

Date: August 5, 1998

Page 1 of 11

TO: Richard Fabina  
Federal Communications  
Commission

FROM: Michael J. Peters  
Staff Engineer / Emissions

RE: Additional information request for FCC ID: NCABR132V200LXUS

Mr. Fabina,

The following addresses the requests for information you sent on July 20, 1998 via email. The responses are numbered the same as the original questions.

*1. Provide the peak level of radiated emissions in the restricted bands listed in Section 15.205. In accordance with Section 15.35(b) of the FCC Rules, there is both a peak and average field strength limit on radiated emissions above 1000 MHz. Compliance with both of these limits must be demonstrated. You only provided average measurements. See items 3 and 4 below.*

All measurements above 1000 MHZ were made with a peak detector as specified in B.6.2 of the application. An average measurement is determined by subtracting an average factor from the peak reading, however, an average factor was not applied. Since the peak measurements meet the average limits, both peak and average measurements meet the applicable requirements.

Also note, that no emissions were detected other than the those in the transmit band. Harmonic measurements are noise floor readings.

*2. Provide the average level of an AC line conducted emission and describe how the three conditions at the end of Section 15.207(b) are met when 13 dB was subtracted from the CISPR quasi-peak level of an emission.*

Three conditions:

*1) The measuring instrumentation with the average detector shall employ a linear IF amplifier:*

Please see the pages following the line-conducted data table. One is a page from the Hewlett Packard 8546A EMI Receiver specifications (The instrument used for line-conducted emissions testing) and the second is CISPR 16-1 Annex E.1 *Response of Pre-detector Stages*. The HP page indicates the receiver is CISPR 16 compliant and Annex E indicates that average value is proportional to pulse repetition rate (aka linear).

*2) Care must be taken not to exceed the dynamic range of the measuring instrument when measuring an emission with a low duty cycle:*

If the duty cycle of the measured emissions were very low, the measured average emissions would drop to the noise floor. The one emission in question dropped 12 dB from the quasi-peak measurement, therefore the measured emissions were not outside the dynamic range of the measurement receiver.

6/5/98

100-240V  
50-60Hz



Date: August 5, 1998

Page 2 of 11

TO: Richard Fabina  
 Federal Communications  
 Commission

FROM: Michael J. Peters  
 Staff Engineer / Emissions

RE: Additional information request for FCC ID: NCABR132V200LXUS

3) *The test report required for verification or for an application for a grant of equipment authorization shall contain all details supporting the use of this option:*

This was not done until now. If it had, it would be unnecessary to justify the measurements now.

### FCC Part 15.107 & 15.207 Conducted Emissions Table for the BR 132

| Frequency<br>(MHz) | Reading<br>Line 1<br>(dBuV) | Reading<br>Line 2<br>(dBuV) | Limit<br>(dBuV) | Margin<br>(dB) |
|--------------------|-----------------------------|-----------------------------|-----------------|----------------|
| 0.492              | 38qp                        | 38qp                        | 48              | -10            |
|                    | 33av                        | 32av                        |                 |                |
| 0.688              | 40qp                        | 41qp                        | 48              | -7             |
|                    | 35av                        | 35av                        |                 |                |
| 1.471              | 43qp                        | 42qp                        | 48              | -5             |
|                    | 34av                        | 33av                        |                 |                |
| 2.000              | 49qp                        | 47qp                        | 48              | +1             |
|                    | 37av                        | 35av                        |                 | -12*           |
| 2.391              | 41qp                        | 39qp                        | 48              | -6             |
|                    | 33av                        | 31av                        |                 |                |
| 3.321              | 32qp                        | 32qp                        | 48              | -16            |
|                    | 22av                        | 22av                        |                 |                |

\* QP measurement was reduced by 13 dB to compare with the limit.

Date: February 24, 1998

Engineer: Kouma Sinn



## General Specifications: HP 8546A EMI Receiver

|                               |                  |
|-------------------------------|------------------|
| Temperature Range             |                  |
| Operating*                    | 0 °C to +55 °C   |
| Storage                       | -20 °C to +65 °C |
| * Disk drive +5 °C to +45 °C. |                  |

**EMI Compatibility**

Receiver is in compliance with CISPR Pub. 16.

Receiver radiated and conducted emissions performance is in compliance with CISPR Pub. 11/1990 Group 1 Class A.

Receiver susceptibility performance is in compliance with CISPR Pub. 16 at 3 V/m field strength.

|                |                                |
|----------------|--------------------------------|
| Inputs         |                                |
| Low frequency  | Type N, 50 Ω, 9 kHz to 50 MHz  |
| High frequency | Type N, 50 Ω, 9 kHz to 6.5 GHz |

|             |                                                                                                   |
|-------------|---------------------------------------------------------------------------------------------------|
| Detectors   |                                                                                                   |
| Measurement | Peak, Quasi-Peak, and Average<br>Quasi-Peak and Average time constants conform with CISPR Pub.16. |
| Overload    | Broadband RF (band 1 and 2 only) and IF                                                           |

|               |                                                                                                                                                       |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| IF Bandwidths |                                                                                                                                                       |
| Measurement   | 200 Hz, 9 kHz, and 120 kHz<br>(6dB bandwidths which conform to CISPR Pub.16)                                                                          |
| Diagnostic    | 30 Hz to 3 MHz, 3 dB bandwidths in 1,3,10 steps ( $\pm 20\%$ characteristic), and 5 MHz. Four-pole synchronously-tuned, approximately Gaussian shape. |

|                      |                                                                                                                                                                      |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Averaging Bandwidths |                                                                                                                                                                      |
|                      | 30 Hz to 1 MHz in 1,3,10 steps ( $\pm 30\%$ characteristic), and 3 MHz. Post-detection single pole low-pass filters.<br>1,3,10 Hz digital filters with anti-aliasing |

|                           |            |
|---------------------------|------------|
| Input Attenuator          |            |
| Range                     | 0 to 50 dB |
| Linearity Test Attenuator | 4 dB       |

|                  |                                                           |
|------------------|-----------------------------------------------------------|
| Preamplification | 12 dB (Band 1 and 2) 27 dB $\pm 4$ dB (Band 3 and Bypass) |
|------------------|-----------------------------------------------------------|

|              |           |
|--------------|-----------|
| Demodulation | AM and FM |
|--------------|-----------|

|            |                                                                                      |
|------------|--------------------------------------------------------------------------------------|
| Disk Drive | Internal 3.5 inch disk drive, compatible with 1.44 MByte<br>DOS and LIF format disks |
|------------|--------------------------------------------------------------------------------------|

## Annex E

(normative)

### Response of average and peak measuring receivers

(subclause 4.2.1)

#### E.1 Response of pre-detector stages

It has been shown\* that the area under the envelope of the impulse response curve of a narrowband circuit having a symmetrical frequency characteristic is independent of the bandwidth, and is given by:

$$\int_{-\infty}^{+\infty} A(t) dt = 2v\tau G_0$$

where

$v$  and  $\tau$  are the amplitude and duration of a rectangular pulse for which  $B_{\text{imp}} \tau \ll 1$  and  $G_0$  is the gain of the circuit at the centre frequency.

This theorem is valid only in the case of a non-oscillating envelope. The oscillatory envelope is characteristic of double-tuned circuits, and unless a phase sensitive detector is used, it may be necessary to compensate by calibration the error introduced by the oscillatory response. In the case of critical coupling, the second peak of the envelope is about 8.3 % of the first one.

As long as pulses do not overlap in the output of the IF amplifier, the average value is proportional to the pulse repetition rate,  $n$ .

Therefore, the average voltage is equal to  $2v\tau G_0 n$ .

In view of equation (1), it is not considered meaningful to define an effective bandwidth for an average measuring receiver.

#### E.2 Overload factor

For calculation of overload factor and for use in connection with peak measuring receivers, it is useful to define a quantity known as the effective impulse bandwidth of the pre-detector circuit as follows:

$$B_{\text{imp}} = A(t)_{\text{max}} / 2G_0$$

where

$A(t)_{\text{max}}$  is the peak envelope output of the intermediate-frequency stages with a unit impulse applied.

\* "Response of ideal radio noise meter to continuous sine-wave, recurrent impulses, and random noise" by David B. Geselowitz, IRE Transactions, RFI, Vol. RFI-3, no. 1, pp 2-11, May, 1961. See also, "Impulse excitation of a cascade of series tuned circuits" by S. Sabaroff, Proc. IRE, Vol. 32, pp 758-760, December 1944.

# ITS Intertek Testing Services

Date: August 5, 1998

Page 5 of 11

TO: Richard Fabina  
Federal Communications  
Commission

FROM: Michael J. Peters  
Staff Engineer / Emissions

RE: Additional information request for FCC ID: NCABR132V200LXUS

3. Confirm that the hopping of this transmitter was stopped to the three channels measured for average radiated emission field strength levels. The transmitter must be stopped to one channel and continuously transmitting normal data on one of three channels as specified in Section 15.31(m) of the Rules.

Please see section C.0.2 of the application. This specifies that hopping was stopped at three frequencies (low, middle and high) for fundamental and harmonic measurements and the search for emissions was done while operating normally (hopping).

If I understand you correctly, you are asking if the measurements were made while transmitting continuously at three different frequencies simultaneously. This is not the case and is not an appropriate way of testing a spread spectrum frequency hopping transmitter since the nature of the device does not allow the transmission at more than one frequency at a time.

Under 15.31<sup>o</sup> it specifies that swept frequency equipment (I believe FHSS can loosely be defined as such) that the sweeping be stopped at frequencies chosen for measurement. ANSI C63.4:1992 Section 13.1.1 Operating Conditions seems to combine 15.31<sup>o</sup> and (m) together and is my basis for stopping the hopping as performed in the testing. I understand that if the device had the capability to operate at more than one frequency at a time it would be appropriate to test with it operating at those frequencies simultaneously

4. What resolution bandwidth (RBW) and video bandwidth (VBW) is used for both peak and average field strength radiated emission levels.

The following table indicates the resolution bandwidth used for different frequencies measured.

| Frequency (MHZ) | Resolution Bandwidth (KHz) | Video Bandwidth (KHz) |
|-----------------|----------------------------|-----------------------|
| 2482.5 +        | 30 KHz                     | 30 KHz                |

Note that no spurious emissions were detected below the transmit band. The harmonic measurements made were noise floor. No emissions were detected above the transmit band.



# ITS Intertek Testing Services

Intertek Testing Services NA, Inc.  
70 Codman Hill Road  
Boxborough, MA 01719  
Tel (978) 263-2662  
Fax (978) 635-9534

Date: August 5, 1998

Page 6 of 11

TO: Richard Fabina  
Federal Communications  
Commission

FROM: Michael J. Peters  
Staff Engineer / Emissions

RE: Additional information request for FCC ID: NCABR132V200LXUS

5. *RBW and VBW of measuring instrument during conducted antenna emission measurements.*

| Frequency (MHz) | Resolution Bandwidth (KHz) | Video Bandwidth (KHz) |
|-----------------|----------------------------|-----------------------|
| 30 - 1000       | 120                        | 300                   |
| 1000 +          | 1000*                      | 1000*                 |

\* Except for as shown on question 6.

6. *RBW and VBW of measuring instrument during output power measurements.*

| Frequency (MHz) | Resolution Bandwidth (KHz) | Video Bandwidth (KHz) |
|-----------------|----------------------------|-----------------------|
| 2400 - 2483.5   | 10,000                     | 10,000                |

7. *Photo of the top of the RF board with the shields removed to show component location underneath it in accordance with Section 2.1033(b)(7). Since the photos are not labeled, you will have to figure out which board I'm talking about by looking at what photos were provided.*

A Photo of the top of this board is at the end of this document.

8. *Photo of the top of the digital board with the RF shields removed to show component location underneath it.*

A Photo of the top of this board is at the end of this document.

9. *The installer/user must be provided with specific information which will help him install this transmitter in such a manner that people will not be exposed to RF energy in excess of the Commission's guidelines. Please provide such information for the high gain, omni-directional antennas that are not professionally installed and confirm that it will be included into the final version of the user's manual for this transmitter. See Section 3 of Supplement C to OET Bulletin 65 for further guidance regarding MPE distances.*

I believe what you are referring to is Table 1 on Page 24 that specifies guidelines for high gain antennas. WaveAccess' Installation manual refers in several places to OET guidelines and warnings against pointing antennas in the direction of human traffic areas. The following indicates the page and subject for each warning in the instruction manual. Since specific labeling



Date: August 5, 1998

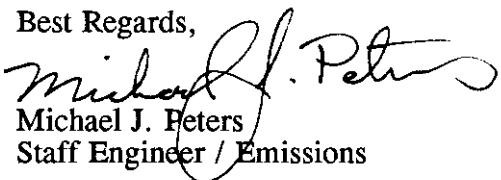
Page 7 of 11

TO: Richard Fabina  
 Federal Communications  
 Commission

FROM: Michael J. Peters  
 Staff Engineer / Emissions

RE: Additional information request for FCC ID: NCABR132V200LXUS

requirements are not specified, the below indicated instructions and warning meet the intent of the guidelines.


| Page | Section                    | Description                                                                                                                    |
|------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| 6    | 2.2 The waveLyNX Antennae  | Indicates must be professionally installed                                                                                     |
| 11   | 2.3.1 Placement of Antenna | Indicates must be professionally installed<br>Indicates safe distance of 1 foot and<br>instructs on position and warning signs |
| 12   | 2.3.1.1 Indoors            | Indicates must be pointed away from human traffic<br>areas                                                                     |
| 13   | 2.3.1.2 Outdoors           | Indicates BR 132 emits high frequency RF energy<br>and warns against close proximity                                           |

10. For your information - Test set-up diagrams and descriptions are needed for all tests on a spread spectrum transmitter. Otherwise, we cannot tell if you have tested a device properly and we will have to pre-grant sample test a transmitter before we issue a grant of Certification.

Following the Photos are diagrams of the equipment setup for each of the tests. I hope that these diagrams are sufficient to answer your concerns of measurement setup. ITS policy is to adhere to the guidelines of ANSI C63.4 in the measurement of intentional and un-intentional emissions and characteristics measurements.

I hope the above and attached are sufficient to grant the certification of the WaveAccess SM 132. If you have any questions or comments, please do not hesitate to contact me. I can be reached by phone at (978) 635-8507, by facsimile at (978) 266-9308 or by email at mjp@itsqs.com.

Best Regards,

  
 Michael J. Peters  
 Staff Engineer / Emissions

Encl.. Circuit Board Photos  
 Equipment setup diagrams  
 FAX: (301) 344-2050



# Intertek Testing Services NA, Inc.

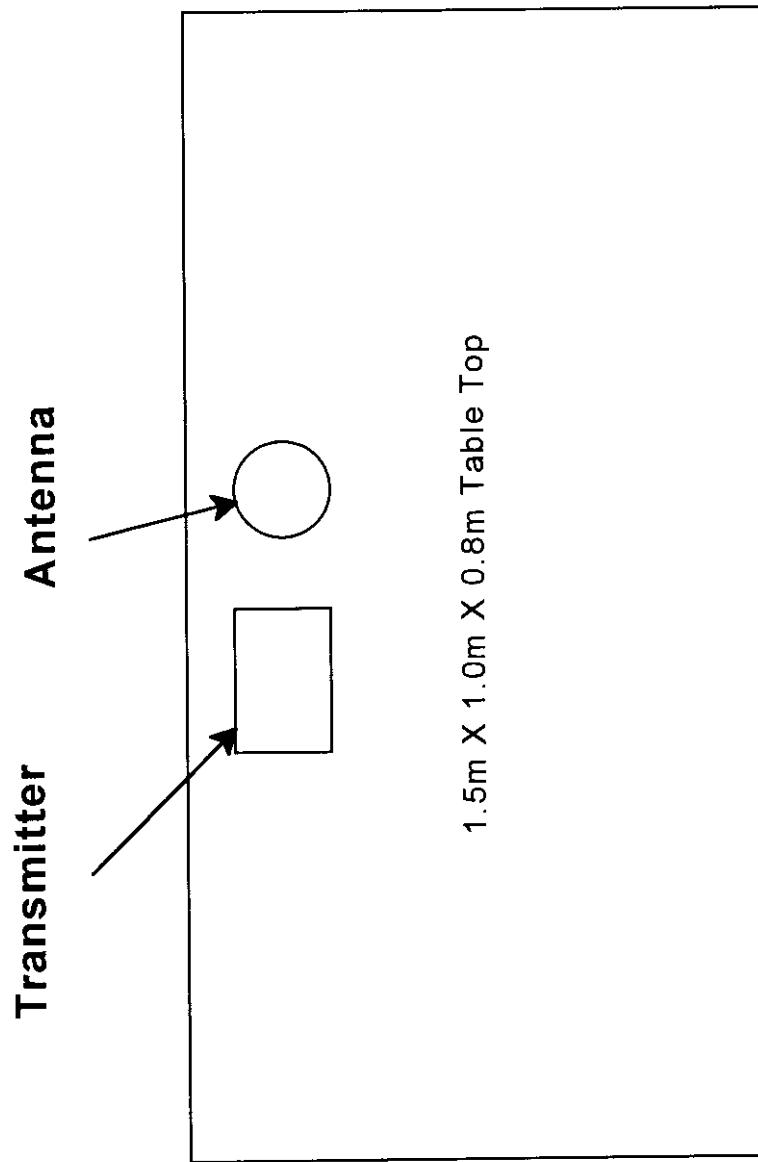
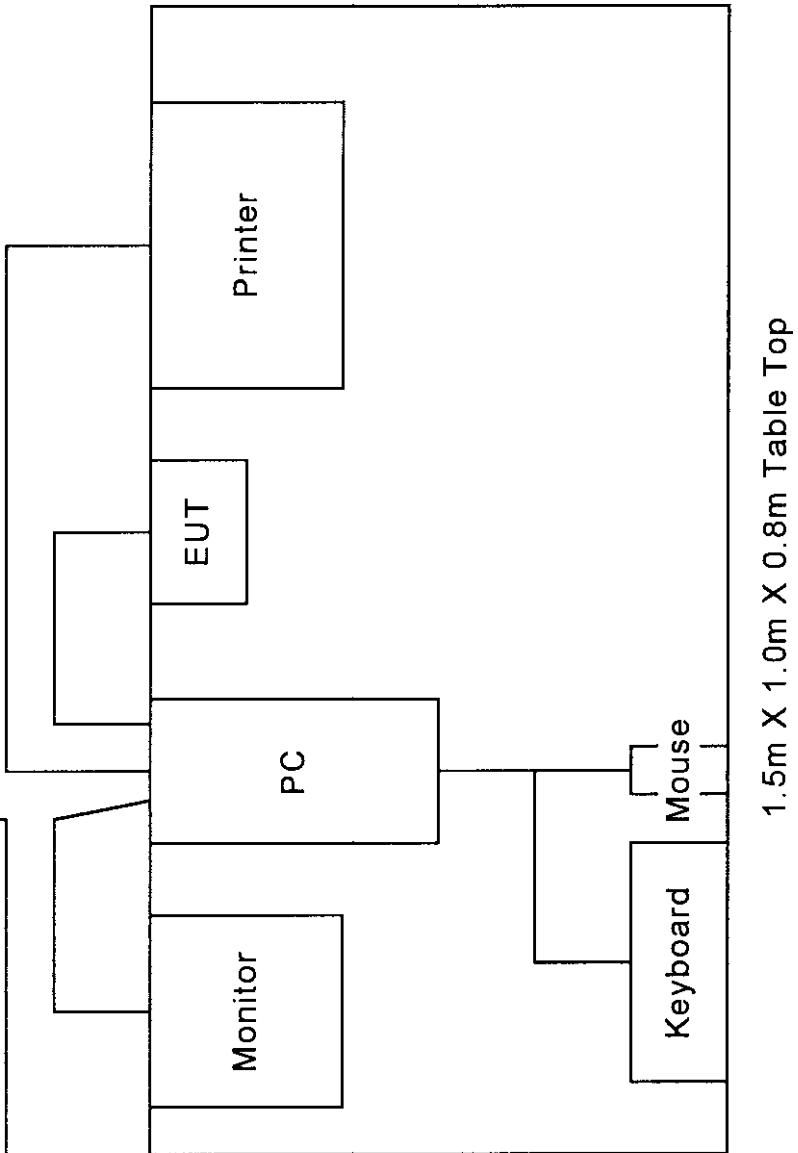




Figure 1 - Measurement Setup for Radiated Emissions above 2483.5 MHz

# Intertek Testing Services NA, Inc.

Interconnecting Cable connections,  
bundled to not be  
closer to the reference  
ground plane than 40 cm.



1.5m X 1.0m X 0.8m Table Top

Figure 2 - Radiated Emissions Setup for Unintentional emissions below 2400 MHz  
Same setup is used for Line-conducted and antenna conducted emissions. Note that the  
antenna for the EUT is integral with the transmitter with this setup.

## **Exhibit B General Information**

### **B.1.0 (2.201) Emission, Modulation & Transmission Characteristics**

The emissions designator is determined as follows:

The bandwidth of the spread spectrum is: 79 MHZ

First Symbol - Type of Modulation: Combination of angle, pulse & amplitude (W)

Second Symbol - Nature of Signal(s) Modulating the Carrier: Single channel digital (1)

Third Symbol - Type of Information to be Transmitted: Data (D)

Therefore the emission designator is as follows

**79M0W1D**

### **B.1.1 (2.202) Bandwidth**

Bandwidth criteria is contained in C.8.6 of this application. Bandwidth measurements were made in accordance with ANSI C63.4(1992).

### **B.2.0 (2.907) Certification**

The WaveAccess waveLyNX BR132 has been tested to the applicable requirements of Part 15 of the FCC rules and requires certification for un-licensed operation.

### **B.2.1 (2.909) Responsible Party**

WaveAccess Ltd.  
P.O. Box 2473  
10 Hayezira Street  
Ra'anana, Israel 43663  
Phone: 011-972-9-748-2606  
Fax: 011-972-9-748-3218

# Intertek Testing Services NA, Inc.

| Description                                             | Section of FCC Rules | Report Location | Page Number |
|---------------------------------------------------------|----------------------|-----------------|-------------|
| Emission, Modulation & Transmission Characteristics     | 2.201                | B.1.0           | 2           |
| Bandwidth                                               | 2.202                | B.1.1           | 2           |
| Certification                                           | 2.907                | B.2.0           | 2           |
| Responsible Party                                       | 2.909                | B.2.1           | 2           |
| Identification                                          | 2.925                | B.2.2           | 3           |
| FCC Identifier                                          | 2.926                | B.2.3           | 3           |
| Measurement Procedure                                   | 2.947                | B.3.0           | 3           |
| Description of Measurement Facility                     | 2.948                | B.3.1           | 6           |
| Application for Certification                           | 2.1033               | B.4.0           | 8           |
| Form 731                                                | a)                   | B.4.1           | 8           |
| Technical Report                                        | b)                   | B.4.2           | 8           |
| 1) Name and Address of Manufacturer/Applicant           |                      | B.4.2.1         | 8           |
| 2) FCC Identifier                                       |                      | B.4.2.2         | 8           |
| 3) Installation and Operating Instructions              |                      | B.4.2.3         | 8           |
| 4) Brief Description of circuit functions and operation |                      | B.4.2.4         | 8           |
| 5) Block Diagram                                        |                      | B.4.2.5         | 9           |
| 6) Radiated and Conducted Emissions                     |                      | B.4.2.6         | 9           |
| Test Procedure                                          |                      |                 |             |
| Date                                                    |                      |                 |             |
| Location                                                |                      |                 |             |
| Device Tested                                           |                      |                 |             |
| Sample Calculation                                      |                      | B.4.2.7         | 9           |
| 7) Photographs                                          |                      | B.4.2.8         | 9           |
| 8) Peripherals tested with                              |                      | B.4.2.9         | 11          |
| 11) FHSS Receiver Characteristics                       |                      |                 |             |
| Application Fee and 731 Form                            | c)                   | B.4.3           | 11          |
| Measurement Procedure                                   | 2.1041               | B.3.0           | 3           |

# Intertek Testing Services NA, Inc.

---

| Description                                                                                                              | Section of FCC Rules | Report Location | Page Number |
|--------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------|-------------|
| Information on Identification Label                                                                                      | 2.1045               | B.5.0           | 11          |
| General Technical Requirements<br>a) Good Engineering Judgement<br>b) User controls                                      | 15.15                | B.5.1           | 12          |
| Labelling Requirements (3)                                                                                               | 15.19                | B.5.2           | 12          |
| Information to User                                                                                                      | 15.21                | B.5.3           | 12          |
| Special Accessories                                                                                                      | 15.27                | B.5.4           | 12          |
| Measurement Standards<br>(a)(6) ANSI C63.4(1992)<br>(c) Swept Frequency<br>(d) Open Area Test Site                       | 15.31                | B.6.0           | 12          |
| Frequency Range of Radiated Emissions<br>(a)(1) To the 10th Harmonic<br>(b)(1) To the 5th Harmonic                       | 15.33                | B.6.1           | 12          |
| Measurement Detector and Bandwidth                                                                                       | 15.35                | B.6.2           | 13          |
| Equipment Authorization of Unintentional Radiators<br>(a) Class B PC Peripheral - Certification<br>(b) Receiver - Exempt | 15.101               | B.7.0           | 13          |
| Information to User<br>(b) Class B User Manual Instructions                                                              | 15.105               | B.8.0           | 13          |
| Conducted Limits                                                                                                         | 15.107               | C.1.0           | 16          |
| Radiated Emission Limits                                                                                                 | 15.109               | C.2.0           | 17          |
| Antenna Power Conduction Limits for Receivers                                                                            | 15.111               | C.3.0           | 17          |
| Equipment Authorization Procedure                                                                                        | 15.201               | B.7.0           | 13          |
| Antenna Requirement                                                                                                      | 15.203               | C.4.0           | 17          |
| Restricted Bands of Operation                                                                                            | 15.205               | C.6.0           | 17          |
| Conducted Limits                                                                                                         | 15.207               | C.7.0           | 18          |
| Radiated Emissions Limits: General Requirements                                                                          | 15.209               | C.6.0           | 17          |
| External Amplifier and Antenna Modification                                                                              | 15.204               | C.5.0           | 17          |

# Intertek Testing Services NA, Inc.

---

| Section of FCC Rules | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Report Location                                                                                                                                    | Page Number                                                                                  |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| 15.247               | Operation within the Bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.<br>(a) Frequency Hopping Spread Spectrum<br>(1) Channel Separation<br>Pseudorandom Operation<br>Channel usage (equal on average)<br>Receiver characteristics<br>(ii) Number of Hopping Frequencies<br>20 dBc Bandwidth<br>Average Time of Occupancy<br>(b) (1) Output Power<br>(3)(i) Fixed Point-to-Point Operation<br>(iii) Point-to-Point Installation Instructions<br>(4) Public exposure to RF (1.1307)<br>(c) Conducted Spurious Emissions<br>Restricted bands Radiated Emissions<br>(g) Hopping for Long/Short Periods<br>(h) Hopping Intelligence | C.8.0<br>C.8.1<br>C.8.2<br>C.8.3<br>C.8.4<br>C.8.5<br>C.8.6<br>C.8.7<br>C.8.8<br>C.8.9<br>C.8.10<br>C.8.11<br>C.8.12<br>C.8.13<br>C.8.14<br>C.8.15 | 19<br>19<br>19<br>19<br>19<br>19<br>19<br>20<br>21<br>21<br>22<br>23<br>23<br>24<br>24<br>24 |

**B.2.2 (2.925) Identification**

- a)(1) The FCC identifier is indicated on the FORM 731.
- a)(2) Labeling information is contained in D.3.0 of this application.

The waveLyNX BR132 is both a spread spectrum transmitter and a Class B computer peripheral. WaveAccess would like to market the product under a single FCC identifier.

**B.2.3 (2.926) FCC Identifier**

The FCC identifier is indicated on the FORM 731.

It is, FCC ID: NCABR132V200LXUS

**B.3.0 (2.947 & 2.1041) Measurement Procedure**

Test Equipment List:

Some of the following measurement equipment were used during compliance testing:

# Intertek Testing Services NA Inc.

---

| EQUIPMENT LIST TABLE 1 |                   |                   |                   |                  |           |
|------------------------|-------------------|-------------------|-------------------|------------------|-----------|
| Abbr                   | Equipment         | Manufacturer      | Model             | Serial           | Cal Due   |
| ANT1                   | BROADBAND ANTENNA | COMPLIANCE DESIGN | B1000             | 1649, 1650, 1651 | 25Apr98   |
| ANT2                   | BROADBAND ANTENNA | COMPLIANCE DESIGN | B1000             | 1831, 1850, 1852 | 11Jun98   |
| ANT3                   | BROADBAND ANTENNA | COMPLIANCE DESIGN | B1000             | 668, 523, 533    | 15Apr98   |
| ANT4                   | BROADBAND ANTENNA | COMPLIANCE DESIGN | B1000             | 3317, 3245, 3352 | 03Jul98   |
| ANT5                   | BROADBAND ANTENNA | COMPLIANCE DESIGN | B1000             | 1670, 1671, 1672 | 29May98   |
| CLMP1                  | ABSORBING CLAMP   | FISCHER CUSTOM    | F-201             | 122              | 30Apr98   |
| CLMP2                  | ABSORBING CLAMP   | FISCHER CUSTOM    | F-201             | 297              | 16Jan99   |
| DIP1                   | TUNED DIPOLE SET  | COMPLIANCE DESIGN | A100              | 402              | 30-Jan-99 |
| DIP2                   | TUNED DIPOLE SET  | COMPLIANCE DESIGN | A100              | 506              | 24Jun98   |
| DIP3                   | TUNED DIPOLE SET  | COMPLIANCE DESIGN | A100              | 3947             | 23Jan99   |
| HORN1                  | HORN ANTENNA      | EMCO              | 3115              | 4632             | 03Jul98   |
| HORN2                  | HORN ANTENNA      | EMCO              | 3115              | 4675             | 02Sep98   |
| HORN3                  | HORN ANTENNA      | EMCO              | 3116              | 2090             | 11Feb99   |
| HP1                    | SPECTRUM ANALYZER | HEWLETT PACKARD   | 8591              | 3308A01445       | 12May98   |
| HP2                    | SPECTRUM ANALYZER | HEWLETT PACKARD   | 8591              | 3346A02319       | 25Jun98   |
| HP3                    | SPECTRUM ANALYZER | HEWLETT PACKARD   | 8593A             | 3009A00659       | 30Apr98   |
| LISN1                  | LISN              | SOLAR ELECTRONICS | 8012-50-R-24-BNC  | 871083           | 15Jan99   |
| LISN10                 | LISN              | SOLAR ELECTRONICS | 9252-50-R-24-BNC  | 941712           | 24May98   |
| LISN11                 | LISN              | SOLAR ELECTRONICS | 9252-50-R-24-BNC  | 941713           | 23May98   |
| LISN12                 | LISN              | SOLAR ELECTRONICS | 9252-50-R-24-BNC  | 941714           | 25Aug98   |
| LISN13                 | LISN              | SOLAR ELECTRONICS | 9252-50-R-24-BNC  | 955107           | 15Jan99   |
| LISN14                 | LISN              | SOLAR ELECTRONICS | 6338-5-TS-50-N    | 871131           | 27Jan99   |
| LISN15                 | LISN              | SOLAR ELECTRONICS | 8012-50-R-24-BNC  | 865575           | 1/10/98   |
| LISN2                  | LISN              | SOLAR ELECTRONICS | 6338-5-TS-50-N    | 871132           | 27Jan99   |
| LISN3                  | LISN              | SOLAR ELECTRONICS | 8012-50-R-24-BNC  | 8379114          | 14Jan99   |
| LISN4                  | LISN              | SOLAR ELECTRONICS | 8012-50-R-24-BNC  | 837929           | 15Jan99   |
| LISN5                  | LISN              | SOLAR ELECTRONICS | 8012-50-R-24-BNC  | 934610           | 05Jun98   |
| LISN6                  | LISN              | SOLAR ELECTRONICS | 8012-50-R-24-BNC  | 934611           | 23May98   |
| LISN7                  | LISN              | SOLAR ELECTRONICS | 8012-50-R-24-BNC  | 934612           | 05Jun98   |
| LISN8                  | LISN              | SOLAR ELECTRONICS | 8028-50-TS-24-BNC | 871047           | 08Jul98   |
| LISN8                  | LISN              | SOLAR ELECTRONICS | 8028-50-TS-24-BNC | 871055           | 08Jul98   |

**Intertek Testing Services NA Inc.**

---

**EQUIPMENT LIST TABLE 2**

| Abbr   | Equipment         | Manufacturer      | Model             | Serial     | Cal Due |
|--------|-------------------|-------------------|-------------------|------------|---------|
| LISN8  | LISN              | SOLAR ELECTRONICS | 8028-50-TS-24-BNC | 883147     | 08Jul98 |
| LISN8  | LISN              | SOLAR ELECTRONICS | 8028-50-TS-24-BNC | 883151     | 08Jul98 |
| LISN9  | LISN              | SOLAR ELECTRONICS | 8028-50-TS-24-BNC | 953947     | 14Jan99 |
| LISN9  | LISN              | SOLAR ELECTRONICS | 8028-50-TS-24-BNC | 953948     | 14Jan99 |
| LISN9  | LISN              | SOLAR ELECTRONICS | 8028-50-TS-24-BNC | 953949     | 14Jan99 |
| LISN9  | LISN              | SOLAR ELECTRONICS | 8028-50-TS-24-BNC | 953950     | 14Jan99 |
| LOG1   | BICONOLOG ANTENNA | EMCO              | 3142              | 1116       | 1/13/99 |
| LOG2   | BICONOLOG ANTENNA | EMCO              | 3142              | 1223       | 12/6/98 |
| LOOP1  | LOOP ANTENNA      | EMPIRE DEVICES    | LG105             | 61         | 17Jan99 |
| LOOP2  | LOOP ANTENNA      | EMPIRE DEVICES    | LP105             | 905        | 17Jan99 |
| LOOP3  | LOOP ANTENNA      | EMCO              | 6509              | 9612-1403  | 05Jun98 |
| PRB1   | LINE PROBE        | SOLAR ELECTRONICS | 8614-1            | 932725     | 24May98 |
| PRB2   | LINE PROBE        | SOLAR ELECTRONICS | 8614-1            | 932731     | 08Jul98 |
| PRB3   | LINE PROBE        | SOLAR ELECTRONICS | 9533-1            | 955905     | 24May98 |
| PRE1   | PREAMPLIFIER      | COMPLIANCE DESIGN | P950              | 1648       | 02Apr98 |
| PRE2   | PREAMPLIFIER      | COMPLIANCE DESIGN | P950              | 5107       | 02Apr98 |
| PRE3   | PREAMPLIFIER      | COMPLIANCE DESIGN | P950              | 1828       | 02Apr98 |
| PRE4   | PREAMPLIFIER      | COMPLIANCE DESIGN | P950              | 1844       | 02Apr98 |
| PRE5   | PREAMPLIFIER      | COMPLIANCE DESIGN | P950              | PROTO1     | 02Apr98 |
| PRE6   | PREAMPLIFIER      | HEWLETT PACKARD   | 8447D             | 1937A03354 | 10Apr98 |
| PRE7   | PREAMPLIFIER      | HEWLETT PACKARD   | 8447D             | 2944A08718 | 16Apr98 |
| PRE8   | PREAMPLIFIER      | MITEQ             | NSP4000-NF        | 507145     | 9/25/98 |
| REC1   | RECEIVER          | HEWLETT PACKARD   | 8542              | 3520A00125 | 06Nov98 |
| REC1   | RF FILTER         | HEWLETT PACKARD   | 85420             | 3427A00126 | 06Nov98 |
| REC2   | RECEIVER          | HEWLETT PACKARD   | 85422             | 3625A00188 | 04Jan99 |
| REC2   | RF FILTER         | HEWLETT PACKARD   | 8542              | 3427A00177 | 04Jan99 |
| REC3   | RECEIVER          | HEWLETT PACKARD   | 8546A             | 3325A00160 | 09May98 |
| REC3   | RECEIVER          | HEWLETT PACKARD   | 8546A             | 3330A00158 | 09May98 |
| SCOPE1 | OSCILLOSCOPE      | TEKTRONIX         | TDS380            | B011379    | 07Oct98 |
| SIG1   | SIGNAL GENERATOR  | HEWLETT PACKARD   | 8648B             | 3537A01040 | 10Apr99 |
| TEK1   | SPECTRUM ANALYZER | TEKTRONIX         | 2784              | B010153    | 25Apr98 |

## **AC Wireline Conducted Measurement Method**

### Measurement Procedure

The transmitter shall be operated at its maximum power output. For a transceiver, the receiver portion can be tested at the same time as the transmitter.

The conducted emissions shall be measured with a 50 ohm/50 microhenry ( $\mu$ H) line impedance stabilization network (LISN).

A ground plane or screen is required for power line conducted measurements. This ground plane is to consist of a conducting floor and at least one vertical earth-grounded conducting surface. Each surface shall be at least 2.0 x 2.0 metres.

The EUT shall be placed 40 centimetres from the vertical grounded surface, and shall be kept at least 80 centimetres from any other earth-grounded conducting surface. The EUT shall be placed at a distance of 80 centimetres from the LISN and connected thereto by the AC power cord. Power cords with leads in excess of the 80 centimetres separating the EUT from the LISN shall be folded back and forth so as to form a bundle not exceeding 30 centimetres in length located at the LISN. The electrical bond between the LISN enclosure and the ground plane is ensured prior to the test.

## **Radiation Measurement Method**

### Measuring Distance

The following is a description of a "3-metre test site". Measurements using a calibrated site of greater dimensions are permitted, with the field strength extrapolated to the specified distance of the technical standard using an inverse linear distance extrapolation, i.e. 20 dB/decade.

### Open Field Test Site

Intertek Testing Services emissions test sites at 593 Massachusetts Avenue, Boxborough Massachusetts are registered with the FCC (Last updated as of January 16, 1997) and under the NAVLAP program (NAVLAP Lab Code: 100270-0).

## Intertek Testing Services NA Inc.

---

### Equipment Test Platform

The EUT is oriented in the manner in which it is designed to operate and placed on a nonconducting turntable 1.0 metre above ground; refer to Figure A(b). The table is capable of being rotated through 360 degrees in azimuth. The power supply and other external cables are fed through a hole in the centre of the table and extended downwards.

All available accessories are connected to the EUT by interconnection cables supplied by the manufacturer. Excess cables are folded back and forth to form a bundle 30 to 40 cm in length and placed on the test platform. It is also draped over the edge of the platform provided that it is kept at least 40 cm above the ground plane.

### Measurement Method

Extend the EUT antenna fully and operate the EUT in its normal mode of operation. The EUT's radiated spectrum shall be measured using a tuned dipole (or other standard antenna herein known as the measurement antenna) in the vertical plane of polarization.

The tuned dipole shall be located horizontally 3 metres from the EUT and it shall be mounted on a non-conducting mast that permits the antenna height to be varied between 1.0 and 4.0 metres. The lower element of the vertical dipole shall be kept at least 25 centimetres above the ground plane for any measurement.

The received signal shall be coupled to a spectrum analyzer. The EUT shall be rotated through a total of 360 degrees in azimuth and the height of the measurement antenna varied between 1.0 and 4.0 metres to find the maximum field strength. Record the frequency and the field strength.

The above test is to be repeated with the measurement antenna in the horizontal polarization. In lieu of separate measurements using the measurement antenna first in the vertical and then in the horizontal polarizations, as described above, it is permissible that the measurement antenna polarization be rotated to maximize each field strength reading.

For hand-held or body-worn devices, the device shall be tested in three orthogonal planes: lying on its side, back, and on its end.

## **Intertek Testing Services NA Inc.**

---

The EUT shall be de-activated and the residual field strength due to the ambient RF noise measured. To ensure that the EUT field strength measurement is not significantly influenced by ambient RF noise, the latter level shall be at least 6 dB below that of the EUT signal.

### **B.4.0 (2.1033) Application for Certification**

### **B.4.1 (2.1033) Form 731**

The FORM 731 is contained in Exhibit A of this application.

### **B.4.2 (2.1033) Technical Report**

#### **B.4.2.1 Name and Address of Manufacturer/Applicant**

See B.2.1 of this application for the Manufacturer.

#### **B.4.2.2 FCC Identifier**

See Form 731 in Exhibit A of this application.

#### **B.4.2.3 Installation and Operating Instructions**

See D.8.0 of this application for the instruction manual.

#### **B.4.2.4 Brief Description of circuit functions and operation**

The waveLyNX BR132 wireless bridge is a unit which connects a 10BaseT local area network to another such network at distances of up to 20 miles. This is done by employing two units which constitute a point to point RF link at the ISM band of 2.4 Ghz. Both units employ a frequency hopping spread spectrum radio covering 79 channels of 1 MHz each.

Data rates of 3.2 and 1.6 Mbps (using 16QAM and QPSK modulation techniques, respectively) are supported and switched automatically as dictated by the channel conditions.

## Intertek Testing Services NA Inc.

---

### **B.4.2.5 Block Diagram**

See D.5.0 for a block diagram of the device.

### **B.4.2.6 Radiated and Conducted Emissions**

Exhibit C of the application contain the results of radiated and conducted emissions testing, specifically:

| FCC Section | Application Section | Description                                                         |
|-------------|---------------------|---------------------------------------------------------------------|
| 15.107      | C.1.0               | Unintentional radiator conducted emissions                          |
| 15.109      | C.2.0               | Unintentional radiated radiated emissions                           |
| 15.205      | C.6.0               | Restricted Bands of operation                                       |
| 15.207      | C.7.0               | Intentional radiator conducted emissions                            |
| 15.209      | C.7.0               | Radiated emissions: General Requirement                             |
| 15.247(c)   | C.8.13<br>C.8.14    | Conducted Spurious Emissions<br>Restricted Bands Radiated Emissions |

### **B.4.2.7 Photographs**

See D.1.0 for detailed photographs of the device.

### **B.4.2.8 Peripherals and support equipment**

Printer:                   Hewlett Packard DeskJet 600C  
                          M/N: C4547A  
                          S/N: SG62B1H0CX  
                          FCC ID: B94C2184X

## Intertek Testing Services NA Inc.

---

### B.4.2.8 Peripherals and support equipment (con't)

Monitor: NANA  
M/N: MA-1760  
S/N: A7585023-USM  
FCC ID: GCJMA-1760

Mouse: Microsoft  
P/N: 58267  
S/N: 00865704  
FCC ID: C3KSMP1

Keyboard: SIIG  
M/N: KB1927 Wintouch  
S/N: SIIGJ22C60003464  
FCC ID: FK2SIIGSKB104W

Laptop: Texas Instrument (remotely located)  
M/N: NSK82WW/T1  
S/N: K8265304031A  
FCC ID: Not Labeled

Power Supply: WaveAccess  
M/N: WA410-06220-0-1  
S/N: 0273  
FCC ID: Not Applicable

Linksys 5-Port Workgroup Hub (remotely located)  
M/N: EW5HUB  
S/N: Not Labeled  
FCC ID: KFYPH5

Delta Electronics (remotely located)  
M/N: ADP-36HB  
S/N: A5614019957  
FCC ID: Not Applicable

#### **B.4.2.8 Peripherals and support equipment (con't)**

Ethernet Bridge: WaveAccess (remotely located)  
M/N: waveLyNX BR132  
S/N: Not Labeled  
FCC ID: Not Labeled

### Cables:

- (1) Parallel Cable (2.5m, shielded, metal hood)
- (1) 10BaseT Cable [EXT1] (14m, unshielded, plastic hood)
- (1) 10BaseT Cable [EXT2] (8m, unshielded, plastic hood)
- (1) 10BaseT Cable (1m, unshielded, plastic hood)
- (2) AC Power Cords (2m, shielded, metal hood)
- (1) Serial Cable (3m, unshielded, plastic hood)
- (1) Video Cable (2m, shielded, metal hood)

#### B.4.2.9 FHSS Receiver Characteristics

The receiver operates in the same frequency band as the transmitter and utilizes the same pseudorandom hopping characteristics.

#### **B.4.3 (2.1033(c)) Application FEE and 731 Form**

The waveLyNX BR132 is one device that falls under two parts of the FCC rules, FCC Part 15, Subpart B Class A and FCC Part 15, Subpart C 15.247. One application, one certification, FCC identifier and application fee is required.

**B.5.0 (2.1045(a)) Information and Identification Label**

See Sections B.2.2, B.2.3 & D.3.0 of this application for applicable labeling requirements and instructions.

## Intertek Testing Services NA Inc.

---

### **B.5.1 (15.15) General Technical Information**

b) User Controls - The device does not have any external controls accessible to the user that can be adjusted and operated in violation of the limits of this Standard. The manual instructs the installer how to set up the transmitter based on the antenna used in operation.

### **B.5.2 (15.19) Labeling Requirements**

The complete labeling and label location drawings are included in Exhibit D.3.

### **B.5.3 (15.21) Information to User**

Cautions to the user are contained in the instruction manual on Page iii.

### **B.5.4 (15.27) Special Accessories**

Accessories and peripheral equipment that are normally required to be connected to the device in actual use are connected with representative cable lengths for the tests, if applicable.

### **B.6.0 (15.31) Measurement Standards**

Both AC mains line-conducted and radiated emission measurements were performed according to the procedures in ANSI C63.4 (1992). All measurements were performed in Open Area Test Sites. All Radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "Justification Section" of this Application, Exhibit C.1.1.

### **B.6.1 (15.33) Frequency Range of Radiated Emissions**

|                                                             |                                                  |
|-------------------------------------------------------------|--------------------------------------------------|
| For Subpart B Operation: The highest frequency is 80 MHz    | Emissions were investigated to 1000 MHz          |
| For Subpart C Operation: The highest frequency is 2,480 MHz | Emissions were investigated to the 10th Harmonic |

### **B.6.2 (15.35) Measurement Detector and Bandwidth**

When performing measurements the following table was used to determine the appropriate detector and resolution bandwidth

| Frequency Range (MHz) | Detector*  | RBW (KHz) |
|-----------------------|------------|-----------|
| 0.450 to 30           | Quasi-Peak | 9         |
| 30 to 1000            | Quasi-Peak | 120       |
| 1000 +                | Average    | 1000**    |

\* When measurements are specified with an average detector and the emission has a known duty cycle, a peak reading is recorded and an average factor is subtracted from the measurement.

\*\* Lower resolution bandwidth may be used to compensate for high noise floor readings. When this is done, the presence of pulse desensitization was verified.

### **B.7.0 (15.101 & 15.201) Equipment Authorization of Unintentional Radiators**

Under 15.101 of the FCC rules the device is a Class B computer peripheral subject to certification.

Under 15.201 of the FCC rules the device is a spread spectrum frequency hopping transmitter, subject to certification.

### **B.8.0 (15.105) Information to the User**

An instruction manual is provided in Exhibit D.8.

## **Exhibit C    Results of Compliance Tests**

### **C.0.0 System Test Configuration**

#### **C.0.1 Justification**

The transmitter was configured for testing in a typical fashion (as a customer would normally use it), and in the confines as outlined in ANSI C63.4 (1992).

During testing, the peripheral locations were not varied with respect to the main unit.

The arrangement of the cables dangling from the rear of the table was varied to the extent possible to produce the maximum emissions.

For maximizing emissions, the system was rotated through 360°, the antenna height was varied from 1 meter to 4 meters above the ground plane, and the antenna polarization was changed. This step by step procedure for maximizing emissions led to the data.

#### **C.0.2 EUT Exercising Software**

The unit was configured to transmit continuously on three different frequencies; high, medium and low. Radiated emissions testing was performed with hop stopped and while hopping. During emissions testing of the unintentional radiator, the device was installed a a computer peripheral within the guidelines of ANSI C63.4(1992).

## Intertek Testing Services NA Inc.

---

### C.0.3 General Equipment Information

#### RECEIVER

|                                            |                                             |
|--------------------------------------------|---------------------------------------------|
| FREQUENCY RANGE                            | 2400-2483.5 MHz                             |
| NO. OF CHANNELS                            | 78                                          |
| TUNABLE BANDS                              | N/A                                         |
| DESIGNATED RECEPTION MODE AND BANDWIDTH:   | Spread Spectrum Frequency Hopping<br>79 MHz |
| INTERMEDIATE FREQUENCY(IES)                | N/A                                         |
| INPUT IMPEDANCE                            | N/A                                         |
| OUTPUT IMPEDANCE                           | 50 ohms                                     |
| AUDIO POWER OUTPUT<br>Manufacturers rating | N/A                                         |
| CRYSTAL FREQUENCY(IES)                     | Same as Transmitter                         |

#### TRANSMITTER

|                                    |                                                 |
|------------------------------------|-------------------------------------------------|
| FREQUENCY RANGE                    | 2400-2483.5 MHz                                 |
| NO. OF CHANNELS                    | 78                                              |
| BANDWIDTH                          | 79 MHz                                          |
| TYPE OF EMISSION                   | Spread Spectrum Frequency Hopping               |
| OUTPUT IMPEDANCE                   | 50 ohms                                         |
| CRYSTAL FREQUENCY(IES)             | 0.8, 3.6864, 6.4, 10.0, 20, 26.666, 32 & 80 MHz |
| POWER OUTPUT: Manufacturers rating | 0.063 watts                                     |

**Intertek Testing Services NA Inc.**

---

**C.1.0 (15.107) Conducted Limits**

PERFORMED BY: Kouma Sinn

DATE: February 23, 1998

The following page(s) are tables and graphs containing the results of line-conducted emissions testing. To summarize:

| Table # | Frequency (MHz) | Worst-case Margin (dB) | Next Highest Margin (dB) | Pass/Fail |
|---------|-----------------|------------------------|--------------------------|-----------|
| 2       | 0.492           | -10*                   | -12*                     | Pass      |

\*In accordance with 15.107(d) and 15.207(b) a 13 dB reduction factor was applied due to the average readings being 6 dB (or greater) lower than the quasi-peak.

# Intertek Testing Services

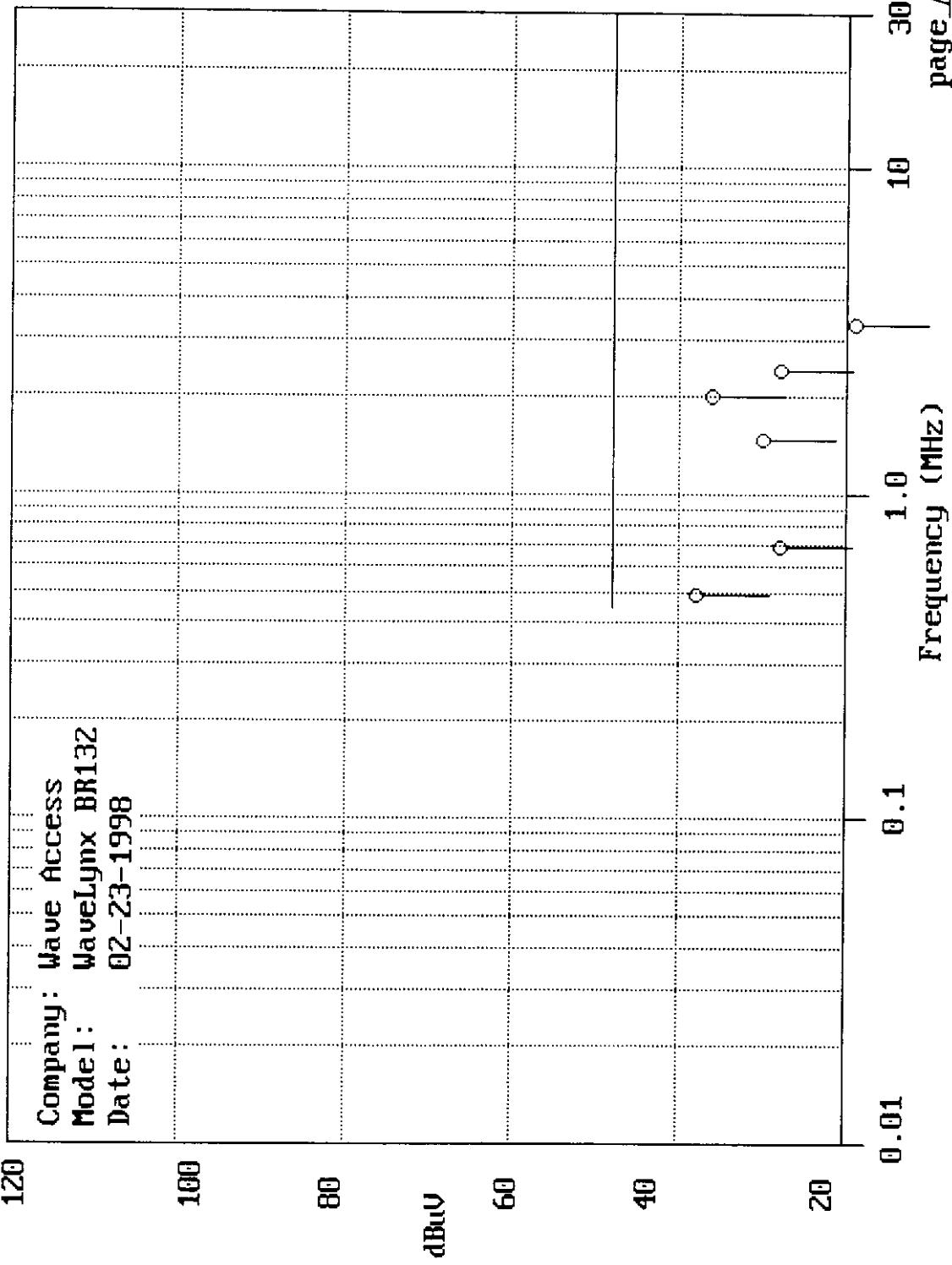
## Emissions Site 1 Boxborough, MA

Table:2

Company: Wave Access

Model: WaveLynx BR132

Notes: L-C scan ( 13 dB subtraction from Qp reading was applied)


### FCC Class B Conducted Emissions

| Frequency (MHz) | Reading Side A (dBuV) | Reading Side B (dBuV) | Class B Limit (dBuV) | Margin (dB) |
|-----------------|-----------------------|-----------------------|----------------------|-------------|
| 0.492           | 38                    | 38                    | 48                   | -10         |
| 0.688           | 27                    | 28                    | 48                   | -20         |
| 1.471           | 30                    | 29                    | 48                   | -18         |
| 2.000           | 36                    | 34                    | 48                   | -12         |
| 2.391           | 28                    | 26                    | 48                   | -20         |
| 3.321           | 19                    | 19                    | 48                   | -29         |

Test Engineer: Kouma Sinn

Test Date: 02-23-1998

FCC Class B Line Conducted Emission Limits and Data from Table 2



#### **C.2.0 (15.109) Radiated Emissions Limits**

Results of radiated emissions testing is contained in section C.7.0 of this application.

#### **C.3.0 (15.111) Antenna Power Conduction Limits for Receivers**

The receiver operates above 960 MHz and is therefore exempt from the requirement.

#### **C.4.0 (15.203) Antenna Requirement**

The DP02 antennas are attached directly to the box using non-standard connectors (reversed polarized SMA) and consequently are the only antennas that don't require professional installation. All the other antennas, which require professional installation, must use the 2 foot RG-58 (with reverse polarized SMA), plus the 20 foot (or longer) RG-8 cables to connect to the bridge box.

#### **C.5.0 (15.204) External Amplifier and Antenna Modification**

The installer/user is warned against the use of external amplifiers and antenna modifications in FCC Warning, page iii and Section 2.3.1, pages 11 and 12 of the user manual.

#### **C.6.0 (15.205) Conducted Limits**

See section C.1.0 of this application for conducted measurement results. The device is a single unit and the conducted emissions measurements need only be measured once.

**Intertek Testing Services NA Inc.**

---

**C.7.0 (15.207 & 15.209) Radiated Emissions Limits and Restricted Bands of Operation**

**PERFORMED BY:** Kouma Sinn

**DATE:** February 23, 1998 and June 16, 1997

| Table # | Modulation | Antenna                        | Transmit Frequency (MHz) | Measured Frequency (MHz) | Net Reading ( $\mu$ V/m) | Limit ( $\mu$ V/m) | Margin (dB) | Pass/ Fail |
|---------|------------|--------------------------------|--------------------------|--------------------------|--------------------------|--------------------|-------------|------------|
| 5       | QPSK       | Standard                       | Hopping                  | 220.0, 700.0 & 740.0     | 141                      | 200                | -3          | Pass       |
| 1       | QPSK       | Parabolic Grid (PG24)<br>BR132 | 2402                     | 4804.0                   | 141                      | 500                | -11         | Pass       |
| 1B      | QPSK       |                                | 2440                     | 4880.0                   | 251                      | 500                | -6          | Pass       |
| 1D      | QPSK       |                                | 2480                     | 4960.0                   | 251                      | 500                | -6          | Pass       |
| 2       | QPSK       | Yagi (YG14)<br>BR132           | 2402                     | 4804.0                   | 158                      | 500                | -10         | Pass       |
| 2B      | QPSK       |                                | 2440                     | 4880.0                   | 224                      | 500                | -7          | Pass       |
| 2D      | QPSK       |                                | 2480                     | 7440.0                   | 224                      | 500                | -7          | Pass       |
| 3       | QPSK       | Omni (OM12)<br>BR132           | 2402                     | 19216.0                  | 200                      | 500                | -8          | Pass       |
| 3B      | QPSK       |                                | 2440                     | 19520.0                  | 200                      | 500                | -8          | Pass       |
| 3D      | QPSK       |                                | 2480                     | 22320.0                  | 112                      | 500                | -13         | Pass       |
| 4       | QPSK       | Planar (PN20)<br>(CU132)       | 2402                     | 19216.0                  | 282                      | 500                | -5          | Pass       |
| 4B      | QPSK       |                                | 2440                     | 7320.0                   | 89                       | 500                | -15         | Pass       |
| 4D      | QPSK       |                                | 2480                     | 4960.0                   | 126                      | 500                | -12         | Pass       |
| 1       | QPSK       | Sector (ST 16)<br>CU132        | 2402                     | 19216.0                  | 282                      | 500                | -5          | Pass       |
| 2       | QPSK       |                                | 2440                     | 19520.0                  | 251                      | 500                | -6          | Pass       |
| 3       | QPSK       |                                | 2480                     | 19840.0                  | 282                      | 500                | -5          | Pass       |
| 13      | QPSK       | Parabolic Grid (PS19)          | 2402                     | 19216.0                  | 282                      | 500                | -5          | Pass       |
| 14      | QPSK       |                                | 2440                     | 19520.0                  | 251                      | 500                | -6          | Pass       |
| 15      | QPSK       |                                | 2480                     | 19840.0                  | 251                      | 500                | -5          | Pass       |

**Note:** Testing was performed on the BR132 antennas (PG24, YG14 and OM12) on June 16, 1997. The results of the testing are indicated here, however the data tables are contained in the original application (FCC ID: NCABR132V100LXUS). The testing with CU132 is consistent with the results originally obtained with the BR132.

# Intertek Testing Services

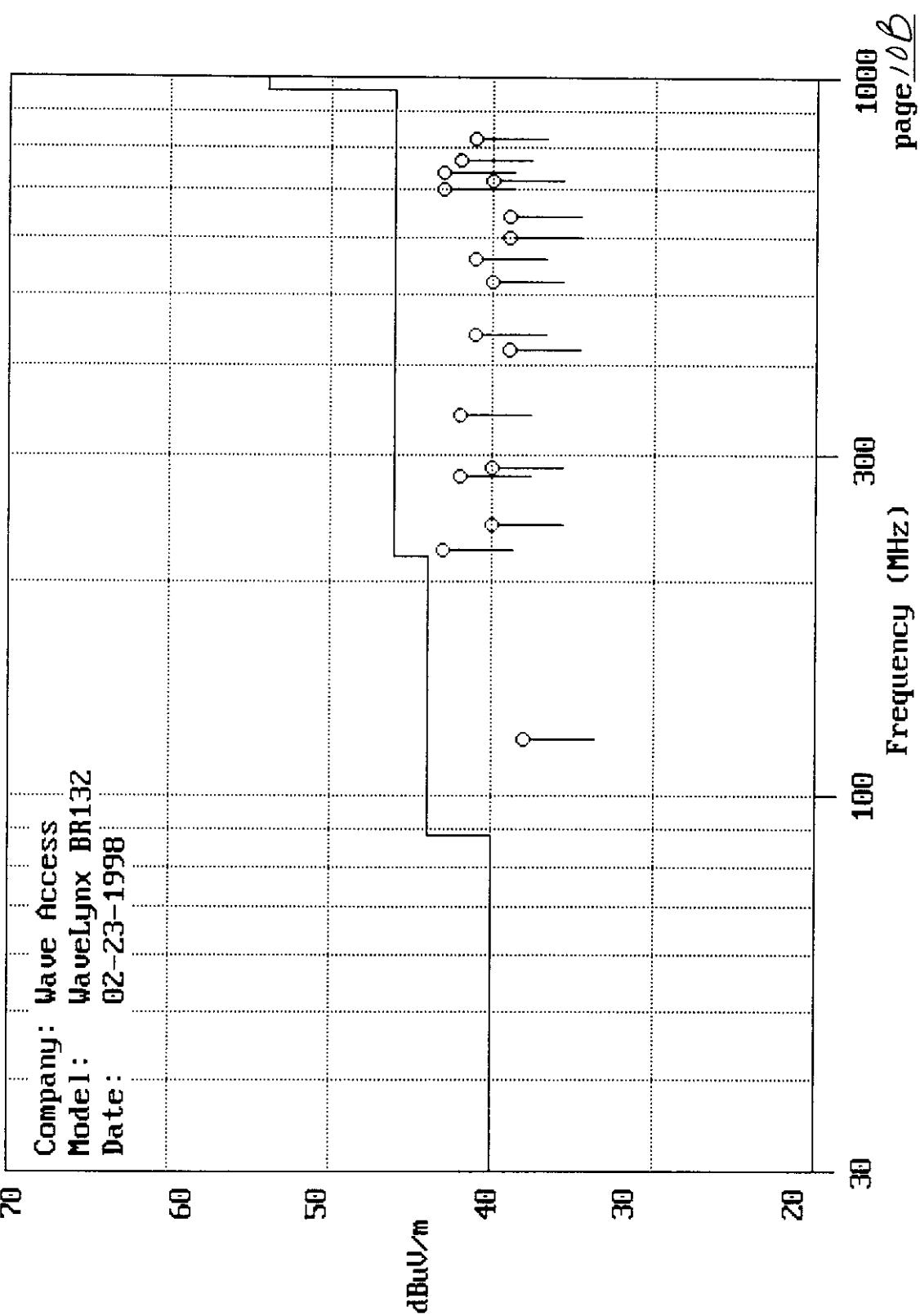
## Emissions Site 1 Boxborough, MA

Table:1

Company: Wave Access

Model: WaveLynx BR132

Notes: Radiated scan at 3 meters


### FCC Class B Radiated Emissions

| Antenna Polarity | Frequency (MHz) | Reading (dBuV) | Antenna Factor (dB) | Net at 3 meter (dBuV/m) | Class B Limit (dBuV/m) | Margin (dB) |
|------------------|-----------------|----------------|---------------------|-------------------------|------------------------|-------------|
| V                | 120.0           | 25.0           | 13                  | 38                      | 44                     | -6          |
| V                | 220.0           | 24.0           | 19                  | 43                      | 46                     | -3          |
| H                | 240.0           | 20.0           | 20                  | 40                      | 46                     | -6          |
| H                | 280.0           | 20.0           | 22                  | 42                      | 46                     | -4          |
| H                | 288.0           | 18.0           | 22                  | 40                      | 46                     | -6          |
| H                | 340.0           | 18.0           | 24                  | 42                      | 46                     | -4          |
| H                | 420.0           | 13.0           | 26                  | 39                      | 46                     | -7          |
| H                | 440.0           | 15.0           | 26                  | 41                      | 46                     | -5          |
| V                | 520.0           | 13.0           | 27                  | 40                      | 46                     | -6          |
| H                | 560.0           | 13.0           | 28                  | 41                      | 46                     | -5          |
| V                | 600.0           | 11.0           | 28                  | 39                      | 46                     | -7          |
| V                | 640.0           | 10.0           | 29                  | 39                      | 46                     | -7          |
| V                | 700.0           | 13.0           | 30                  | 43                      | 46                     | -3          |
| V                | 720.0           | 10.0           | 30                  | 40                      | 46                     | -6          |
| V                | 740.0           | 13.0           | 30                  | 43                      | 46                     | -3          |
| V                | 768.0           | 12.0           | 30                  | 42                      | 46                     | -4          |
| H                | 820.0           | 8.0            | 33                  | 41                      | 46                     | -5          |

Test Engineer: Kouma Sinn

Test Date: 02-23-1998

3 meter FCC Class B Radiated Emissions Data from Table 1



# Intertek Testing Services

Boxborough, MA

COMPANY: Wave Access  
MODEL: CU132

NOTES: H/S scan with ST16 antenna at 2402 MHz in QPSK mode

## Radiated Emissions

| Frequency<br>(MHz) | Reading<br>(dBmV) | Distance<br>Factor<br>(dB) | Antenna<br>Factor<br>(dB) | Pre-Amp<br>Gain<br>(dB) | Averaging<br>Factor<br>(dB) | Pulse<br>Desensitization<br>(dB) | Field<br>Strength<br>at 3 m<br>(dBmV/m) | Field<br>Strength<br>at 3 m<br>(uV/m) | Limits<br>at 3 m<br>(uV/m) | Margin<br>(dB) |
|--------------------|-------------------|----------------------------|---------------------------|-------------------------|-----------------------------|----------------------------------|-----------------------------------------|---------------------------------------|----------------------------|----------------|
| 4804.000           | 25                | 20                         | 34                        | 0                       | 0                           | 0                                | 39                                      | 89                                    | 500                        | -15            |
| 12010.000          | 25                | 20                         | 41                        | 0                       | 0                           | 0                                | 46                                      | 200                                   | 500                        | -8             |
| 19216.000          | 22                | 20                         | 47                        | 0                       | 0                           | 0                                | 49                                      | 282                                   | 500                        | -5             |

No other harmonic or spurious emissions were detected at a test distance of 0.3 meter.

Test Engineer: Kouma Sinn

TABLE: 1  
Date of Test: 02-23-1998

# Intertek Testing Services

## Boxborough, MA

COMPANY: Wave Access  
MODEL: CU132

NOTES: H/S scan with ST16 antenna at 2440 MHz in QPSK

### Radiated Emissions

| Frequency<br>(MHz) | Reading<br>(dBdV) | Distance<br>Factor<br>(dB) | Antenna<br>Factor<br>(dB) | Pre-Amp<br>Gain<br>(dB) | Averaging<br>Factor<br>(dB) | Pulse<br>Desensitization<br>(dB) | Field<br>Strength<br>@ 3 m<br>(dBdV/m) | Field<br>Strength<br>@ 3 m<br>(dUV/m) | Limits<br>@ 3 m<br>(dUV/m) | Margin<br>(dB) |
|--------------------|-------------------|----------------------------|---------------------------|-------------------------|-----------------------------|----------------------------------|----------------------------------------|---------------------------------------|----------------------------|----------------|
| 4880.000           | 25                | 20                         | 34                        | 0                       | 0                           | 0                                | 39                                     | 89                                    | 500                        | -15            |
| 7320.000           | 22                | 20                         | 39                        | 0                       | 0                           | 0                                | 41                                     | 112                                   | 500                        | -13            |
| 12200.000          | 24                | 20                         | 41                        | 0                       | 0                           | 0                                | 45                                     | 178                                   | 500                        | -9             |
| 19520.000          | 22                | 20                         | 46                        | 0                       | 0                           | 0                                | 48                                     | 251                                   | 500                        | -6             |

No other harmonic or spurious emissions were detected at a test distance of 0.3 meter.

Test Engineer: Kouma Sinn

TABLE: 2  
Date of Test: 02-23-1998

## Intertek Testing Services

### Boxborough, MA

COMPANY: Wave Access  
MODEL: CU132

NOTES: H/S scan with ST116 antenna at 2480 MHz in QPSK mode

TABLE: 3  
Date of Test: 02-23-1998

#### Radiated Emissions

| Frequency<br>(MHz) | Reading<br>(dBuV) | Distance<br>Factor<br>(dB) | Antenna<br>Factor<br>(dB) | Pre-Amp<br>Gain<br>(dB) | Averaging<br>Factor<br>(dB) | Pulse<br>Desensitization<br>(dB) | Field<br>Strength<br>at 3 m<br>(dBuV/m) | Field<br>Strength<br>at 3 m<br>(dBuV/m) | Limits<br>at 3 m<br>(dBuV/m) | Margin<br>(dB) |
|--------------------|-------------------|----------------------------|---------------------------|-------------------------|-----------------------------|----------------------------------|-----------------------------------------|-----------------------------------------|------------------------------|----------------|
| 4960.000           | 20                | 20                         | 34                        | 0                       | 0                           | 0                                | 34                                      | 50                                      | 500                          | -20            |
| 7440.000           | 20                | 20                         | 40                        | 0                       | 0                           | 0                                | 40                                      | 100                                     | 500                          | -14            |
| 12400.000          | 22                | 20                         | 41                        | 0                       | 0                           | 0                                | 43                                      | 141                                     | 500                          | -11            |
| 19840.000          | 23                | 20                         | 46                        | 0                       | 0                           | 0                                | 49                                      | 282                                     | 500                          | -5             |
| 22320.000          | 20                | 20                         | 48                        | 0                       | 0                           | 0                                | 48                                      | 251                                     | 500                          | -6             |

No other harmonic or spurious emissions were detected at a test distance of 0.3 meter.

Test Engineer: Kouma Sinn

# Intertek Testing Services

## Boxborough, MA

COMPANY: Wave Access  
MODEL: CU132

NOTES: H/S scan with PN20 antenna at 2402 MHz in QPSK mode

TABLE: 4  
Date of Test: 02-23-1998

### Radiated Emissions

| Frequency (MHz) | Reading (dBuV) | Distance Factor (dB) | Antenna Factor (dB) | Pre-Amp Gain (dB) | Averaging Factor (dB) | Pulse Desensitization (dB) | Field Strength at 3 m (dBuV/m) | Field Strength at 3 m (uV/m) | Limits at 3 m (uV/m) | Margin (dB) |
|-----------------|----------------|----------------------|---------------------|-------------------|-----------------------|----------------------------|--------------------------------|------------------------------|----------------------|-------------|
| 4804.000        | 25             | 20                   | 34                  | 0                 | 0                     | 0                          | 39                             | 89                           | 500                  | -15         |
| 12010.000       | 25             | 20                   | 41                  | 0                 | 0                     | 0                          | 46                             | 200                          | 500                  | -8          |
| 19216.000       | 22             | 20                   | 47                  | 0                 | 0                     | 0                          | 49                             | 282                          | 500                  | -5          |

No other harmonic or spurious emissions were detected at a test distance of 0.3 meter.

Test Engineer: Kouma Simm

# Intertek Testing Services

## Boxborough, MA

COMPANY: Wave Access  
MODEL: CU132

NOTES: H/S scan with PN20 antenna at 2440 MHz in QPSK mode

### Radiated Emissions

| Frequency (MHz) | Reading (dBuv) | Distance Factor (dB) | Antenna Factor (dB) | Pre-Amp Gain (dB) | Averaging Factor (dB) | Pulse Desensitization (dB) | Field Strength @ 3 m (dBuv/m) | Field Strength @ 3 m (dBuv/m) | Field Strength @ 3 m (dBuv/m) | Margin (dB) |
|-----------------|----------------|----------------------|---------------------|-------------------|-----------------------|----------------------------|-------------------------------|-------------------------------|-------------------------------|-------------|
| 4880.000        | 25             | 20                   | 34                  | 0                 | 0                     | 0                          | 39                            | 89                            | 500                           | -15         |
| 7320.000        | 22             | 20                   | 39                  | 0                 | 0                     | 0                          | 41                            | 112                           | 500                           | -13         |
| 12200.000       | 24             | 20                   | 41                  | 0                 | 0                     | 0                          | 45                            | 178                           | 500                           | -9          |
| 19520.000       | 22             | 20                   | 46                  | 0                 | 0                     | 0                          | 48                            | 251                           | 500                           | -6          |

No other harmonic or spurious emissions were detected at a test distance of 0.3 meter.

Test Engineer: Kouma Sinn

TABLE: 5  
Date of Test: 02-23-1998

# Intertek Testing Services

## Boxborough, MA

COMPANY: Wave Access  
MODEL: CU132

NOTES: H/S scan with PN20 antenna at 2480 MHz in QPSK mode

### Radiated Emissions

| Frequency<br>(MHz) | Reading<br>(dBuW) | Distance<br>Factor<br>(dB) | Antenna<br>Factor<br>(dB) | Pre-Amp<br>Gain<br>(dB) | Averaging<br>Factor<br>(dB) | Pulse<br>Desensitization<br>(dB) | Field<br>Strength<br>at 3 m<br>(dBuV/m) | Field<br>Strength<br>at 3 m<br>(dBuV/m) | Limits<br>at 3 m<br>(uV/m) | Margin<br>(dB) |
|--------------------|-------------------|----------------------------|---------------------------|-------------------------|-----------------------------|----------------------------------|-----------------------------------------|-----------------------------------------|----------------------------|----------------|
| 4960.000           | 20                | 20                         | 34                        | 0                       | 0                           | 0                                | 34                                      | 50                                      | 500                        | -20            |
| 7440.000           | 20                | 20                         | 40                        | 0                       | 0                           | 0                                | 40                                      | 100                                     | 500                        | -14            |
| 12400.000          | 22                | 20                         | 41                        | 0                       | 0                           | 0                                | 43                                      | 141                                     | 500                        | -11            |
| 19840.000          | 23                | 20                         | 46                        | 0                       | 0                           | 0                                | 49                                      | 282                                     | 500                        | -5             |
| 22320.000          | 20                | 20                         | 48                        | 0                       | 0                           | 0                                | 48                                      | 251                                     | 500                        | -6             |

No other harmonic or spurious emissions were detected at a test distance of 0.3 meter.

Test Engineer: Kouma Sinn

TABLE: 6  
Date of Test: 02-23-1998

## Intertek Testing Services

### Boxborough, MA

COMPANY: Wave Access  
MODEL: CU132

NOTES: H/S scan with PS19 antenna at 2402 MHz in QPSK mode

TABLE: 13  
Date of Test: 02-23-1998

#### Radiated Emissions

| Frequency<br>(MHz) | Reading<br>(dBuV) | Distance<br>Factor<br>(dB) | Antenna<br>Factor<br>(dB) | Pre-Amp<br>Gain<br>(dB) | Averaging<br>Factor<br>(dB) | Pulse<br>Desensitization<br>(dB) | Field<br>Strength<br>at 3 m<br>(dBuV/m) | Field<br>Strength<br>at 3 m<br>(uV/m) | Limits<br>at 3 m<br>(uW/m) | Margin<br>(dB) |
|--------------------|-------------------|----------------------------|---------------------------|-------------------------|-----------------------------|----------------------------------|-----------------------------------------|---------------------------------------|----------------------------|----------------|
| 4804.000           | 25                | 20                         | 34                        | 0                       | 0                           | 0                                | 39                                      | 89                                    | 500                        | -15            |
| 12010.000          | 25                | 20                         | 41                        | 0                       | 0                           | 0                                | 46                                      | 200                                   | 500                        | -8             |
| 19216.000          | 22                | 20                         | 47                        | 0                       | 0                           | 0                                | 49                                      | 282                                   | 500                        | -5             |

No other harmonic or spurious emissions were detected at a test distance of 0.3 meter.

Test Engineer: Kouma Sinn

# Intertek Testing Services

## Boxborough, MA

COMPANY: Wave Access  
MODEL: CUI132

NOTES: H/S scan with PS19 antenna at 2440 MHz in QPSK mode

### Radiated Emissions

| Frequency<br>(MHz) | Reading<br>(dBmV) | Distance<br>Factor<br>(dB) | Antenna<br>Factor<br>(dB) | Pre-Amp<br>Gain<br>(dB) | Averaging<br>Factor<br>(dB) | Pulse<br>Desensitization<br>(dB) | Field<br>Strength<br>at 3 m<br>(dBmV/m) | Field<br>Strength<br>at 3 m<br>(uV/m) | Limits<br>at 3 m<br>(uV/m) | Margin<br>(dB) |
|--------------------|-------------------|----------------------------|---------------------------|-------------------------|-----------------------------|----------------------------------|-----------------------------------------|---------------------------------------|----------------------------|----------------|
| 4880.000           | 25                | 20                         | 34                        | 0                       | 0                           | 0                                | 39                                      | 89                                    | 500                        | -15            |
| 7320.000           | 22                | 20                         | 39                        | 0                       | 0                           | 0                                | 41                                      | 112                                   | 500                        | -13            |
| 12200.000          | 24                | 20                         | 41                        | 0                       | 0                           | 0                                | 45                                      | 178                                   | 500                        | -9             |
| 19520.000          | 22                | 20                         | 46                        | 0                       | 0                           | 0                                | 48                                      | 251                                   | 500                        | -6             |

No other harmonic or spurious emissions were detected at a test distance of 0.3 meter.

Test Engineer: Kouma Sinn

TABLE: 14  
Date of Test: 02-23-1998

# Intertek Testing Services

## Boxborough, MA

COMPANY: Wave Access  
MODEL: CU132

NOTES: H/S scan with PS19 antenna at 2480 MHz in QPSK mode

TABLE: 15  
Date of Test: 02-23-1998

### Radiated Emissions

| Frequency (MHz) | Reading (dBmW) | Distance Factor (dB) | Antenna Factor (dB) | Pre-Amp Gain (dB) | Averaging Factor (dB) | Pulse Desensitization (dB) | Field Strength @ 3 m (dBmW/m) | Field Strength @ 3 m (dBmW/m) | Field Strength @ 3 m (dBmW/m) | Margin (dB) |
|-----------------|----------------|----------------------|---------------------|-------------------|-----------------------|----------------------------|-------------------------------|-------------------------------|-------------------------------|-------------|
| 4960.000        | 20             | 20                   | 34                  | 0                 | 0                     | 0                          | 34                            | 50                            | 500                           | -20         |
| 7440.000        | 20             | 20                   | 40                  | 0                 | 0                     | 0                          | 40                            | 100                           | 500                           | -14         |
| 12400.000       | 22             | 20                   | 41                  | 0                 | 0                     | 0                          | 43                            | 141                           | 500                           | -11         |
| 19840.000       | 23             | 20                   | 46                  | 0                 | 0                     | 0                          | 49                            | 282                           | 500                           | -5          |
| 22320.000       | 20             | 20                   | 48                  | 0                 | 0                     | 0                          | 48                            | 251                           | 500                           | -6          |

No other harmonic or spurious emissions were detected at a test distance of 0.3 meter.

Test Engineer: Kouma Sinn

**C.8.0 (15.247) Operation within the Bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.**

**C.8.1 15.247 (a) Frequency Hopping Spread Spectrum**

The transmitter is a spread spectrum frequency hopping transmitter that occupies the 2400 to 2483.5 MHz band.

**C.8.2 (15.247 (a)(1)) Channel Separation**

Channel Separation is 1 MHz as measured in plot number [ ].

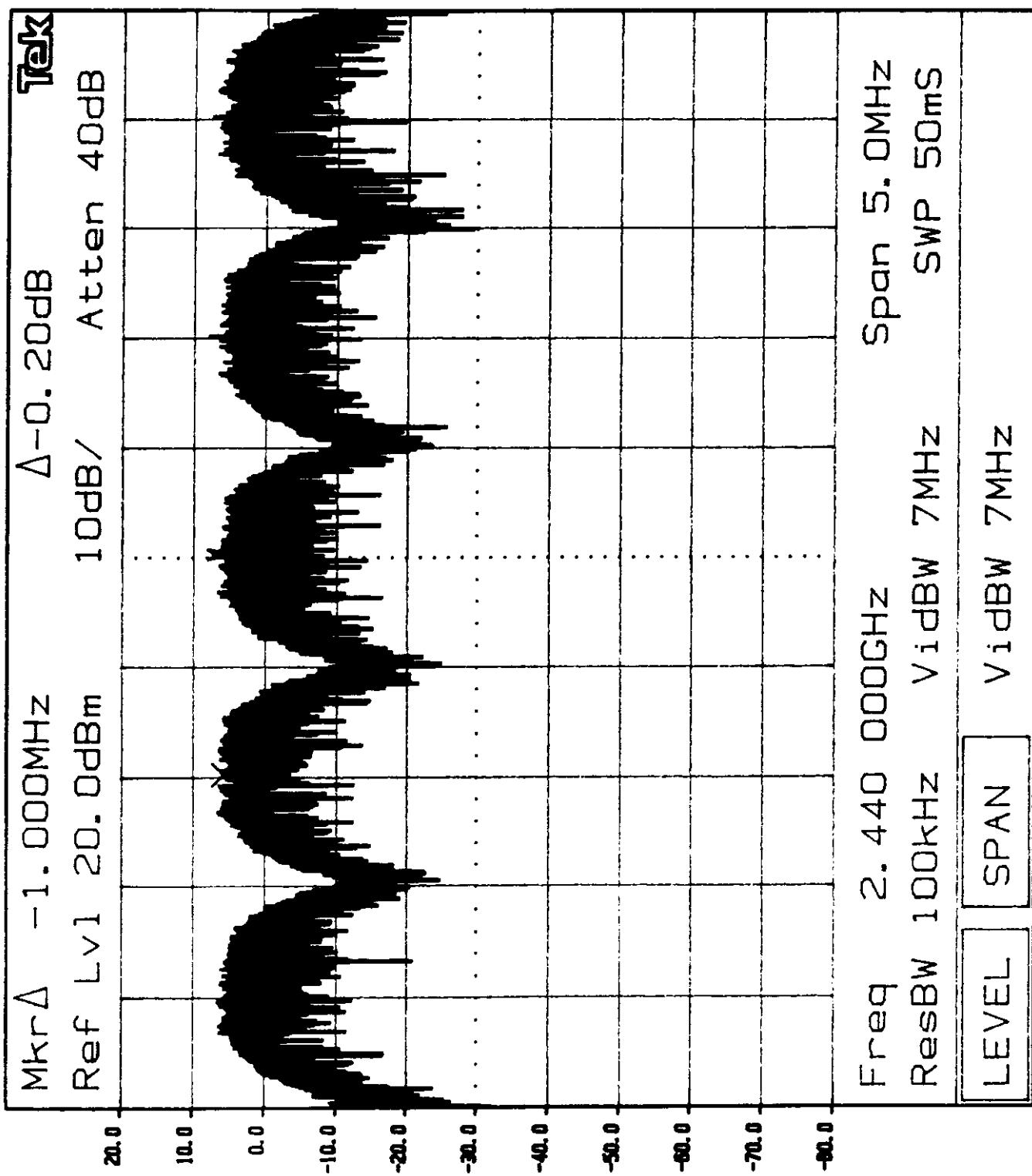
**C.8.3 (15.247 (a)(1)) Pseudorandom Operation**

See **Exhibit D.9.0 Additional information from WaveAccess** for a description of how the hopping works.

**C.8.4 (15.247 (a)(1)) Channel usage**

See **Exhibit D.9.0 Additional information from WaveAccess** for a description of how the hopping works.

**C.8.5 (15.247 (a)(1)) Receiver Characteristics**


The receiver operates in Spread Spectrum frequency hopping fashion of the transmitter.

**C.8.6 (15.247 (a)(1)(ii)) Number of Hopping Frequencies**

Their are 78 hopping frequencies.

QPSK

PLOT #2



105.134

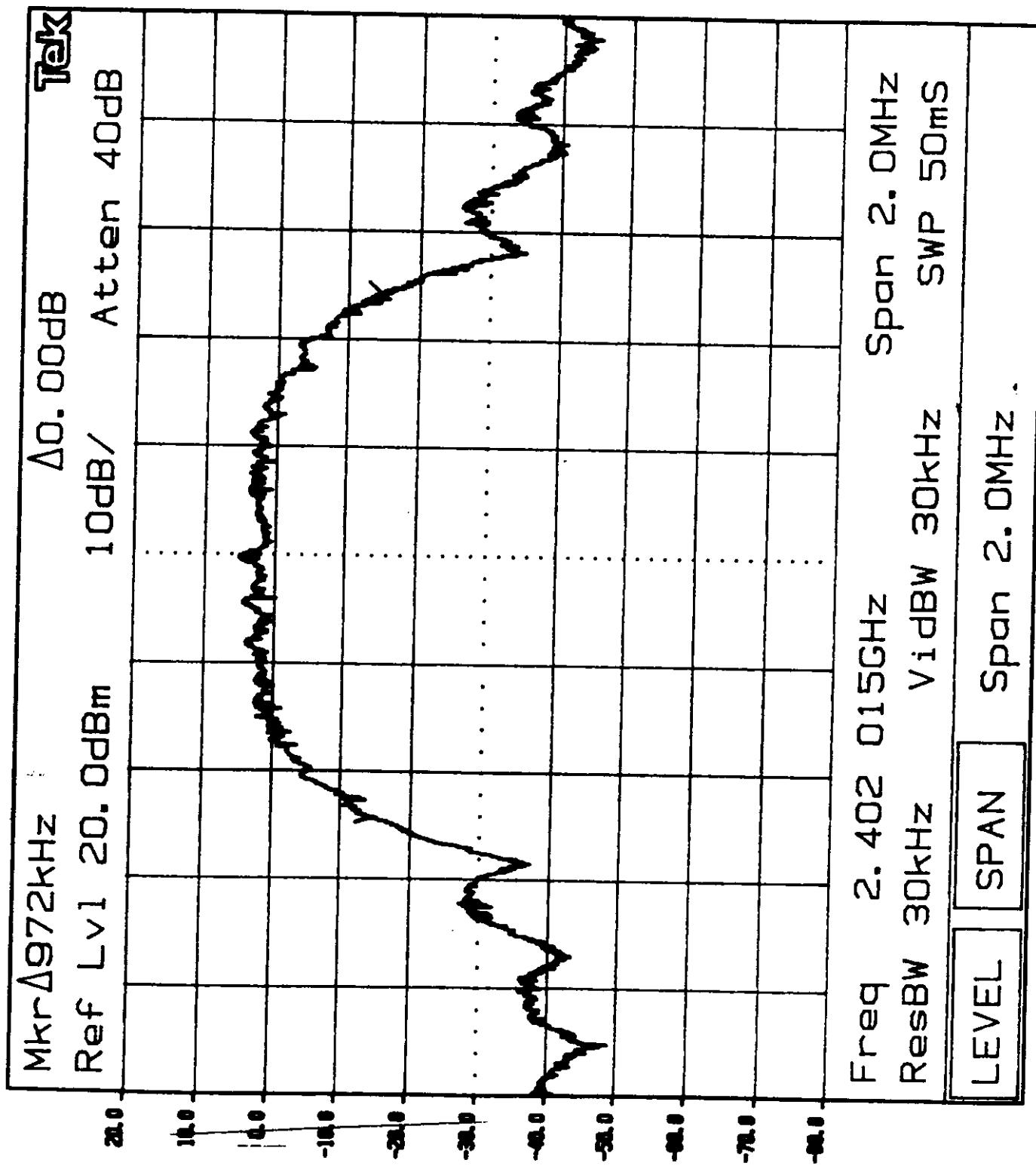
2784

Tekttronix

## KEYPAD

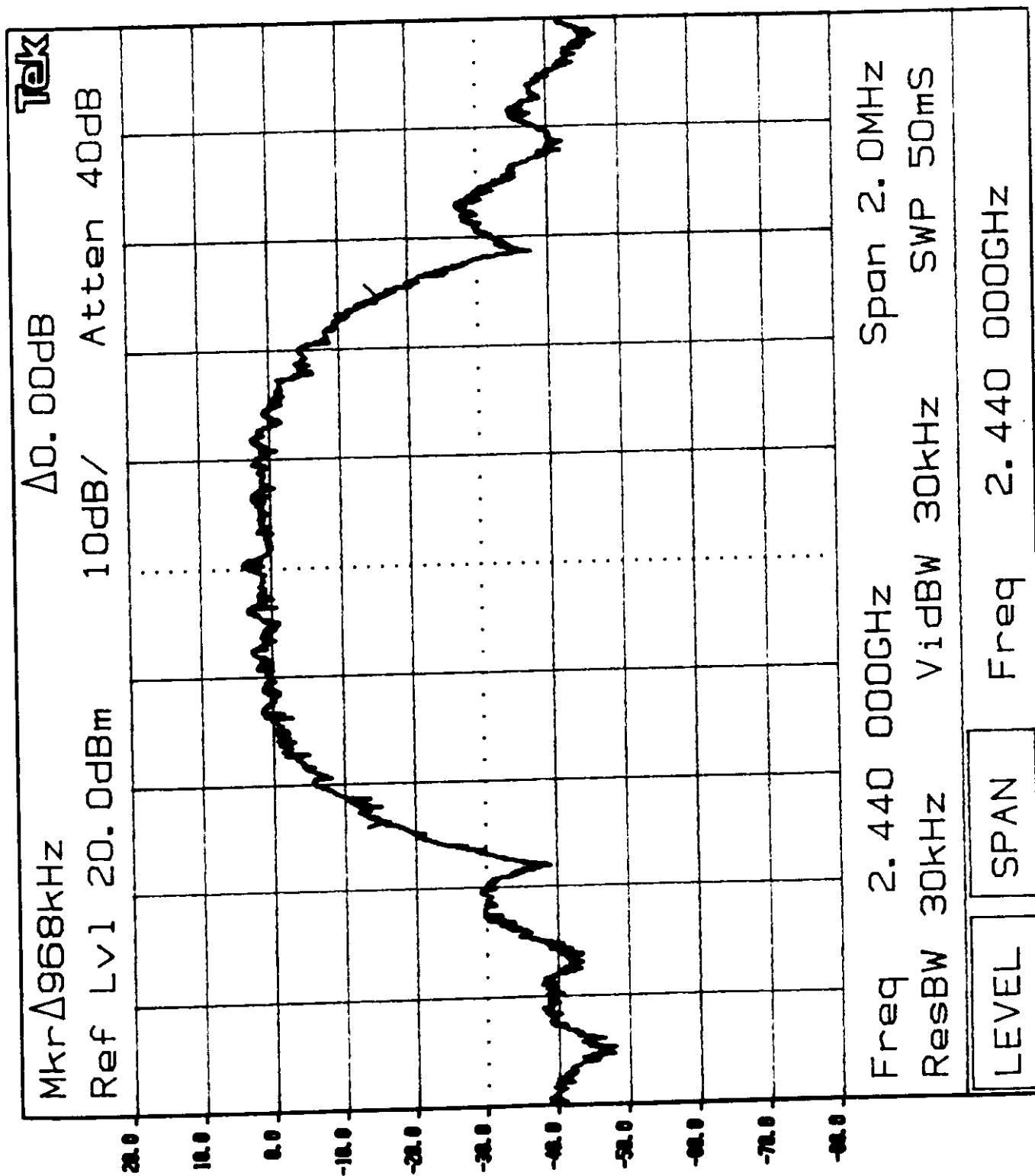
KNOB 2

**C.8.7 (15.247 (a)(1)(ii)) Bandwidth (20 dBc)**


The plots on the following page shows the fundamental emission when modulated. Bandwidth is measured 20 dB below the peak carrier. Resolution bandwidth is chosen to be much less than the bandwidth limit but not below 10 KHz.

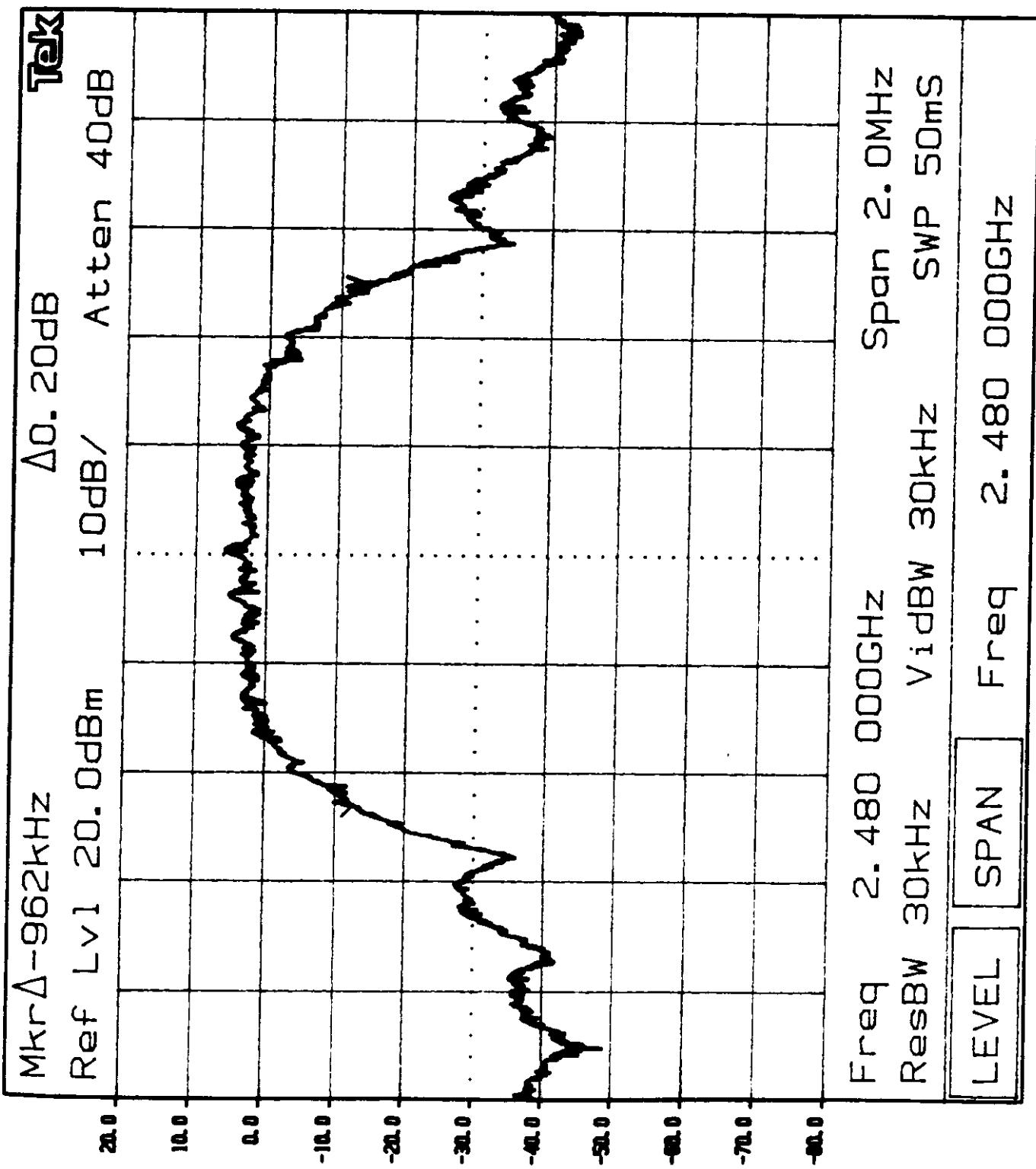
| Transmit Frequency (MHz) | Measured Bandwidth (KHz) | Bandwidth Limit (KHz) | Pass/Fail | Resolution Bandwidth (KHz) |
|--------------------------|--------------------------|-----------------------|-----------|----------------------------|
| 2402.0                   | 972                      | 1000                  | Pass      | 30                         |
| 2440.0                   | 968                      | 1000                  | Pass      | 30                         |
| 2480.0                   | 962                      | 1000                  | Pass      | 30                         |

Measurements were made with both types of modulation (QPSK and 16QAM), however QPSK gave worst-case bandwidths and they are what is reported here.


QPSK

PLOT #2




QPSK

PLOT #3



QPSK

PLOT #4



Span 2. 0MHz

SWP 50mS

Freq 2. 480 000GHz

ResBW 30kHz

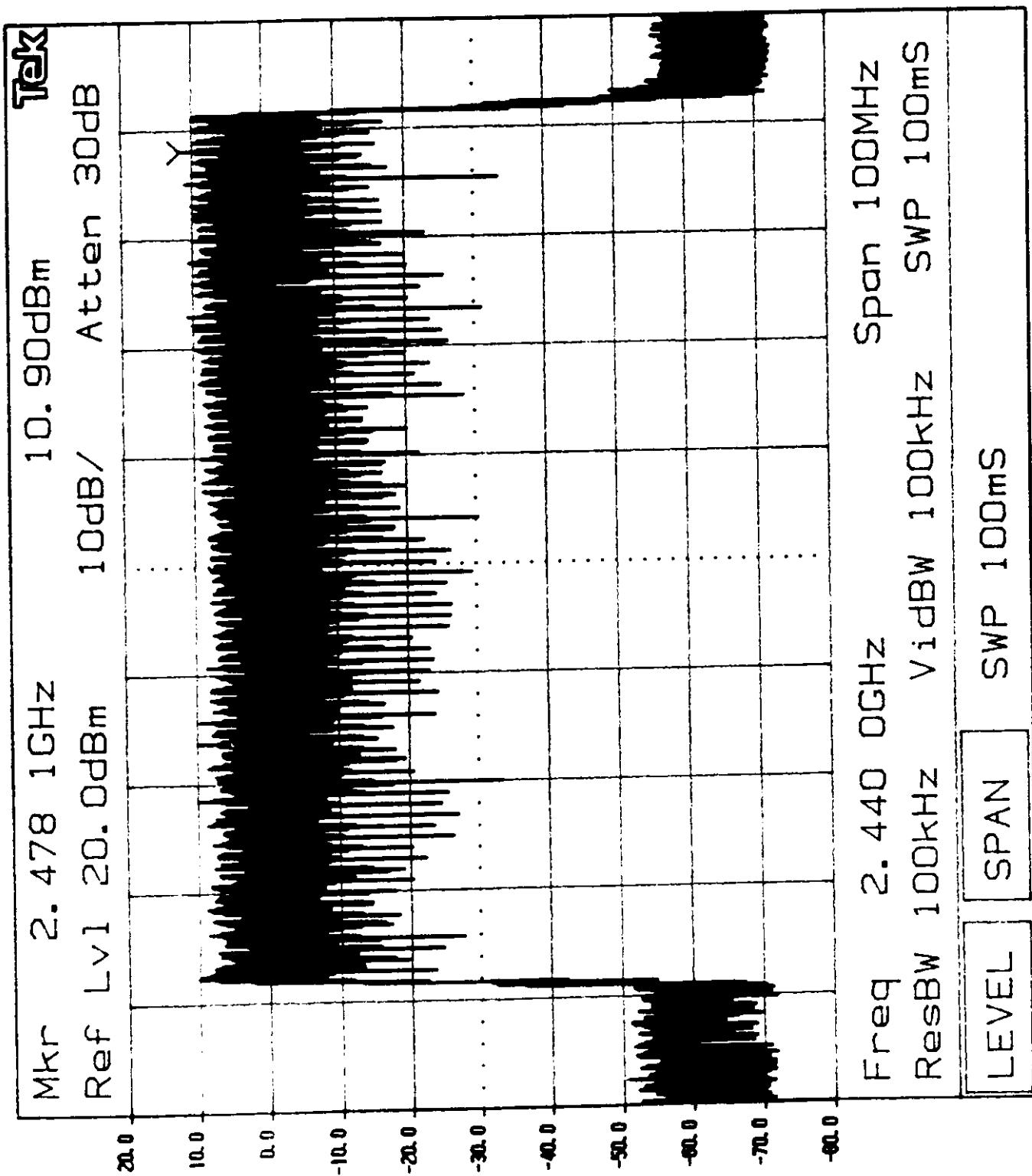
VidBW 30kHz

|       |      |
|-------|------|
| LEVEL | SPAN |
|-------|------|

Freq 2. 480 000GHz

KNOB 1

KNOB 2


KEYPAD

Tektronix 2784

Pg. 115

QPSK

PLOT #5



95.13 A

2784

Taksonix

KEYPAD

1008

KNOB 2

**C.8.8 (15.247 (a)(1)(ii)) Average Time of Occupancy**

| Time of Occupancy on a single channel | Time period before cycle starts again | Time of Occupancy on a single channel Limit | Time period before cycle starts again (limit) | Pass/ Fail |
|---------------------------------------|---------------------------------------|---------------------------------------------|-----------------------------------------------|------------|
| 0.3797 seconds                        | 30 seconds                            | 0.4 seconds                                 | 30 seconds                                    | Pass       |

**C.8.9 (15.247 (b)(1)) Output Power**

Output Power

The manufacturer's a output power is 0.063 watts and the limit is 1.0 watt.

Output Power Measurements

| Transmit Frequency (MHz) | Measured Output Power (dBm) | Output Power (watts) | Limit for Out of Band Emissions (dBm)* |
|--------------------------|-----------------------------|----------------------|----------------------------------------|
| 2402.0                   | 16                          | 0.0398               | -4                                     |
| 2440.0                   | 16                          | 0.0398               | -4                                     |
| 2480.0                   | 17                          | 0.0501               | -3                                     |

Taking worst-case from all transmit frequencies.

**C.8.10 (15.247 (b)(3)(i)) Fixed Point-to-Point Operation**

The waveLyNX BR132 is designed to work with several high gain, professionally installed and point-to-point transmitters. When the antennas are installed the parameters are chosen for that antenna in the software and the output power will be adjusted accordingly.

Reduction is based on the antenna gain being better than 6 dB over isotropic.

| Antenna Name   | P-to-P ?<br>(Yes/No) | Gain over Isotropic (dBi) | Total Gain (dBm) | Limit EIRP (dBm) | Pass/Fail |
|----------------|----------------------|---------------------------|------------------|------------------|-----------|
| Parabolic Grid | Yes                  | 24                        | 42               | 36               | Pass*     |
| Yagi           | Yes                  | 15                        | 33               | 36               | Pass      |
| Omni           | No                   | 12                        | 30               | 36               | Pass      |
| Planar         | Yes                  | 20                        | 38               | 36               | Pass*     |
| Sector         | No                   | 16                        | 34               | 36               | Pass      |
| Grid           | Yes                  | 19                        | 37               | 36               | Pass*     |

\*The reduction in output power assumes that the output power is 1 watt (30 dBm). If the sum of the output power gain plus the AG/3 is greater than 30 dBm, a reduction is applied. For the Parabolic Grid antenna, the need to reduce the output power is determined as follows

$$\begin{array}{ll} \text{Antenna Gain} & = 24 \text{ dBi} \\ \text{Maximum allowed} & = 6 \text{ dBi} \end{array}$$

Reduction is determined by  $(24 \text{ dBi} - 6 \text{ dBi}) / 3 = 6 \text{ dB}$ .

The output power must be  $(30 \text{ dBm} - 6 \text{ dB}) = 24 \text{ dB}$ . The maximum output power is 18 dBm so no reduction is necessary.

**C.8.11 (15.247 (b)(3)(iii)) Point-to-Point Installation Instructions**

The instruction manual contains installation instruction for Fixed point-to-point installation. See Exhibit D.8.0 pages 11 through 14 contain antenna installation instructions.

**C.8.12 (15.247 (b)(4)) Public Exposure to RF (1.1307)**

The instruction manual contained in Exhibit D.8.0 in Section 2.3.1, page(s) 11 and 12 contain warnings about RF exposure.

**C.8.13 (15.247 (c)) Conducted Spurious Emissions  
Restricted bands - Radiated Emissions**

PERFORMED BY: Kouma Sinn

DATE: June 16, 1997

| Table # | Transmit Frequency (MHz) | Measured Frequency (MHz) | Net Reading (dBm) | Limit (dBm) | Margin (dB) | Pass/Fail |
|---------|--------------------------|--------------------------|-------------------|-------------|-------------|-----------|
| 16      | 2402                     | 4804                     | -55               | -4          | -50         | Pass      |
| 17      | 2440                     | 4880                     | -56               | -6          | -50         | Pass      |
| 18      | 2480                     | 4960                     | -50               | -5          | -45         | Pass      |

Measurements were made with the device operating in both QPSK and 16QAM modulation modes. The data for the worst case modes are indicated above and are following, however no emissions were detected within 20 dB of the limit.

**C.8.14 (15.247 (g)) Hopping for Long / Short Periods**

See Exhibit D.9.0 Additional information from WaveAccess for a description of how the hopping works.

**C.8.15 (15.247 (h)) Hopping Intelligence**

The transmitter does not employ intelligence to effect the hop sequence.

# INTERTEK TESTING SERVICES

Company: Wave Access

Table 16

Type of Test: Conducted Antenna Emissions

Notes: QPSK Mode, 2402 MHz Fundamental Frequency

Model: WavelynX

| Frequency (GHz) | Reading (dBm) | Cable Loss (dB) | Net Reading (dBm) | Limit (dBm) | Margin (dB) |
|-----------------|---------------|-----------------|-------------------|-------------|-------------|
| 2.402           | 15            | 0               | 15                | N/A         | N/A         |
| 4.804           | -55           | 0               | -55               | -5          | -50         |
| 7.206           | -69           | 0               | -69               | -5          | -64         |
| 9.608           | -69           | 1               | -68               | -5          | -63         |
| 12.010          | -68           | 1               | -67               | -5          | -62         |
| 14.412          | -69           | 1               | -68               | -5          | -63         |
| 16.814          | -68           | 1               | -67               | -5          | -62         |
| 19.216          | -67           | 1               | -66               | -5          | -61         |
| 21.618          | -62           | 1               | -61               | -5          | -56         |
| 24.020          | -61           | 2               | -59               | -5          | -54         |

Test Engineer: Kouma Sinn

Date of Test: June 16, 1997

pg. 8

# INTERTEK TESTING SERVICES

Table 17

Company: Wave Access

Type of Test: Conducted Antenna Emissions

Notes: 16QAM Mode, 2440 MHz Fundamental Frequency

Model: WavelynX

| Frequency (GHz) | Reading (dBm) | Cable Loss (dB) | Net Reading (dBm) | Limit (dBm) | Margin (dB) |
|-----------------|---------------|-----------------|-------------------|-------------|-------------|
| 2.440           | 14            | 0               | 14                | N/A         | N/A         |
| 4.880           | -56           | 0               | -56               | -6          | -50         |
| 7.320           | -70           | 0               | -70               | -6          | -64         |
| 9.760           | -69           | 1               | -68               | -6          | -62         |
| 12.200          | -68           | 1               | -67               | -6          | -61         |
| 14.640          | -68           | 1               | -67               | -6          | -61         |
| 17.080          | -67           | 1               | -66               | -6          | -60         |
| 19.250          | -66           | 1               | -65               | -6          | -59         |
| 21.960          | -63           | 1               | -62               | -6          | -56         |
| 24.400          | -61           | 2               | -59               | -6          | -53         |

Test Engineer: Kouma Sinn

Date of Test: June 16, 1997

pg 10

# INTERTEK TESTING SERVICES

Company: Wave Access

Table 18

Type of Test: Conducted Antenna Emissions

Notes: QPSK Mode, 2480 MHz Fundamental Frequency

Model: WavelynX

| Frequency (GHz) | Reading (dBm) | Cable Loss (dB) | Net Reading (dBm) | Limit (dBm) | Margin (dB) |
|-----------------|---------------|-----------------|-------------------|-------------|-------------|
| 2.480           | 15            | 0               | 15                | N/A         | N/A         |
| 4.960           | -50           | 0               | -50               | -5          | -45         |
| 7.440           | -78           | 0               | -78               | -5          | -73         |
| 9.920           | -79           | 1               | -78               | -5          | -73         |
| 12.400          | -80           | 1               | -79               | -5          | -74         |
| 14.880          | -77           | 1               | -76               | -5          | -61         |
| 17.360          | -76           | 1               | -75               | -5          | -70         |
| 19.840          | -76           | 1               | -75               | -5          | -70         |
| 22.320          | -75           | 1               | -74               | -5          | -69         |
| 24.800          | -73           | 2               | -71               | -5          | -66         |

Test Engineer: Kouma Sinn

Date of Test: June 16, 1997

pg 13

**Exhibit D    Additional Materials**

**D.2.0 Photographs of the Device**