

## FCC 47 CFR PART 15 SUBPART C

Product Type : 10.1" Tablet  
Applicant : VIA Technologies, Inc.  
Address : 8F, 533, Chung-Cheng Rd. Hsin-Tien, New Taipei City, Taiwan  
Trade Name : Viega  
Model Number : VT6081  
Test Specification : FCC 47 CFR PART 15 SUBPART C: Oct., 2013  
ANSI C63.4:2009  
Receive Date : May 29, 2014  
Test Period : May 29~Jun. 04, 2014  
Issue Date : Jun. 23, 2014

### Issue by

A Test Lab Techno Corp.  
No. 140-1, Changan Street, Bade City,  
Taoyuan County 334, Taiwan R.O.C.  
Tel : +886-3-2710188 / Fax : +886-3-2710190



Taiwan Accreditation Foundation accreditation number: 1330

**Note:** This report shall not be reproduced except in full, without the written approval of A Test Lab Techno Corp. This document may be altered or revised by A Test Lab Techno Corp. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF, or any government agencies. The test results in the report only apply to the tested sample.



**Revision History**

| <b>Rev.</b> | <b>Issue Date</b> | <b>Revisions</b> | <b>Revised By</b> |
|-------------|-------------------|------------------|-------------------|
| 00          | Jun. 23, 2014     | Initial Issue    |                   |
|             |                   |                  |                   |
|             |                   |                  |                   |
|             |                   |                  |                   |



# Verification of Compliance

Issued Date: 2014/06/23

Product Type : 10.1" Tablet  
Applicant : VIA Technologies, Inc.  
Address : 8F, 533, Chung-Cheng Rd. Hsin-Tien, New Taipei City, Taiwan  
Trade Name : Viega  
Model Number : VT6081  
FCC ID : NCI-VEVT6081A1  
EUT Rated Voltage : DC 12V, 1.5A  
Test Voltage : 120 Vac / 60 Hz  
Applicable Standard : FCC 47 CFR PART 15 SUBPART C: Oct., 2013  
ANSI C63.4:2009  
Test Result : Complied  
Performing Lab. : A Test Lab Techno Corp.  
No. 140-1, Changan Street, Bade City, Taoyuan County 334, Taiwan R.O.C.  
Tel : +886-3-2710188 / Fax : +886-3-2710190  
Taiwan Accreditation Foundation accreditation number: 1330  
<http://www.atl-lab.com.tw/e-index.htm>

Testing Laboratory  
1330

The above equipment was tested by A Test Lab Techno Corp. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4: 2009 and the energy emitted by the sample tested as described in this report is in compliance with the requirements of FCC Rules Part 15.207, 15.209, 15.225.

The test results of this report relate only to the tested sample identified in this report.

Approved By :  
(Manager)

Fly Lu  
(Fly Lu)

Reviewed By :  
(Testing Engineer)

Eric Ou Yang  
(Eric Ou Yang)

## TABLE OF CONTENTS

|          |                                        |           |
|----------|----------------------------------------|-----------|
| <b>1</b> | <b>General Information</b>             | <b>5</b>  |
| <b>2</b> | <b>EUT Description</b>                 | <b>6</b>  |
| <b>3</b> | <b>Test Methodology</b>                | <b>7</b>  |
| 3.1.     | Mode of Operation                      | 7         |
| 3.2.     | EUT Exercise Software                  | 7         |
| 3.3.     | Configuration of Test System Details   | 8         |
| 3.4.     | Test Site Environment                  | 8         |
| <b>4</b> | <b>Conducted Emission Measurement</b>  | <b>9</b>  |
| 4.1.     | Limit                                  | 9         |
| 4.2.     | Test Instruments                       | 9         |
| 4.3.     | Test Setup                             | 9         |
| 4.4.     | Test Procedure                         | 10        |
| 4.5.     | Test Result                            | 11        |
| <b>5</b> | <b>Radiated Emissions Measurement</b>  | <b>13</b> |
| 5.1.     | Limit                                  | 13        |
| 5.2.     | Test Instruments                       | 14        |
| 5.3.     | Setup                                  | 15        |
| 5.4.     | Test Procedure                         | 16        |
| 5.5.     | Test Result                            | 18        |
| <b>6</b> | <b>Frequency Stability Measurement</b> | <b>21</b> |
| 6.1.     | Limit                                  | 21        |
| 6.2.     | Test Setup                             | 21        |
| 6.3.     | Test Instruments                       | 21        |
| 6.4.     | Test Procedure                         | 22        |
| 6.5.     | Test Result                            | 22        |



## 1 General Information

### 1.1 Summary of Test Result

| Reference                                   | Test                        | Results | Section |
|---------------------------------------------|-----------------------------|---------|---------|
| 47 CFR<br>Part 15.225                       |                             |         |         |
| 15.207(a)                                   | Conducted Emissions Voltage | PASS    | 4.5     |
| 15.225 (a), (b), (c), (d)<br>15.209         | Radiated Emission Limits    | PASS    | 5.5     |
| 15.225(e)                                   | Frequency Stability         | PASS    | 6.5     |
| CFR 47 Part 15.225(2006) / ANSI C63.4: 2009 |                             |         |         |

The test results of this report relate only to the tested sample(s) identified in this report. Manufacturer or whom it may concern should recognize the pass or fail of the test result.

### 1.2 Measurement Uncertainty

| Test Item          | Frequency Range     | Uncertainty (dB)  |
|--------------------|---------------------|-------------------|
| Conducted Emission | 9kHz ~ 30MHz        | ± 2.02            |
| Radiated Emission  | 30MHz ~ 1000MHz     | Horizontal ± 3.98 |
|                    |                     | Vertical ± 3.62   |
|                    | 1000MHz ~ 18000MHz  | Horizontal ± 3.11 |
|                    |                     | Vertical ± 3.07   |
|                    | 18000MHz ~ 40000MHz | Horizontal ± 3.66 |
|                    |                     | Vertical ± 3.54   |



## 2 EUT Description

|                      |   |                                                             |
|----------------------|---|-------------------------------------------------------------|
| Applicant            | : | VIA Technologies, Inc.                                      |
| Applicant Address    | : | 8F, 533, Chung-Cheng Rd. Hsin-Tien, New Taipei City, Taiwan |
| Manufacturer         | : | VIA Technologies, Inc.                                      |
| Manufacturer Address | : | 8F, 533, Chung-Cheng Rd. Hsin-Tien, New Taipei City, Taiwan |
| Product              | : | 10.1" Tablet                                                |
| Trade Name           | : | Viega                                                       |
| Model Number         | : | VT6081                                                      |
| IMEI No.             | : | 358901048976879                                             |
| FCC ID               | : | NCI-VEVT6081A1                                              |
| Frequency Range      | : | 13.56 MHz                                                   |
| Modulation Type      | : | ASK                                                         |
| Number of Channels   | : | 1 Channel                                                   |
| Antenna Type         | : | FPC Antenna                                                 |



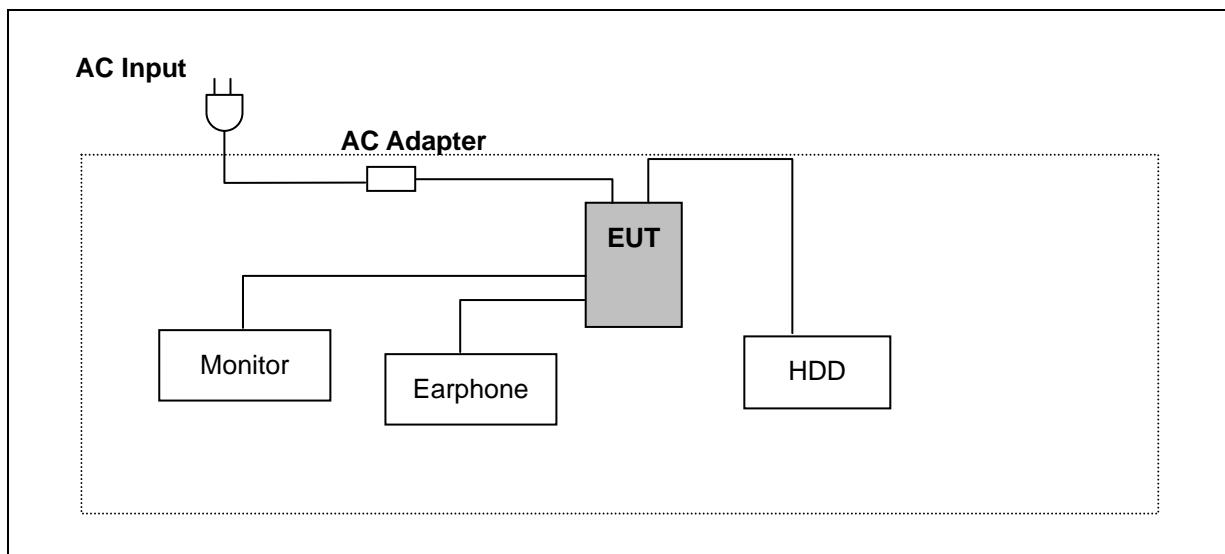
## 3 Test Methodology

### 3.1. Mode of Operation

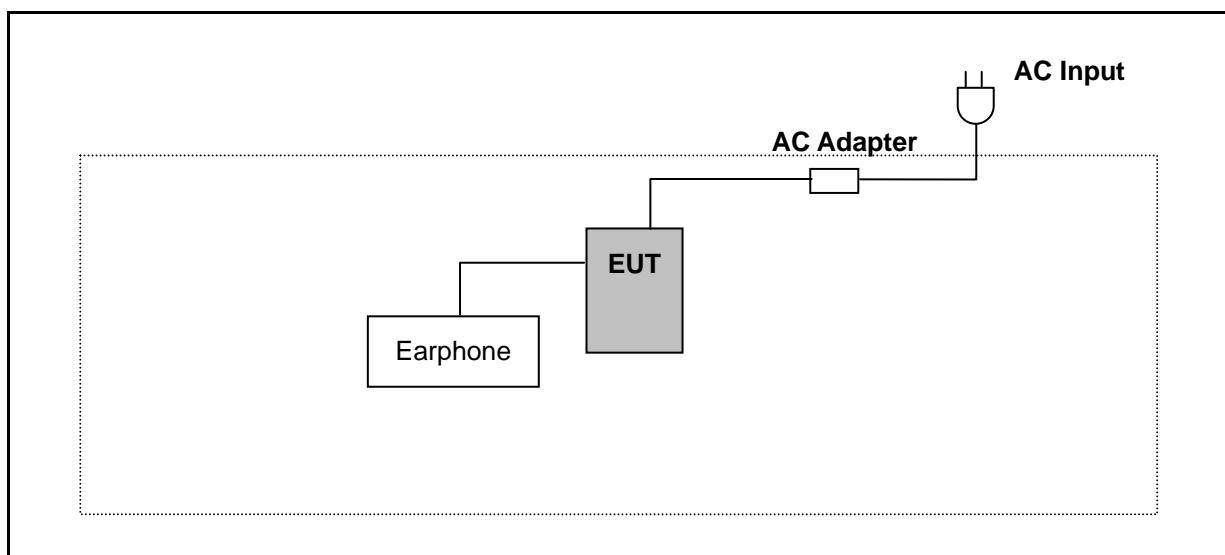
The following test mode(s) were scanned during the preliminary test :

| Pre-Test Mode                 |
|-------------------------------|
| Mode 1: Normal Operation Mode |
| Mode 2: Transmit Mode         |

By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "X axis" position was the worst, then the final test was executed the worst condition and test data were recorded in this report.


ATL has verified the construction and function in typical operation. All the test modes were carried out with the EUT in normal operation.

### 3.2. EUT Exercise Software


|    |                                         |
|----|-----------------------------------------|
| 1. | Setup the EUT as shown on 3.3.          |
| 2. | Turn on the power of all equipment.     |
| 3. | The EUT will start to operate function. |

### 3.3. Configuration of Test System Details

#### Conducted Emissions



#### Radiated Emissions



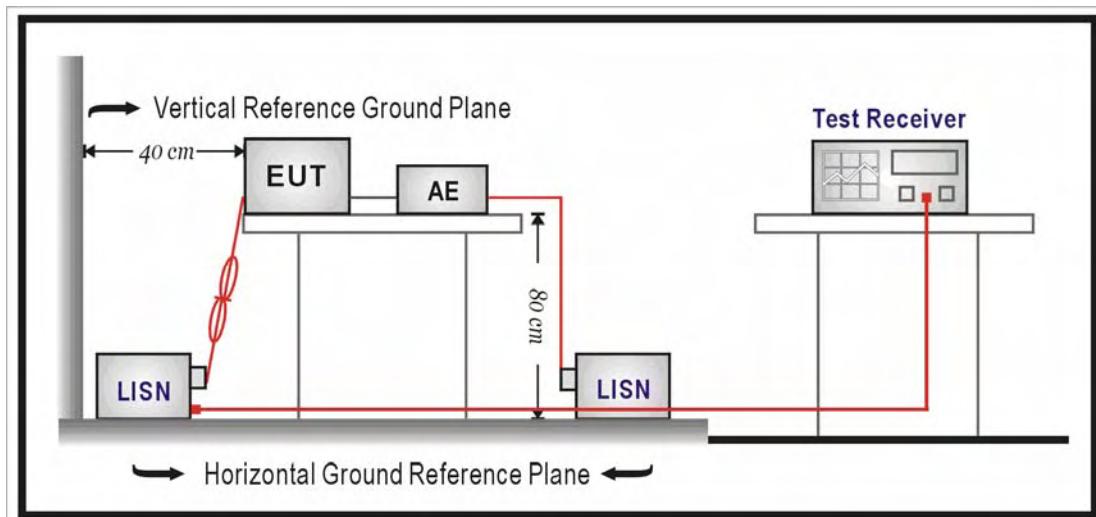
### 3.4. Test Site Environment

| Items                      | Required (IEC 60068-1) | Actual |
|----------------------------|------------------------|--------|
| Temperature (°C)           | 15-35                  | 25     |
| Humidity (%RH)             | 25-75                  | 50     |
| Barometric pressure (mbar) | 860-1060               | 950    |

## 4 Conducted Emission Measurement

### 4.1. Limit

| Frequency (MHz) | Quasi-peak | Average  |
|-----------------|------------|----------|
| 0.15 - 0.5      | 66 to 56   | 56 to 46 |
| 0.50 - 5.0      | 56         | 46       |
| 5.0 - 30.0      | 60         | 50       |


### 4.2. Test Instruments

| Describe      | Manufacturer | Model Number | Serial Number | Cal. Date  | Remark |
|---------------|--------------|--------------|---------------|------------|--------|
| Test Receiver | R&S          | ESCI         | 100367        | 06/06/2014 | (1)    |
| LISN          | R&S          | ENV216       | 101040        | 03/07/2014 | (1)    |
| LISN          | R&S          | ENV216       | 101041        | 03/07/2014 | (1)    |
| Test Site     | ATL          | TE05         | TE05          | N.C.R.     | -----  |

Remark: <sup>(1)</sup> Calibration period 1 year. <sup>(2)</sup> Calibration period 2 years.

NOTE: N.C.R. = No Calibration Request.

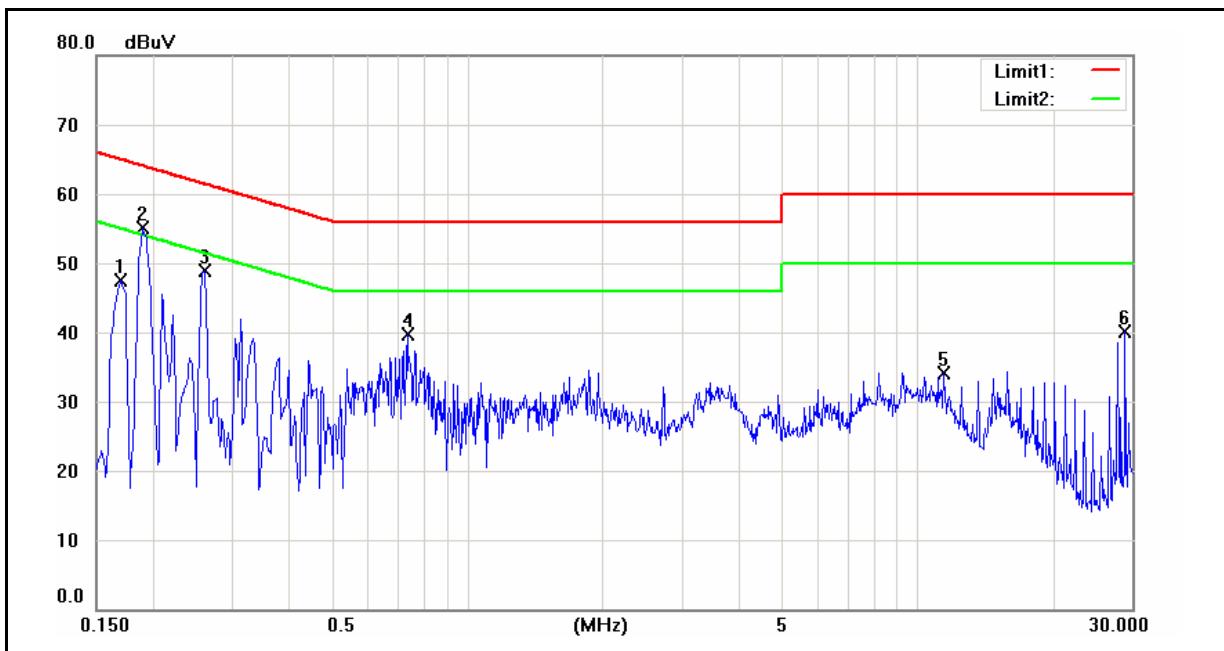
### 4.3. Test Setup



#### 4.4. Test Procedure

The power line conducted emission measurements were performed in a shielded enclosure. The EUT was assembled on a wooden table which is 80 centimeters high, was placed 40 centimeters from the back wall and at least 1 meter from the sidewall.

Power was fed to the EUT from the public utility power grid through a line filter and EMCO Model 3162/2 SH Line Impedance Stabilization Networks (LISN). The LISN housing, measuring instrumentation case, ground plane, etc., were electrically bonded together at the same RF potential. The Spectrum analyzer was connected to the AC line through an isolation transformer. The 50-ohm output of the LISN was connected to the spectrum analyzer directly. Conducted emission levels were in the CISPR quasi-peak detection mode. The analyzer's 6 dB bandwidth was set to 9 KHz. No post-detector video filter was used.

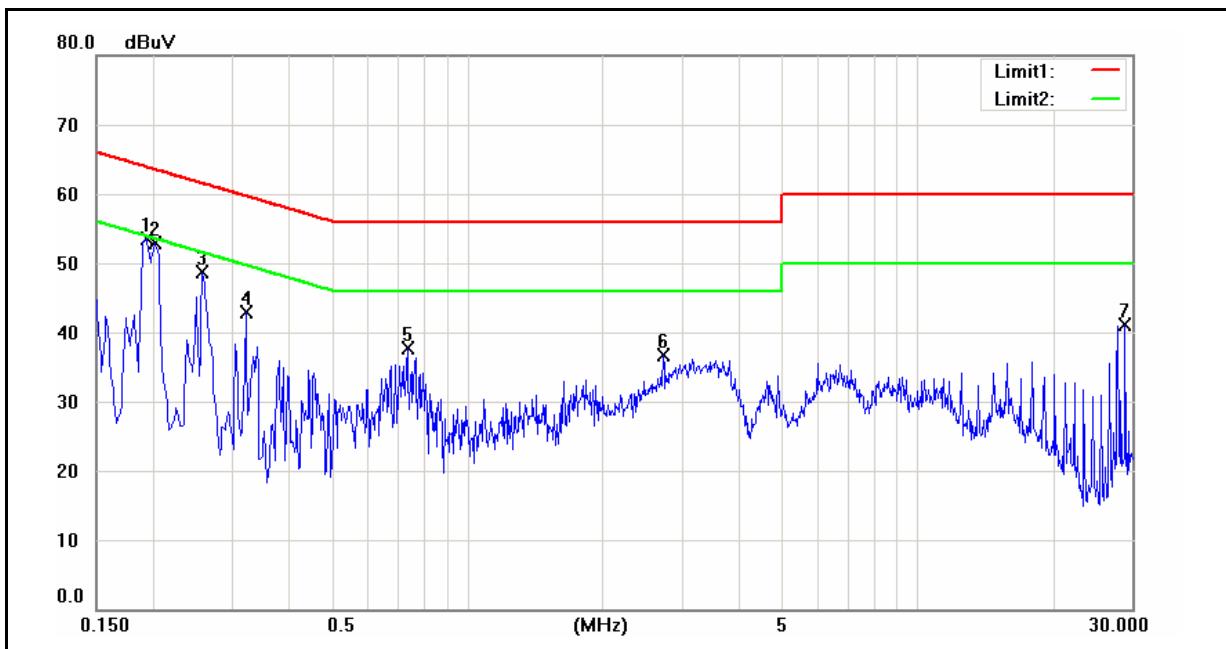

The spectrum was scanned from 150 KHz to 30 MHz. The physical arrangement of the test system and associated cabling was varied (within the scope of arrangements likely to be encountered in actual use) to determine the effect on the unit's emanations in amplitude and frequency. All spurious emission frequencies were observed. The highest emission amplitudes relative to the appropriate limit were measured and have been recorded in paragraph 4.1.

##### Spectrum Analyzer Settings

| Measurement Frequency | Preliminary Peak Scan |                 | Final Detection      |                         |
|-----------------------|-----------------------|-----------------|----------------------|-------------------------|
|                       | Resolution Bandwidth  | Video Bandwidth | Quasi-Peak Bandwidth | Average Video Bandwidth |
| 9kHz to 150kHz        | 10kHz                 | 10kHz           | 200Hz                | 10Hz                    |
| 150kHz to 30MHz       | 100kHz                | 100kHz          | 9kHz                 | 10Hz                    |

#### 4.5. Test Result

|               |                    |                      |              |
|---------------|--------------------|----------------------|--------------|
| Standard:     | FCC Part 15C       | Line:                | L1           |
| Test item:    | Conducted Emission | Power:               | AC 120V/60Hz |
| Model Number: | VT6081             | Temp.(°C)/Hum.(%RH): | 22(°C)/58%RH |
| Mode:         | Mode 1             | Date:                | 06/04/2014   |
| Test By:      |                    |                      | Eric Ou Yang |
| Description:  |                    |                      |              |




| No. | Frequency (MHz) | QP reading (dBuV) | AVG reading (dBuV) | Correction factor (dB) | QP result (dBuV) | AVG result (dBuV) | QP limit (dBuV) | AVG limit (dBuV) | QP margin (dB) | AVG margin (dB) | Remark |
|-----|-----------------|-------------------|--------------------|------------------------|------------------|-------------------|-----------------|------------------|----------------|-----------------|--------|
| 1   | 0.1700          | 30.17             | 15.01              | 9.58                   | 39.75            | 24.59             | 64.96           | 54.96            | -25.21         | -30.37          | Pass   |
| 2   | 0.1900          | 43.29             | 26.26              | 9.58                   | 52.87            | 35.84             | 64.04           | 54.04            | -11.17         | -18.20          | Pass   |
| 3   | 0.2620          | 36.55             | 19.55              | 9.58                   | 46.13            | 29.13             | 61.37           | 51.37            | -15.24         | -22.24          | Pass   |
| 4   | 0.7380          | 26.86             | 20.24              | 9.59                   | 36.45            | 29.83             | 56.00           | 46.00            | -19.55         | -16.17          | Pass   |
| 5   | 11.4820         | 21.47             | 17.15              | 9.90                   | 31.37            | 27.05             | 60.00           | 50.00            | -28.63         | -22.95          | Pass   |
| 6   | 28.9740         | 28.53             | 23.17              | 10.07                  | 38.60            | 33.24             | 60.00           | 50.00            | -21.40         | -16.76          | Pass   |

Note: 1. Result (dBuV) = Correction factor (dB) + Reading(dBuV).

2. Correction factor (dB) = Cable loss (dB) + L.I.S.N. factor (dB).

|               |                    |                      |              |
|---------------|--------------------|----------------------|--------------|
| Standard:     | FCC Part 15C       | Line:                | N            |
| Test item:    | Conducted Emission | Power:               | AC 120V/60Hz |
| Model Number: | VT6081             | Temp.(°C)/Hum.(%RH): | 22(°C)/58%RH |
| Mode:         | Mode 1             | Date:                | 06/04/2014   |
| Test By:      |                    |                      | Eric Ou Yang |
| Description:  |                    |                      |              |



| No. | Frequency (MHz) | QP reading (dBuV) | AVG reading (dBuV) | Correction factor (dB) | QP result (dBuV) | AVG result (dBuV) | QP limit (dBuV) | AVG limit (dBuV) | QP margin (dB) | AVG margin (dB) | Remark |
|-----|-----------------|-------------------|--------------------|------------------------|------------------|-------------------|-----------------|------------------|----------------|-----------------|--------|
| 1   | 0.1940          | 41.64             | 25.34              | 9.58                   | 51.22            | 34.92             | 63.86           | 53.86            | -12.64         | -18.94          | Pass   |
| 2   | 0.2020          | 40.31             | 22.64              | 9.58                   | 49.89            | 32.22             | 63.53           | 53.53            | -13.64         | -21.31          | Pass   |
| 3   | 0.2580          | 35.95             | 17.55              | 9.58                   | 45.53            | 27.13             | 61.50           | 51.50            | -15.97         | -24.37          | Pass   |
| 4   | 0.3220          | 29.00             | 14.89              | 9.58                   | 38.58            | 24.47             | 59.66           | 49.66            | -21.08         | -25.19          | Pass   |
| 5   | 0.7380          | 26.96             | 21.37              | 9.59                   | 36.55            | 30.96             | 56.00           | 46.00            | -19.45         | -15.04          | Pass   |
| 6   | 2.7340          | 23.36             | 18.60              | 9.67                   | 33.03            | 28.27             | 56.00           | 46.00            | -22.97         | -17.73          | Pass   |
| 7   | 28.9620         | 29.32             | 23.21              | 10.14                  | 39.46            | 33.35             | 60.00           | 50.00            | -20.54         | -16.65          | Pass   |

Note: 1. Result (dBuV) = Correction factor (dB) + Reading(dBuV).

2. Correction factor (dB) = Cable loss (dB) + L.I.S.N. factor (dB).

## 5 Radiated Emissions Measurement

### 5.1. Limit

According to §15.225,

- (a) The field strength of any emissions within the band 13.553 – 13.567 MHz shall not exceed 15,848 microvolt / meter at 30 meters.
- (b) Within the bands 13.410 – 13.553 MHz and 13.567 -13.710 MHz, the field strength of any emissions shall not exceed 334 microvolt / meter at 30 meters.
- (c) Within the bands 13.110 – 13.410 MHz and 13.710 – 14.010 MHz the field strength of any emissions shall not exceed 106 microvolt / meter at 30 meters.
- (d) The field strength of any emissions appearing outside of the 13.110 – 14.010 MHz and shall not exceed the general radiated emission limits in §15.209.

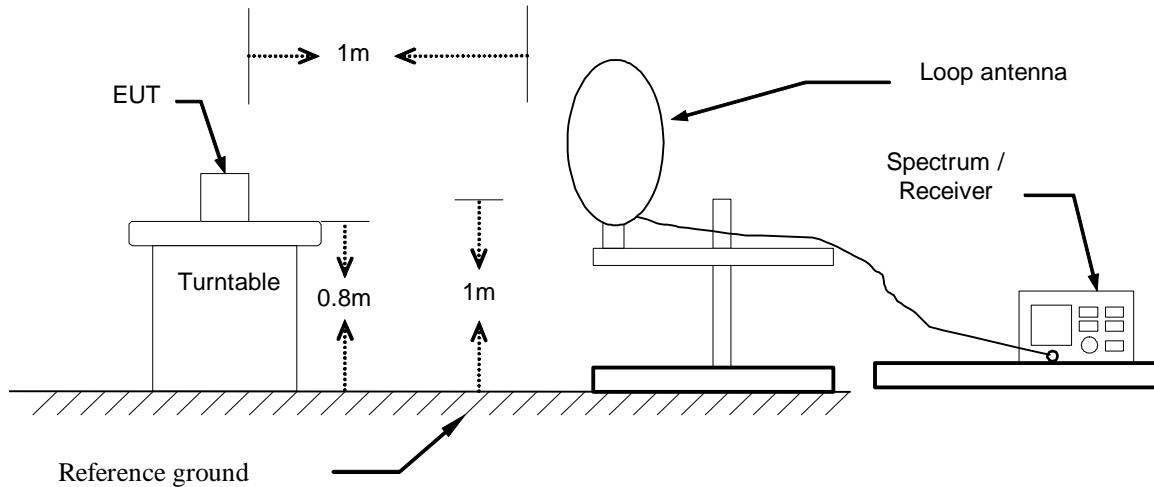
According to §15.225(a), except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

| Frequency<br>(MHz) | Field Strength<br>( $\mu$ V/m at meter) | Measurement Distance<br>(meter) |
|--------------------|-----------------------------------------|---------------------------------|
| 0.009 – 0.490      | 2400 / F (kHz)                          | 300                             |
| 0.490 – 1.705      | 24000 / F (kHz)                         | 30                              |
| 1.705 – 30.0       | 30                                      | 30                              |
| 30 - 88            | 100**                                   | 3                               |
| 88-216             | 150**                                   | 3                               |
| 216-960            | 200**                                   | 3                               |
| Above 960          | 500                                     | 3                               |

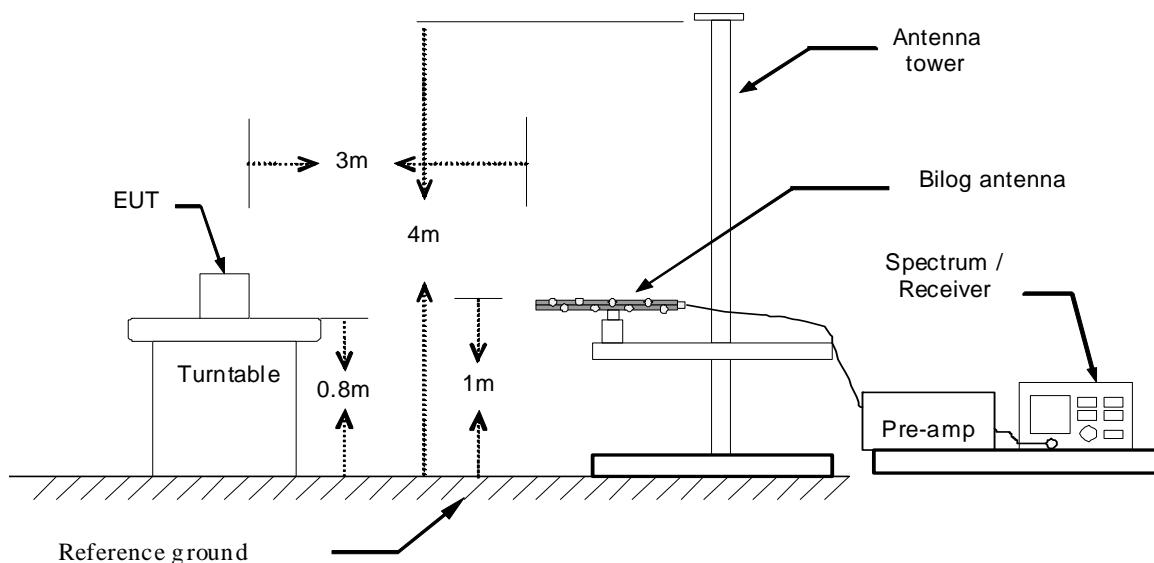
\*\* Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.



## 5.2. Test Instruments


| 3 Meter Chamber                   |                                |              |               |            |                  |
|-----------------------------------|--------------------------------|--------------|---------------|------------|------------------|
| Equipment                         | Manufacturer                   | Model Number | Serial Number | Cal. Date  | Remark           |
| RF Pre-selector                   | Agilent                        | N9039A       | MY46520256    | 01/10/2014 | ( <sup>1</sup> ) |
| Spectrum Analyzer                 | Agilent                        | E4446A       | MY46180578    | 01/10/2014 | ( <sup>1</sup> ) |
| Pre Amplifier                     | Agilent                        | 8449B        | 3008A02237    | 02/21/2014 | ( <sup>1</sup> ) |
| Pre Amplifier                     | Agilent                        | 8447D        | 2944A10961    | 02/21/2014 | ( <sup>1</sup> ) |
| Broadband Antenna<br>(30MHz~1GHz) | SCHWARZBECK<br>MESS-ELEKTRONIK | VULB9163     | 9163-270      | 07/01/2013 | ( <sup>1</sup> ) |
| Horn Antenna<br>(1~18GHz)         | SCHWARZBECK<br>MESS-ELEKTRONIK | BBHA9120D    | 9120D-550     | 06/10/2013 | ( <sup>1</sup> ) |
| Horn Antenna<br>(18~40GHz)        | SCHWARZBECK<br>MESS-ELEKTRONIK | BBHA9170     | 9170-320      | 06/13/2013 | ( <sup>1</sup> ) |
| Loop Antenna                      | COM-POWER<br>CORPORATION       | AL-130       | 121014        | 01/28/2014 | ( <sup>1</sup> ) |
| Test Site                         | ATL                            | TE01         | 888001        | 08/28/2013 | ( <sup>1</sup> ) |

Remark: <sup>(1)</sup> Calibration period 1 year. <sup>(2)</sup> Calibration period 2 years. <sup>(3)</sup> Calibration period 3 years.


NOTE: N.C.R. = No Calibration Request.

### 5.3. Setup

9kHz ~ 30MHz



30MHz ~ 1 GHz



## 5.4. Test Procedure

Final radiation measurements were made on a three-meter, Semi Anechoic Chamber. The EUT system was placed on a nonconductive turntable which is 0.8 meters height, top surface 1.0 x 1.5 meter. The spectrum was examined from 250 MHz to 2.5 GHz in order to cover the whole spectrum below 10th harmonic which could generate from the EUT. During the test, EUT was set to transmit continuously & Measurements spectrum range from 30 MHz to 26.5 GHz is investigated.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, and then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

A nonconductive material surrounded the EUT to supporting the EUT for standing on tree orthogonal planes. At each condition, the EUT was rotated 360 degrees, and the antenna was raised and lowered from one to four meters to find the maximum emission levels. Measurements were taken using both horizontal and vertical antenna polarization.

SCHWARZBECK MESS-ELEKTRONIK Biconilog Antenna (mode VULB9163) at 3 Meter and the SCHWARZBECK Double Ridged Guide Antenna (model BBHA9120D&9170) was used in frequencies 1 – 26.5 GHz at a distance of 1 meter. All test results were extrapolated to equivalent signal at 3 meters utilizing an inverse linear distance extrapolation Factor (20dB/decade).

For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

Appropriate preamplifiers were used for improving sensitivity and precautions were taken to avoid overloading or desensitizing the spectrum analyzer. No post – detector video filters were used in the test.

The spectrum analyzer's 6 dB bandwidth was set to 1 MHz, and the analyzer was operated in the peak detection mode, for frequencies both below and up 1 GHz. The average levels were obtained by subtracting the duty cycle correction factor from the peak readings.

The following procedures were used to convert the emission levels measured in decibels referenced to 1 microvolt (dBuV) into field intensity in microvolt pre-meter (uV/m).

The actual field intensity in decibels referenced to 1 microvolt in to field intensity in microvolt per-meter (dBuV/m).

The actual field intensity in dBuV/m is determined by algebraically adding the measured reading in dBuV, the antenna factor (dB), and cable loss (dB) and Subtracting the gain of preamplifier (dB) is auto calculate in spectrum analyzer.

$$(1) \text{ Amplitude (dBuV/m)} = \text{FI (dBuV)} + \text{AF (dBuV)} + \text{CL (dBuV)} - \text{Gain (dB)}$$

FI= Reading of the field intensity.

AF= Antenna factor.

CL= Cable loss.

P.S Amplitude is auto calculate in spectrum analyzer.

$$(2) \text{ Actual Amplitude (dBuV/m)} = \text{Amplitude (dBuV)} - \text{Dis(dB)}$$

The FCC specified emission limits were calculated according the EUT operating frequency and by following linear interpolation equations:

(a) For fundamental frequency : Transmitter Output < +30dBm

(b) For spurious frequency : Spurious emission limits = fundamental emission limit /10

Data of measurement within this frequency range without mark in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.



## 5.5. Test Result

### Fundamental Test Result:

| Standard:          | FCC Part 15C      |                         | Test Distance:     | 30m                  |                |              |            |
|--------------------|-------------------|-------------------------|--------------------|----------------------|----------------|--------------|------------|
| Test item:         | Radiated Emission |                         |                    | Power:               | AC 120V/60Hz   |              |            |
| Model Number:      | VT6081            |                         |                    | Temp.(°C)/Hum.(%RH): | 26(°C)/60%RH   |              |            |
| Mode:              | Mode 2            |                         |                    | Date:                | 05/29/2014     |              |            |
| Test By:           |                   |                         |                    |                      |                | Eric Ou Yang |            |
| Frequency<br>(MHz) | Reading<br>(dBuV) | Correct<br>Factor(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m)    | Margin<br>(dB) | Remark       | Ant.Polar. |
| 13.5600            | -6.99             | 14.18                   | 7.19               | 84.00                | -76.81         | peak         | H          |
| 13.5601            | -3.74             | 14.18                   | 10.44              | 84.00                | -73.56         | peak         | V          |

Note: The level is measured at 1 meter and is converted into result at 30 meter.

The converted formula listed below:

Measure result (1 meter distance): a

Compute result (30 meter distance): A

$$A = a + (40 \cdot \log(1/30))$$

$$\text{ex. } a = 52.09 \text{ dBuV}, A = 52.09 + (40 \cdot \log(1/30)) = -6.99 \text{ dBuV}$$



## 9kHz ~ 30MHz:

| Standard:          | FCC Part 15C      |                         | Test Distance:     | 300m/30m             |                |              |                     |
|--------------------|-------------------|-------------------------|--------------------|----------------------|----------------|--------------|---------------------|
| Test item:         | Radiated Emission |                         |                    | Power:               | AC 120V/60Hz   |              |                     |
| Model Number:      | VT6081            |                         |                    | Temp.(°C)/Hum.(%RH): | 26(°C)/60%RH   |              |                     |
| Mode:              | Mode 2            |                         |                    | Date:                | 05/29/2014     |              |                     |
| Test By:           |                   |                         |                    |                      |                | Eric Ou Yang |                     |
| Frequency<br>(MHz) | Reading<br>(dBuV) | Correct<br>Factor(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m)    | Margin<br>(dB) | Remark       | Ant.Polar.<br>H / V |
| 0.1290             | -44.83            | 14.03                   | -30.80             | 25.88                | -56.68         | QP           | H                   |
| 2.1684             | -45.38            | 15.20                   | -30.18             | 29.55                | -59.73         | QP           | H                   |
| 5.9172             | -46.68            | 15.85                   | -30.83             | 29.55                | -60.38         | QP           | H                   |
| 13.4100            | -18.62            | 13.86                   | -4.76              | 40.51                | -45.27         | QP           | H                   |
| 13.5530            | -14.01            | 14.12                   | 0.11               | 50.48                | -50.37         | QP           | H                   |
| 16.8640            | -44.83            | 14.04                   | -30.79             | 29.55                | -60.34         | QP           | H                   |
| 20.2530            | -45.38            | 14.26                   | -31.12             | 29.55                | -60.67         | QP           | H                   |
| 22.2023            | -48.38            | 13.67                   | -34.71             | 29.55                | -64.26         | QP           | H                   |
| 0.1290             | -45.33            | 14.03                   | -31.30             | 25.88                | -57.18         | QP           | V                   |
| 2.2282             | -46.89            | 15.26                   | -31.63             | 29.55                | -61.18         | QP           | V                   |
| 5.1675             | -45.74            | 16.01                   | -29.73             | 29.55                | -59.28         | QP           | V                   |
| 9.9660             | -51.46            | 14.98                   | -36.48             | 29.55                | -66.03         | QP           | V                   |
| 13.4100            | -16.93            | 13.90                   | -3.03              | 40.51                | -43.54         | QP           | V                   |
| 13.5530            | -11.77            | 14.10                   | 2.33               | 50.48                | -48.15         | QP           | V                   |
| 17.5837            | -46.55            | 14.12                   | -32.43             | 29.55                | -61.98         | QP           | H                   |
| 23.1321            | -47.08            | 13.39                   | -33.69             | 29.55                | -63.24         | QP           | H                   |

Note: The level is measured at 1 meter and is converted into result at 300 or 30 meter.

The converted formula listed below:

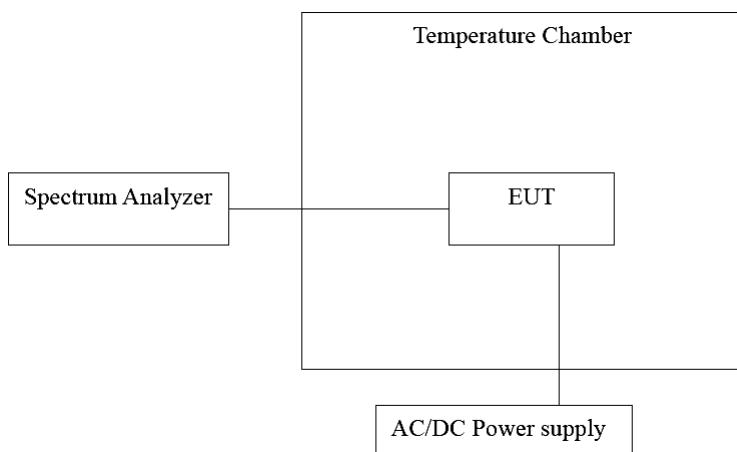
Measure result (1 meter distance): a

Compute result (30 or 300 meter distance): A

$$A = a + (40 * \log(1/300 \text{ or } 1/30))$$

$$\text{ex. } a \text{ (0.0090 MHz)} = 54.25 \text{ dBuV}, A = 54.25 + (40 * \log(1/300)) = -44.83 \text{ dBuV}$$

**30MHz ~ 1GHz:**


| Standard:          | FCC Part 15C      |                         |                    | Test Distance:       | 3m             |              |                     |
|--------------------|-------------------|-------------------------|--------------------|----------------------|----------------|--------------|---------------------|
| Test item:         | Radiated Emission |                         |                    | Power:               | AC 120V/60Hz   |              |                     |
| Model Number:      | VT6081            |                         |                    | Temp.(°C)/Hum.(%RH): | 26(°C)/60%RH   |              |                     |
| Mode:              | Mode 2            |                         |                    | Date:                | 05/29/2014     |              |                     |
| Test By:           |                   |                         |                    |                      |                | Eric Ou Yang |                     |
| Frequency<br>(MHz) | Reading<br>(dBuV) | Correct<br>Factor(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m)    | Margin<br>(dB) | Remark       | Ant.Polar.<br>H / V |
| 201.0000           | 50.83             | -14.35                  | 36.48              | 43.50                | -7.02          | QP           | H                   |
| 252.0000           | 47.78             | -12.08                  | 35.70              | 46.00                | -10.30         | QP           | H                   |
| 288.0000           | 46.26             | -10.59                  | 35.67              | 46.00                | -10.33         | QP           | H                   |
| 414.0000           | 41.58             | -7.91                   | 33.67              | 46.00                | -12.33         | QP           | H                   |
| 483.0000           | 40.44             | -6.57                   | 33.87              | 46.00                | -12.13         | QP           | H                   |
| 621.0000           | 36.54             | -3.70                   | 32.84              | 46.00                | -13.16         | QP           | H                   |
| 144.0000           | 46.62             | -12.01                  | 34.61              | 43.50                | -8.89          | QP           | V                   |
| 195.0000           | 50.55             | -14.25                  | 36.30              | 43.50                | -7.20          | QP           | V                   |
| 414.0000           | 43.06             | -7.91                   | 35.15              | 46.00                | -10.85         | QP           | V                   |
| 483.0000           | 45.36             | -6.57                   | 38.79              | 46.00                | -7.21          | QP           | V                   |
| 621.0000           | 31.97             | -3.70                   | 28.27              | 46.00                | -17.73         | QP           | V                   |
| 828.0000           | 29.52             | 0.24                    | 29.76              | 46.00                | -16.24         | QP           | V                   |

## 6 Frequency Stability Measurement

### 6.1. Limit

According to §15.207(e), the frequency tolerance of the carrier signal shall be maintained within +/- 0.01% of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

### 6.2. Test Setup



### 6.3. Test Instruments

| Equipment                      | Manufacturer | Model Number | Serial Number | Cal. Date  | Remark |
|--------------------------------|--------------|--------------|---------------|------------|--------|
| Spectrum Analyzer              | Agilent      | E4408B       | MY45107753    | 07/11/2013 | (1)    |
| Temperature & Humidity Chamber | TAICHY       | MHU-225LA    | 980729        | 08/07/2013 | (1)    |
| Test Site                      | ATL          | TE02         | TE02          | N.C.R.     | -----  |

Remark: (1) Calibration period 1 year. (2) Calibration period 2 years.

NOTE: N.C.R. = No Calibration Request.

## 6.4. Test Procedure

1. Place the EUT on the table and set it in the transmitting mode.
2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
3. Set the environment into appropriate environment.
4. Set the spectrum analyzer as RBW=1kHz, VBW = RBW, Span = 200kHz, Sweep = auto.
5. Mark the peak frequency and measure the frequency tolerance using frequency counter function.
6. Repeat until all the results are investigated.

## 6.5. Test Result

### Temperature Variations

| Model Number | VT6081        |                          |                      |               |            |                    |
|--------------|---------------|--------------------------|----------------------|---------------|------------|--------------------|
| Mode         | Mode 2        |                          |                      |               |            |                    |
| Date of Test | 05/29/2014    |                          |                      | Test Site     | TE02       |                    |
| Temp. (°C)   | Voltage (VAC) | Measured Frequency (MHz) | Delta Frequency (Hz) | Tolerance (%) | Limit (±%) | Result (Pass/Fail) |
| -20          | 120           | 13.5601                  | 100.0000             | 0.0007        | ±0.01      | Pass               |
| -10          |               | 13.5603                  | 300.0000             | 0.0022        | ±0.01      | Pass               |
| 0            |               | 13.5605                  | 500.0000             | 0.0037        | ±0.01      | Pass               |
| 10           |               | 13.5604                  | 400.0000             | 0.0029        | ±0.01      | Pass               |
| 20           |               | 13.5603                  | 300.0000             | 0.0022        | ±0.01      | Pass               |
| 30           |               | 13.5602                  | 200.0000             | 0.0015        | ±0.01      | Pass               |
| 40           |               | 13.5605                  | 500.0000             | 0.0037        | ±0.01      | Pass               |
| 50           |               | 13.5604                  | 400.0000             | 0.0029        | ±0.01      | Pass               |

### Voltage Variations

| Model Number | VT6081        |                          |                      |               |            |                    |
|--------------|---------------|--------------------------|----------------------|---------------|------------|--------------------|
| Mode         | Mode 2        |                          |                      |               |            |                    |
| Date of Test | 05/29/2014    |                          |                      | Test Site     | TE02       |                    |
| Temp. (°C)   | Voltage (VAC) | Measured Frequency (MHz) | Delta Frequency (Hz) | Tolerance (%) | Limit (±%) | Result (Pass/Fail) |
| 20           | 102           | 13.5605                  | 500.0000             | 0.0037        | ±0.01      | Pass               |
|              | 120           | 13.5602                  | 200.0000             | 0.0015        | ±0.01      | Pass               |
|              | 138           | 13.5603                  | 300.0000             | 0.0022        | ±0.01      | Pass               |