70.00% 0.32%	Diethylenglykol-monobutylether De-lonized Water Salt
2450 MHz. Body:	31.40% 68.60%	Diethylenglykol-monobutylether De-lonizedWater

9.4 Material Parameters

For the measurement of the following parameters the HP 85070B dielectric probe kit is used. representing the open-ended coaxial probe measurement procedure. The measured values should be within \pm 5% of the recommended values given by the FCC.

Frequency		٤ _r	σ [S/m]
835 MHz Body	Recommended Value	55.20 ± 2.70	0.97 ± 0.10
(GPRS 850)	Measured Value (Ch. 190)	53.40	0.99
835 MHz Body	Recommended Value	55.20 ± 2.70	0.97 ± 0.10
(WCDMA V)	Measured Value (Ch. 4183)	53.40	0.99
1900 MHz Body.	Recommended Value	53.30 ± 2.65	1.52 ± 0.15
(GPRS 1900)	Measured Value (Ch. 512)	54.10	1.48
1900 MHz Body.	Recommended Value	53.30 ± 2.65	1.52 ± 0.15
(WCDMA II)	Measured Value (Ch. 9400)	54.00	1.52
2450 MHz Body.	Recommended Value	52.70 ± 2.63	1.95 ± 0.09
(IEEE 802.11 b)	Measured Value (Ch. 6)	53.80	1.94

Table 16: Parameters of the tissue simulating liquid.

9.5 Simplified Performance Checking

The simplified performance check was realized using the dipole validation kits. The input power of the dipole antennas were 250 mW and they were placed under the flat part of the SAM phantoms. The target and measured results are listed in the Table 17 - 18 and shown in Fig. 11 - 13. The target values were adopted from the calibration certificates.

Available Dipoles		SAR _{1g} [W/kg]	ε _r	σ [S/m]
D835V2. SN #437		2.49	55.70	1.00
D1900V2. SN #5d051	Target Values Body	9.66	52.10	1.54
D2450V2. SN #709	values Body	13.70	51.20	2.00

Table 17: Dipole target results.

Used Dipoles		SAR _{1g} [W/kg]	ε _r	σ [S/m]
835 MHz. SN: 437 (GPRS 850)		2.52	53.40	0.99
1900 MHz. SN:5d051 (GPRS 1900 ; WCDMA II)	Measured Values Body	9.58	54.00	1.55
2450 MHz. SN:709 (IEEE 802.11 b)		13.40	53.80	1.96

Table 18: Measured dipole validation results.

Test Laboratory: IMST GmbH, DASY Blue (I); File Name: 010312_b_1579.da4

DUT: Dipole 835 MHz SN437; Type: D835V2; Serial: D835V2 - SN:437

Program Name: System Performance Check at 835 MHz

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: f = 835 MHz; $\sigma = 0.99 \text{ mho/m}$; $\varepsilon_r = 53.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6R SN1579; ConvF(6.24, 6.24, 6.24); Calibrated: 25.01.2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn335; Calibrated: 20.02.2012
- Phantom: SAM Sugar 1059; Type: Speag; Serial: 1059
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=250mW/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 2.74 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.9 V/m; Power Drift = -0.032 dB

Peak SAR (extrapolated) = 3.63 W/kg

SAR(1 g) = 2.52 mW/g; SAR(10 g) = 1.65 mW/g Maximum value of SAR (measured) = 2.75 mW/g

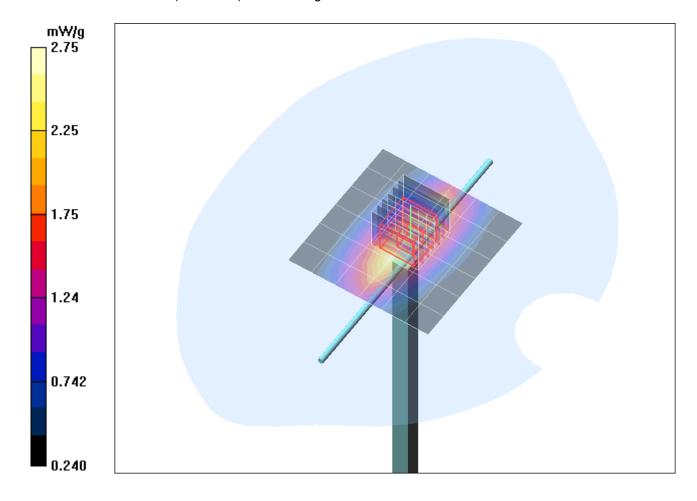


Fig. 11: Validation measurement 835 MHz Body (GPRS 850 and WCDMA V, March 01, 2012), coarse grid. Ambient Temperature: 22.4°C. Liquid Temperature: 22.0°C.

Test Laboratory: Imst GmbH, DASY Yellow (II); File Name: 020312 y 3536.da4

DUT: Dipole 1900 MHz SN: 5d051; Type: D1900V2; Serial: D1900V2 - SN5d051 Program Name: System Performance Check at 1900 MHz

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; σ = 1.55 mho/m; ε_r = 54; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3536; ConvF(8.03, 8.03, 8.03); Calibrated: 26.09.2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn631; Calibrated: 21.09.2011
- Phantom: SAM Glycol 1340; Type: QD 000 P40 CB; Serial: TP-1340
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=250mW/Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 10.7 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 82.7 V/m; Power Drift = 0.065 dB

Peak SAR (extrapolated) = 18.1 W/kg

SAR(1 g) = 9.58 mW/g; SAR(10 g) = 4.9 mW/g

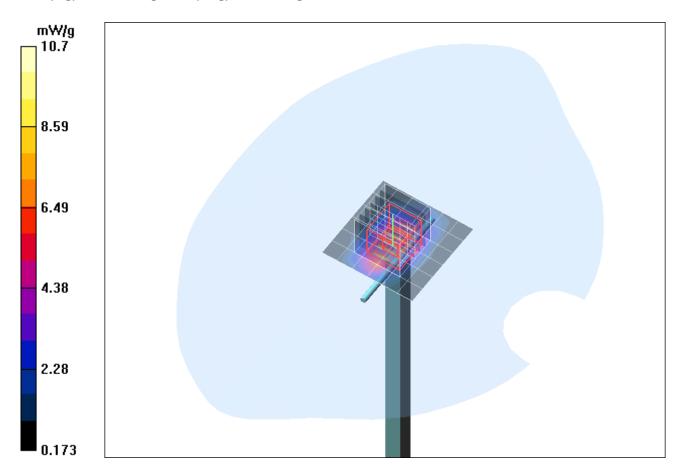


Fig. 12: Validation measurement 1900 MHz Body (GPRS 1900 and WCDMA II, March 02, 2012), coarse grid. Ambient Temperature: 22.1°C. Liquid Temperature: 21.9°C.

Test Laboratory: Imst GmbH, DASY Yellow (II); File Name: 080312 y 3536 2450.da4

DUT: Dipole 2450 MHz SN: 709; Type: D2450V2; Serial: D2450V2 - SN:709 Program Name: System Performance Check at 2450 MHz

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.96 \text{ mho/m}$; $\varepsilon_r = 53.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3536; ConvF(7.42, 7.42, 7.42); Calibrated: 26.09.2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn631; Calibrated: 21.09.2011
- Phantom: SAM Glycol 1340; Type: QD 000 P40 CB; Serial: TP-1340
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=250mW/Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 14.9 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 87.6 V/m; Power Drift = 0.061 dB

Peak SAR (extrapolated) = 28.4 W/kg

SAR(1 g) = 13.4 mW/g; SAR(10 g) = 6.11 mW/g

Maximum value of SAR (measured) = 15.1 mW/g

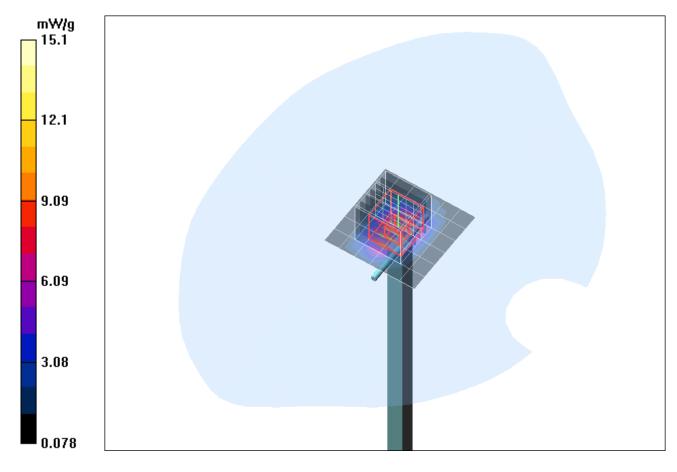


Fig. 13: Validation measurement 2450 MHz Body (IEEE 802.11, March 08, 2012) coarse grid. Ambient Temperature: 21.8°C. Liquid Temperature: 21.7°C.

Error Sources	Uncertainty Value	Probability Distribution	Divis or	Ci	Standard Uncertainty	v _i ² or v _{eff}
Measurement System						
Probe calibration	± 4.8 %	Normal	1	1	± 4.8 %	8
Axial isotropy	± 4.7 %	Rectangular	√3	1	± 2.7 %	8
Hemispherical isotropy	± 0 %	Rectangular	√3	1	± 0 %	8
Boundary effects	± 1.0 %	Rectangular	√3	1	± 0.6 %	8
Linearity	± 4.7 %	Rectangular	√3	1	± 2.7 %	∞
System detection limit	± 1.0 %	Rectangular	√3	1	± 0.6 %	∞
Readout electronics	± 1.0 %	Normal	1	1	± 1.0 %	8
Response time	± 0 %	Rectangular	√3	1	± 0 %	∞
Integration time	± 0%	Rectangular	√3	1	± 0 %	∞
RF ambient conditions	± 3.0 %	Rectangular	√3	1	± 1.7 %	8
Probe positioner	± 0.4 %	Rectangular	√3	1	± 0.2 %	∞
Probe positioning	± 2.9 %	Rectangular	√3	1	± 1.7 %	~
Algorithms for max SAR eval.	± 1.0 %	Rectangular	√3	1	± 0.6 %	8
Dipole						
Dipole Axis to Liquid Distance	± 2.0 %	Rectangular	1	1	± 1.2 %	8
Input power and SAR drift mea.	± 4.7 %	Rectangular	√3	1	± 2.7 %	8
Phantom and Set-up						
Phantom uncertainty	± 4.0 %	Rectangular	√3	1	± 2.3 %	∞
Liquid conductivity (target)	± 5.0 %	Rectangular	√3	0.64	± 1.8 %	8
Liquid conductivity (meas.)	± 2.5 %	Normal	1	0.64	± 1.6 %	∞
Liquid permittivity (target)	± 5.0 %	Rectangular	√3	0.6	± 1.7 %	∞
Liquid permittivity (meas.)	± 2.5 %	Normal	1	0.6	± 1.5 %	∞
Combined Uncertainty					± 8.4 %	

Table 19: Uncertainty budget for the system performance check.

9.6 Environment

To comply with the required noise level (less than 12 mW/kg) periodically measurements without a DUT were conducted. Humidity: $37\% \pm 5\%$

9.7 Test Equipment

Test Equipment	Model	Serial Number	Last Calibration	Next Calibration
DASY4 Systems				
Software Versions DASY4	V4.7	N/A	N/A	N/A
Software Versions SEMCAD	V1.8	N/A	N/A	N/A
Dosimetric E-Field Probe	ET3DV6	1579	02/2012	02/2013
Dosimetric E-Field Probe	EX3DV4	3536	09/2011	09/2012
Data Acquisition Electronics	DAE 3	335	02/2012	02/2013
Data Acquisition Electronics	DAE 4	631	09/2011	09/2012
Phantom	SAM	1059	N/A	N/A
Phantom	SAM	1176	N/A	N/A
Phantom	SAM	1340	N/A	N/A
Phantom	SAM	1341	N/A	N/A
Dipoles				
Validation Dipole	D835V2	437	04/2010	04/2012
Validation Dipole	D1900V2	5d051	09/2011	09/2013
Validation Dipole	D2450V2	709	12/2011	12/2013
Material Measurement				
Network Analyzer	E5071C	MY46103220	08/2011	08/2013
Dielectric Probe Kit	HP85070B	US33020263	N/A	N/A

Table 20: SAR equipment.

Test Equipment	Model	Serial Number	Last Calibration	Next Calibration
Power Meters				
Power Meter. Agilent	E4416A	GB41050414	12/2010	12/2012
Power Meter. Agilent	E4417A	GB41050441	12/2010	12/2012
Power Meter. Anritsu	ML2487A	6K00002319	12/2011	12/2013
Power Meter. Anritsu	ML2488A	6K00002078	12/2011	12/2013
Power Sensors				
Power Sensor. Agilent	E9301H	US40010212	12/2010	12/2012
Power Sensor. Agilent	E9301A	MY41495584	12/2010	12/2012
Power Sensor. Anritsu	MA2481B	031600	12/2011	12/2013
Power Sensor. Anritsu	MA2490A	031565	12/2011	12/2013
RF Sources				
Network Analyzer	E5071C	MY46103220	08/2011	08/2013
Rohde & Schwarz	SME300	100142	N/A	N/A
Amplifiers				
Mini Circuits	ZHL-42	D012296	N/A	N/A
Mini Circuits	ZHL-42	D031104#01	N/A	N/A
Mini Circuits	ZVE-8G	D031004	N/A	N/A
Radio Tester				
Rohde & Schwarz	CMU200	835305/050	N/A	N/A
Anritsu	MT8815B	6200586536	N/A	N/A

Table 21: Test equipment. General.

Dasy Report FCC Body Card 850 1900 WCDMA II WCDMA V 1.4.doc/20.06.2008/ABo

9.8 Certificates of Conformity

Schmid & Partner Engineering AG

a q

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Certificate of conformity

Item	Dosimetric Assessment System DASY4
Type No	SD 000 401A, SD 000 402A
Software Version No	DASY 4.7
Manufacturer / Origin	Schmid & Partner Engineering AG Zeughausstrasse 43, CH-8004 Zürich, Switzerland

- [1] IEEE 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques, December 2003
 [2] EN 50361:2001, "Basic standard for the measurement of Specific Absorption Rate related to human
- exposure to electromagnetic fields from mobile phones (300 MHz 3 GHz)", July 2001
- [3] IEC 62209 1, "Specific Absorption Rate (SAR) in the frequency range of 300 MHz to 3 GHz Measurement Procedure, Part 1: Hand-held mobile wireless communication devices", February 2005
- [4] IEC 62209 2, Draft Version 0.9, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation and Procedures Part 2: Procedure to determine the Specific Absorption Rate (SAR) for ... including accessories and
- multiple transmitters", December 2004

 [5] OET Bulletin 65, Supplement C, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields", Edition 01-01
- [6] ANSI-C63.19-2006, "American National Standard for Methods of Measurement of Compatibility between Wireless Communication Devices and Hearing Aids", June 2006
- ANSI-C63.19-2007, "American National Standard for Methods of Measurement of Compatibility between Wireless Communication Devices and Hearing Aids", June 2007

We certify that this system is designed to be fully compliant with the standards [1 - 7] for RF emission tests of wireless devices.

The uncertainty of the measurements with this system was evaluated according to the above standards and is documented in the applicable chapters of the DASY4 system handbook

The uncertainty values represent current state of methodology and are subject to changes. They are applicable to all laboratories using DASY4 provided the following requirements are met (responsibility of the system end user):

- the system is used by an experienced engineer who follows the manual and the guidelines taught 1) during the training provided by SPEAG,
- the probe and validation dipoles have been calibrated for the relevant frequency bands and media within the requested period,
- the DAE has been calibrated within the requested period,
- the "minimum distance" between probe sensor and inner phantom shell and the radiation source is selected properly,
- the system performance check has been successful,
- the operational mode of the DUT is CW, CDMA, FDMA or TDMA (GSM, DCS, PCS, IS136, PDC) and the measurement/integration time per point is ≥ 500 ms,
- if applicable, the probe modulation factor is evaluated and applied according to field level, 7) modulation and frequency,
- the dielectric parameters of the liquid are conformant with the standard requirement,
- the DUT has been positioned as described in the manual.
- 10) the uncertainty values from the calibration certificates, and the laboratory and measurement equipment dependent uncertainties, are updated by end user accordingly. 18 milele

Date 24.4.2008

Signature / Stamp

Doc No 880 - SD00040XA-Standards 0804 - F

Page 1 (1)

Fig. 14: Certificate of conformity for the used DASY4 system

KP/FB

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Certificate of conformity / First Article Inspection

Item	SAM Twin Phantom V4.0
Type No	QD 000 P40 BA
Series No	TP-1002 and higher
Manufacturer / Origin	Untersee Composites Hauptstr. 69 CH-8559 Fruthwilen Switzerland

Tests

The series production process used allows the limitation to test of first articles. Complete tests were made on the pre-series Type No. QD 000 P40 AA, Serial No. TP-1001 and on the series first article Type No. QD 000 P40 BA, Serial No. TP-1006. Certain parameters have been retested using further series units (called samples).

Test	Requirement	Details	Units tested
Shape	Compliance with the geometry according to the CAD model.	IT'IS CAD File (*)	First article, Samples
Material thickness	Compliant with the requirements according to the standards	2mm +/- 0.2mm in specific areas	First article, Samples
Material parameters	Dielectric parameters for required frequencies	200 MHz – 3 GHz Relative permittivity < 5 Loss tangent < 0.05.	Material sample TP 104-5
Material resistivity	The material has been tested to be compatible with the liquids defined in the standards	Liquid type HSL 1800 and others according to the standard.	Pre-series, First article

Standards

- [1] CENELEC EN 50361
- [2] IEEE P1528-200x draft 6.5
- [3] IEC PT 62209 draft 0.9
- (*) The IT'IS CAD file is derived from [2] and is also within the tolerance requirements of the shapes of [1] and [3].

Conformity

Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of SAR measurements specified in standard [1] and draft standards [2] and [3].

Signature / Stamp

Schmid & Partner

Engineering AG

Zeughausstrasse 43, CH-8004 Zurich
Tel. +41 1 245 97 70, Fax +41 1 245 97 79

Doc No 881 - QD 000 P40 BA - B

Page 1 (1)

Fig. 15: Certificate of conformity for the used SAM phantom.

9.9 Pictures of the Device under Test

Fig. 16 - 19 show the device under test.

Fig. 16: Front view of the host device Dell Latitude X300.

Fig. 17: Device under test.

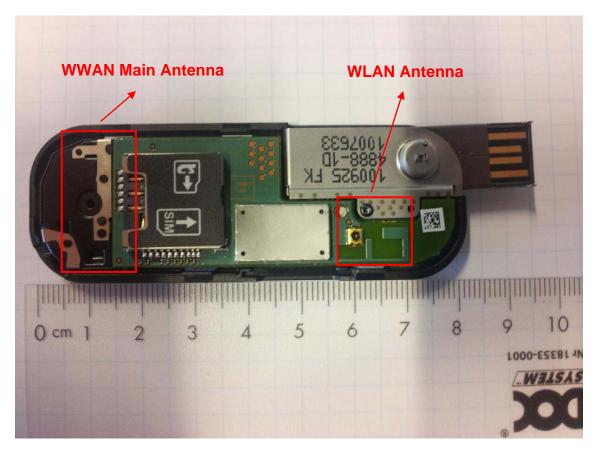


Fig. 18: Device under test, top view.

Fig. 19: Device under test, bottom view.

9.10 Test Positions for the Device under Test

Fig. 20 - Fig. 26 show the test positions for the SAR measurements.

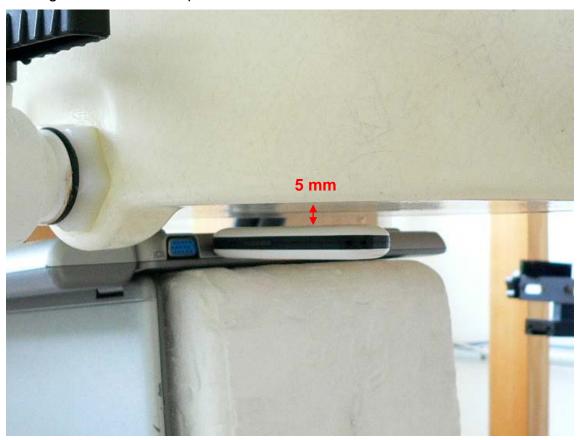


Fig. 20: Position 1 with the Dell Latitude X300.

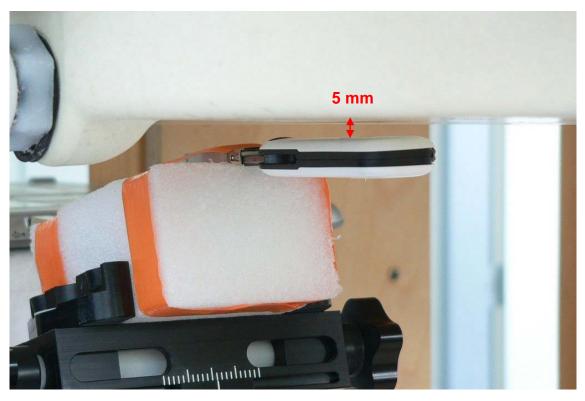


Fig. 21: Position 2 with the Dell Latitude X300.

Fig. 22: Position 3 with the Dell Latitude X300.

Fig. 23: Position 4 with the Dell Latitude X300.

Fig. 24: Position 5 with the Dell Latitude X300.

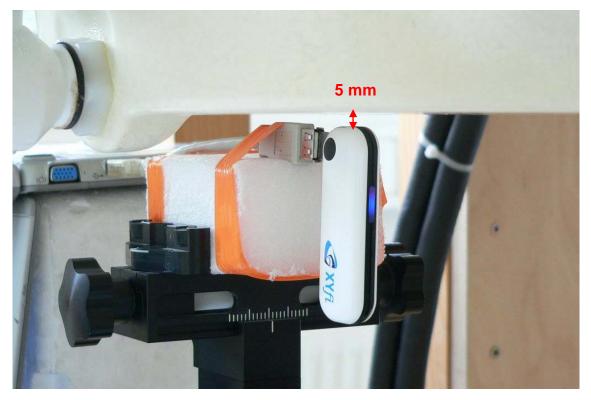


Fig. 25: Position 6 (Bottom Tip configuration) with the Dell Latitude X300.

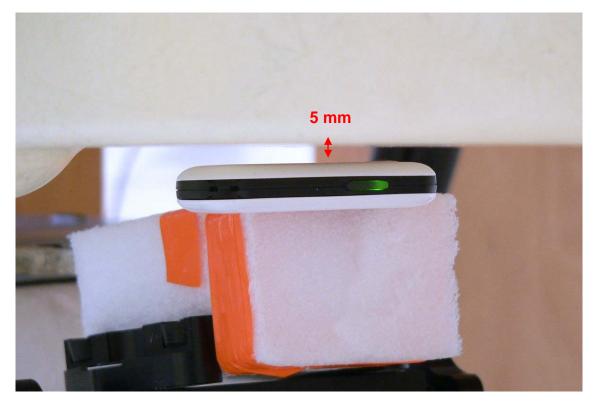


Fig. 26: Position 2 (90° configuration) with the Dell Latitude X300.

9.11 Pictures to demonstrate the required Liquid Depth

Fig. 27 – Fig. 29 show the liquid depth in the used SAM phantom.

Fig. 27: Liquid depth for GPRS/EDGE 850 and WCDMA V Body measurements.

Fig. 29: Liquid depth for IEEE 802.11 Body measurements

Fig. 28: Liquid depth for GPRS/ EDGE 1900 and WCDMA II Body measurements.

[KDB 248227]

10 References

[OET 65] Federal Communications Commission: Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields. Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01). FCC. 2001. Laboratory Division. Office of Engineering and Technology. Federal [3G Devices] Communications Commission: SAR Measurement Procedures for 3G Devices - CDMA 2000 / Ev-DO - WCDMA / HSDPA- (Rev. 2; October 2007) [IEEE C95.1-1999] IEEE Std C95.1-1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields. 3 kHz to 300 GHz. Inst. of Electrical and Electronics Engineers. Inc.. 1999. [IEEE C95.1-2005] IEEE Std C95.1-2005: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields. 3 kHz to 300 GHz. Inst. of Electrical and Electronics Engineers. Inc.. 2005. [ICNIRP 1998] ICNIRP: Guidelines for Limiting Exposure to Time-varying Electric. Magnetic. and Electromagnetic Fields (up to 300 GHz). In: Health Physics. Vol. 74. No. 4. 494-522. 1998. [IEEE 1528-2003] IEEE Std 1528-2003: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques. 1528-2003. December 19. 2003. The Institute of Electrical and Electronics Engineers. [NIST 1994] NIST: Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results. Technical Note 1297 (TN1297). United States Department of Commerce Technology Administration. National Institute of Standards and Technology. 1994. [DASY4] Schmid & Partner Engineering AG: DASY4 Manual. April 2008 [FCC 96-326] FCC 96-326. ET Docket No. 93-62. Report and Order. August 1. 1996 [3GPP 34.121] ETSI TS 134 121-1 V7.4.0. Universal Mobile Telecomunications System (UMTS); User Equipment (UE) conformance specification; Radio transmission and reception (FDD) [KDB 447498] 447498 D01 Mobile Portable RF Exposure v04: Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies. 11/13/2009 447498 D02 SAR Measurements Procedures for USB Dongle Transmitters v02 [KDB 941225] 941225 D01 SAR Measurement Procedures for 3G Devices v02. October 2007

[KDB 648474] 648474 D01 SAR Evaluation Considerations for Handsets with Multiple Transmitters and Antennas v01r05; Sep 2008

Transmitters. May 2007

248227 Rev 1.2 SAR Measurement Procedures for 802.11 a/b/g

[IMST SAR]

SAR Report:SAR_Report_7layers_6620_858_FCC_Body_850_1900_WCDMAII_802.11_XYfi_3; issued by IMST GmbH; September 27, 2011