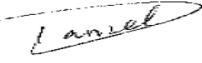


FCC PART 15.247


EMI MEASUREMENT AND TEST REPORT

For

CCT R & D Limited

18F., CCT Telecom Building, 11 Wo Shing Street,
Fo Tan, Shatin, N.T.

FCC ID: NC8MD751H

This Report Concerns: <input checked="" type="checkbox"/> Class II Permissive Change Report	Equipment Type: Digital 2.4/5.8GHz Cordless Telephone System w/ Caller ID – Handset
Test Engineer: <u>Snell Leong</u> /	
Report No.: <u>R0510243(H)</u>	
Report Date: <u>2005-11-14</u>	
Reviewed By: <u>Daniel Deng</u> /	
Prepared By: Bay Area Compliance Laboratory Corporation (BACL) 230 Commercial Street Sunnyvale, CA 94085 Tel: (408) 732-9162 Fax: (408) 732 9164	

Note: This test report is specially limited to the above client company and product model only. It may not be duplicated without prior written consent of Bay Area Compliance Laboratory Corporation. This report **must not** be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

TABLE OF CONTENTS

GENERAL INFORMATION.....	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	3
OBJECTIVE	3
RELATED SUBMITTAL(S)/GRANT(S).....	3
TEST METHODOLOGY	3
TEST FACILITY	3
SYSTEM TEST CONFIGURATION.....	5
JUSTIFICATION	5
EUT EXERCISE SOFTWARE.....	5
SPECIAL ACCESSORIES.....	5
SCHEMATICS / BLOCK DIAGRAM	5
EQUIPMENT MODIFICATIONS	5
CONFIGURATION OF TEST SYSTEM	6
TEST SETUP BLOCK DIAGRAM.....	6
SUMMARY OF TEST RESULTS FOR FCC PART 15.....	7
§15.205 & §15.209 - RADIATED EMISSION.....	8
MEASUREMENT UNCERTAINTY	8
TEST SETUP.....	8
SPECTRUM ANALYZER SETUP	8
TEST EQUIPMENT LIST AND DETAILS.....	8
ENVIRONMENTAL CONDITIONS	9
TEST PROCEDURE	9
CORRECTED AMPLITUDE & MARGIN CALCULATION	9
SUMMARY OF TEST RESULTS	9
RADIATED EMISSION TEST DATA.....	10

GENERAL INFORMATION

Product Description for Equipment Under Test (EUT)

The *CCT R & D Limited*'s, FCC ID: *NC8MD751H*, or the "EUT" as referred to in this report is the handset part of a Digital 2.4/5.8GHz Cordless Telephone System w/ Caller ID, which measures approximately 185mmL x 56mm W x 30mm H. The EUT is a DSS device, which operates at the frequency range of 2401.8085 – 2479.4012MHz, with the maximum conducted output power of 16.50dBm (44.67mW).

** The test data gathered are from a production sample, S/N: 602VF0019, provided by the manufacturer.*

Objective

This type approval report is prepared on behalf of *CCT R & D Limited* in accordance with Part 2, Subpart J, Part 15, Subparts A, B, C, and Part 24 Subpart E of the Federal Communication Commissions rules.

This is a Class II Permissive Change report. The differences between the above-mentioned model and the tested model are: Change IC U1 from 'DH24RF17' to 'DH24RF17B', Delete the external transistor (2SC5754), and delete FL1 (2.4GHz dielectric filter). The manufacture declares that all design including electronic, electrical, mechanical, and cosmetics designs remain the same except the above-mentioned changes. The RF antenna of the above-mentioned model is identical in, construction, dimensions, and electrical circuits with the tested model. Due to the changes, the Spurious Radiated Emission had been retested. Please refer to BACL's testing report R0407072.

The objective is to determine compliance with FCC 15.247 rules:

- Spurious Emission
- Radiated Emission

Related Submittal(s)/Grant(s)

The original device was granted on 2004-08-16. For the original testing, please refer to BACL's testing report R0407072.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.4-2001& TIA/EIA-603.

Test Facility

The Open Area Test site used by BACL Corp. to collect radiated and conducted emission measurement data is located in the back parking lot of the building at 230 Commercial Street, Sunnyvale, California, USA with registration number: 90464.

Test site at BACL Corp. has been fully described in reports submitted to the Federal Communication Commission (FCC) and Voluntary Control Council for Interference (VCCI). The details of these reports has been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 11 and December 10, 1997 and Article 8 of the VCCI regulations on December 25, 1997. The facility also complies with the test methods and procedures set forth in ANSI C63.4-2001& TIA/EIA-603.

The Federal Communications Commission and Voluntary Control Council for Interference has the reports on file and is listed under FCC file 31040/SIT 1300F2 and VCCI Registration No.: C-1298 and R-1234. The test site has been approved by the FCC and VCCI for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, BACL is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (Lab Code 200167-0). The scope of the accreditation covers the FCC Method - 47 CFR Part 15 - Digital Devices, CISPR 22:2002, Electromagnetic Interference - Limits and Methods of Measurement of Information Technology Equipment test methods.

SYSTEM TEST CONFIGURATION

Justification

The EUT was configured for testing according to ANSI C63.4-2001.

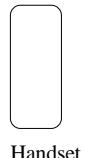
The EUT was tested in the normal (native) operating mode to represent *worst-case* results during the final qualification test.

EUT Exercise Software

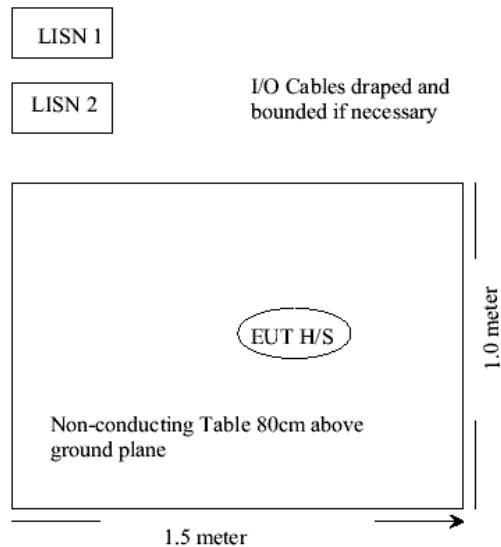
The EUT exercise program used during radiated and conducted testing was designed to exercise the system components.

Once loaded, set the Tx channel to low, mid and high for testing.

Special Accessories


As shown in following test block diagram, all interface cables used for compliance testing are shielded.

Schematics / Block Diagram


Please refer to Appendix A.

Equipment Modifications

No modifications were made to the EUT.

Configuration of Test System

Handset

Test Setup Block Diagram

SUMMARY OF TEST RESULTS FOR FCC PART 15

FCC RULES	DESCRIPTION OF TEST	RESULT
§15.203	Antenna Requirement	N/A
§ 15.205	Restricted Bands	N/A
§15.209	Radiated Emission	Compliant
§15.247 (a) (1)	Hopping Channel Separation	N/A
§15.247 (a) (1)	Channel Bandwidth	N/A
§15.247 (a) (1) (iii)	Number of Hopping Frequencies Used	N/A
§15.247 (a) (1) (iii)	Dwell Time of Each Frequency within a 10 Second Period of time (0.4 x Number of Channel)	N/A
§15.247 (b) (1)	Maximum Peak Output Power	N/A
§ 15.247 (b)(4) § 2.1093	RF Safety Requirements	N/A
§ 15.247 (c)	100 kHz Bandwidth of Frequency Band Edge	N/A
	Spurious Emission at Antenna Port	N/A

§15.205 & §15.209 - RADIATED EMISSION

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at BACL is ± 4.0 dB.

Test Setup

The radiated emission tests were performed in the open area 3-meter test site, using the setup in accordance with ANSI C63.4-2001. The specification used was the FCC 15 Subpart C limits.

The spacing between the peripherals was 10 centimeters.

External I/O cables were draped along the edge of the test table and bundle when necessary.

Spectrum Analyzer Setup

According to FCC Rules, 47 CFR §15.33 (a) (1), the system was tested to 25GHz.

During the radiated emission test, the spectrum analyzer was set with the following configurations:

<u>Frequency Range</u>	<u>RBW</u>	<u>Video B/W</u>
Below 30MHz	10kHz	10kHz
30 – 1000MHz	100kHz	100kHz
Above 1000MHz	1MHz	1MHz

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Cal. Due Date
HP	Amplifier, Pre (.1 ~1300MHz)	8447D	2944A10198	2005-08-20
Agilent	Analyzer, Spectrum	E4446A	US44300386	2004-11-10
EMCO	Antenna, Log-Periodic	3148	4-1155	2004-12-14
Sunol Science	30Mhz ~ 2 GHz Antenna	JB1	A03105-3	2005-02-11
A. H. Systems	Antenna, Horn, DRG	SAS-200/571	261	2005-04-20

* **Statement of Traceability:** **BACL Corp.** certifies that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Environmental Conditions

Temperature:	21° C
Relative Humidity:	78%
ATM Pressure:	1020 mbar

The testing was performed by Snell Leong on 2005-10-27.

Test Procedure

For the radiated emissions test, both the laptop and all peripheral power cords were connected to the AC floor outlet since the power supply used in the laptop did not provide an accessory power outlet.

Maximizing procedure was performed on the six (6) highest emissions to ensure EUT compliance is with all installation combinations.

All data was recorded in the peak detection mode. Quasi-peak readings was performed only when an emission was found to be marginal (within -4 dB of specification limits), and are distinguished with a "Qp" in the data table.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

$$\text{Corr. Ampl.} = \text{Indicated Reading} + \text{Antenna Factor} + \text{Cable Factor} - \text{Amplifier Gain}$$

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:

$$\text{Margin} = \text{Corr. Ampl.} - \text{Class B Limit}$$

Summary of Test Results

According to the recorded data in following table, the EUT complied with the FCC Title 47, Part 15, Subpart C, section 15.205, 15.207, and 15.247, and had the worst margin of:

- 6.1 dB at 4803.8000 MHz** in the **Vertical** polarization, **Low Channel**.
- 6.7 dB at 4880.5000 MHz** in the **Vertical** polarization, **Middle Channel**.
- 7.1 dB at 49.58.6600 MHz** in the **Vertical** polarization, **High Channel**.
- 15.7 dB at 839.75 MHz** in the **Vertical** polarization, **Unintentional Emission**.

Radiated Emission Test Data

Indicated			Antenna	Antenna		Correction Factor			FCC 15 Subpart C		
Frequency	Ampl.	Direction	Height	Polar	Antenna	Cable Loss	Amp.	Corr. Ampl.	Limit	Margin	Comments
MHz	dB μ V/m	Degree	Meter	H/V	dB μ V/m	dB μ V/m	dB	dB μ V/m	dB μ V/m	dB	
Low Channel											
4803.8000	67.1	270	2.4	V	32.5	3.1	34.8	67.9	74	-6.1	Peak
4803.8000	61.9	180	2.3	H	32.5	3.1	34.8	62.7	74	-11.3	Peak
7205.7000	32.1	180	2.0	V	36.7	4.3	34.7	38.4	54	-15.6	Ave
4803.8000	36.5	270	2.4	V	32.5	3.1	34.8	37.3	54	-16.7	Ave
7205.7000	51.0	90	2.0	V	36.7	4.3	34.7	57.3	74	-16.7	Peak
7205.7000	29.4	90	2.0	H	36.7	4.3	34.7	35.7	54	-18.3	Ave
7205.7000	48.6	180	2.0	H	36.7	4.3	34.7	54.9	74	-19.1	Peak
4803.8000	33.2	180	2.3	H	32.5	3.1	34.8	34.0	54	-20.0	Ave
1679.2000	53.7	90	2.0	V	24.8	1.9	36.3	44.0	74	-30.0	Peak
1679.2000	31.1	180	2.0	V	24.8	1.9	36.3	21.4	54	-32.6	Ave
1679.2000	28.7	90	2.0	H	24.8	1.9	36.3	19.0	54	-35.0	Ave
1679.2000	45.2	180	2.0	H	24.8	1.9	36.3	35.5	74	-38.5	Peak
Middle Channel											
4880.5000	66.5	270	2.4	V	32.5	3.1	34.8	67.3	74	-6.7	Peak
4880.5000	60.3	180	2.2	H	32.5	3.1	34.8	61.1	74	-12.9	Peak
7320.7500	32.0	270	2.4	V	36.7	4.3	34.7	38.3	54	-15.7	Ave
4880.5000	36.4	270	2.4	V	32.5	3.1	34.8	37.2	54	-16.8	Ave
7320.7500	50.8	270	2.4	V	36.7	4.3	34.7	57.1	74	-16.9	Peak
7320.7500	29.3	180	2.1	H	36.7	4.3	34.7	35.6	54	-18.4	Ave
7320.7500	48.5	180	2.3	H	36.7	4.3	34.7	54.8	74	-19.2	Peak
4880.5000	33.0	180	2.2	H	32.5	3.1	34.8	33.8	54	-20.2	Ave
1679.2000	54.1	90	2.0	V	24.8	1.9	36.3	44.4	74	-29.6	Peak
1679.2000	31.3	180	2.0	V	24.8	1.9	36.3	21.6	54	-32.4	Ave
1679.2000	29.0	90	2.0	H	24.8	1.9	36.3	19.3	54	-34.7	Ave
1679.2000	45.5	180	2.0	H	24.8	1.9	36.3	35.8	74	-38.2	Peak
High Channel											
4958.6600	66.1	270	2.4	V	32.5	3.1	34.8	66.9	74	-7.1	Peak
4958.6600	60.0	90	2.1	H	32.5	3.1	34.8	60.8	74	-13.2	Peak
7437.9900	31.7	270	2.4	V	36.7	4.3	34.7	38.0	54	-16.0	Ave
4958.6600	36.1	270	2.4	V	32.5	3.1	34.8	36.9	54	-17.1	Ave
7437.9900	50.1	270	2.4	V	36.7	4.3	34.7	56.4	74	-17.6	Peak
7437.9900	29.3	90	2.1	H	36.7	4.3	34.7	35.6	54	-18.4	Ave
7437.9900	48.1	90	2.1	H	36.7	4.3	34.7	54.4	74	-19.6	Peak
4958.6600	32.7	90	2.1	H	32.5	3.1	34.8	33.5	54	-20.5	Ave
1679.2000	53.9	90	2.0	V	24.8	1.9	36.3	44.2	74	-29.8	Peak
1679.2000	31.0	180	2.0	V	24.8	1.9	36.3	21.3	54	-32.7	Ave
1679.2000	29.1	90	2.0	H	24.8	1.9	36.3	19.4	54	-34.6	Ave
1679.2000	46.0	180	2.0	H	24.8	1.9	36.3	36.3	74	-37.7	Peak

Note:

FUND: Fundamental

AVG: Average

Unintentional Emission

Frequency MHz	Indicated		Antenna Height Meter	Antenna		Cable Loss dB μ V/ m	Correction Factor		FCC 15 Subpart C	
	Ampl. dB μ V/m	Direction Degree		Polar H/V	Antenna dB μ V/m		Amp.	Corr. Ampl. dB μ V/m	Limit dB μ V/m	Margin dB
839.75	30.5	75	1.8	V	21.2	6.4	27.8	30.3	46.0	-15.7
839.75	29.8	270	3.2	H	21.2	6.4	27.8	29.6	46.0	-16.4
147.46	33.5	250	1.0	V	12.7	2.5	28.0	20.7	43.5	-22.8
147.46	32.4	280	2.8	H	12.7	2.5	28.0	19.6	43.5	-23.9
262.65	31.2	330	1.2	V	12.3	3.4	27.4	19.5	46.0	-26.5
262.65	30.4	270	2.1	H	12.3	3.4	27.4	18.7	46.0	-27.3