

TEST REPORT FROM RFI GLOBAL SERVICES LTD

Test of: Smart One 0.6418

To: OET Bulletin 65 Supplement C: (2001-01)

Test Report Serial No:
RFI/SAR/RP80091JD08A V2.0

Version 2.0 supersedes all previous versions

This Test Report Is Issued Under The Authority
Of Chris Guy, Head of Global Approvals:

(APPROVED SIGNATORY)

Checked By: Richelieu Quoi

(APPROVED SIGNATORY)

Issue Date:

27 January 2011

Test Dates:

21 December to 22 December 2010

This report is issued in portable document format (PDF). It is only a valid copy of the report if it is being viewed in PDF format with the following security options not allowed: Changing the document, Selecting text and graphics, Adding or changing notes and form fields.

This report may not be reproduced other than in full, except with the prior written approval of RFI Global Services Ltd. The results in this report apply only to the sample(s) tested.

This page has been left intentionally blank.

TABLE OF CONTENTS

1. Customer Information	4
2. Equipment Under Test (EUT)	5
3. Test Specification, Methods and Procedures	8
4. Deviations from the Test Specification.....	9
5. Operation and Configuration of the EUT during Testing	10
6. Summary of Test Results	12
7. Measurements, Examinations and Derived Results.....	13
8. Measurement Uncertainty	21
Appendix 1. Test Equipment Used.....	26
Appendix 2. Measurement Methods.....	29
Appendix 3. SAR Distribution Scans	31
Appendix 4. Photographs	51
Appendix 5. Validation of System	67
Appendix 6. Simulated Tissues	68
Appendix 7. DASY4 System Details	69

1. Customer Information

Company Name:	Pro Tech Monitoring inc
Address:	1838 Gunn Highway Odessa, FL 33556 United States

2. Equipment Under Test (EUT)**2.1. Identification of Equipment Under Test (EUT)**

Description:	GPS Tracking Equipment for Department of Corrections
Brand Name:	Smart One
Model Name or Number:	0.6418
Serial Number:	35002718
IMEI Number:	011526000384199
Hardware Version Number:	0.6
Software Version Number:	5.0.2.4
Hardware Revision of GSM Module:	Not Applicable
Software Revision of GSM Module:	Not Applicable
FCC ID Number:	NC3XT06418
Country of Manufacture:	Israel
Date of Receipt:	17 December 2010

2.2. Description of EUT

The equipment under test is a GPS Tracking Device for Department of Corrections; the device operates at GSM850, PCS1900 and ISM400 bands, supporting GPRS class 10 operations.

2.3. Modifications Incorporated in the EUT

There were no modifications incorporated in the EUT.

2.4. Accessories

The following accessories were supplied with the EUT during testing:

Description:	Battery
Brand Name:	None Stated
Model Name or Number:	None Stated
Serial Number:	None Stated
Cable Length and Type:	Not Applicable
Country of Manufacture:	Japan
Connected to Port	Unique to manufacturer

2.5. Support Equipment

The following support equipment was used to exercise the EUT during testing:

Description:	Wireless Communication Test Set
Brand Name:	Agilent
Model Name or Number:	8960 Series 10
Serial Number:	GB46311280
Cable Length and Type:	~4.0m Utiflex Cable
Connected to Port:	RF (Input/Output) Air Link

2.6. Additional Information Related to Testing

Equipment Category	GSM850 / GPRS850 / PCS1900 / GPRS1900 / ISM400		
Type of Unit	Portable Transceiver		
Intended Operating Environment:	Within GSM and ISM Coverage		
Transmitter Maximum Output Power Characteristics:	GSM850	Wireless Communication Test Set was configured to allow the Mobile Handset and EUT attached to transmit at a maximum power of up to 33dBm	
	PCS1900	Wireless Communication Test Set was configured to allow the Mobile Handset and EUT attached to transmit at a maximum power of up to 30dBm	
	ISM400	< 10 dBm	
Transmitter Frequency Range:	GSM850	(824 to 849) MHz	
	PCS1900	(1850 to 1910) MHz	
	ISM	418 MHz	
Transmitter Frequency Allocation of EUT When Under Test:	Channel Number	Channel Description	Frequency (MHz)
	128	Low	824.2
	189	Middle	836.4
	251	High	848.8
	512	Low	1850.2
	660	Middle	1879.8
	810	High	1909.8
	418	Fixed Frequency	418.0
Modulation(s):	GMSK (GSM/GPRS): 217 Hz		
Modulation Scheme (Crest Factor):	GMSK (GSM):8.3 GMSK(GPRS): 4		
Antenna Type:	Internal		
Antenna Length:	Unknown		
Number of Antenna Positions:	1 Fixed		
Power Supply Requirement:	3.6V		
Battery Type(s):	Li-ion		

3. Test Specification, Methods and Procedures

3.1. Test Specification

Reference:	OET Bulletin 65 Supplement C: (2001-01)
Title:	Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields.
Purpose of Test:	To determine whether the equipment met the basic restrictions as defined in OET Bulletin 65 Supplement C: (2001-01) using the SAR averaging method as described in the test specification above.

3.2. Methods and Procedures Reference Documentation

The methods and procedures used were as detailed in:

Federal Communications Commission, "Evaluating compliance with FCC Guidelines for human exposure to radio frequency electromagnetic fields", OET Bulletin 65 Supplement C, FCC, Washington, D.C, 20554, 2001.

Thomas Schmid, Oliver Egger and Neils Kuster, "Automated E-field scanning system for dosimetric assessments", IEEE Transaction on microwave theory and techniques, Vol. 44, pp. 105-113, January 1996.

Neils Kuster, Ralph Kastle and Thomas Schmid, "Dosimetric evaluation of mobile communications equipment with known precision", IEICE Transactions of communications, Vol. E80-B, No.5, pp. 645-652, May 1997.

KDB 447498 D01 Mobile Portable RF Exposure v04

KDB 648474 D01 SAR Handsets Multi Xmitter and Ant v01r05

3.3. Definition of Measurement Equipment

The measurement equipment used complied with the requirements of the standards referenced in the methods & procedures section above. Appendix 1 contains a list of the test equipment used.

4. Deviations from the Test Specification

Test was performed as per "KDB 648474 D01 SAR Handsets Multi Xmter and Ant v01r05", "KDB 447498 D01 Mobile Portable RF Exposure v04 and according to the handset procedures in IEEE Std 1528-2003 and OET Bulletin 65 Supplement C 01-01.

As per the FCC Public Notice DA 02-1438 by the SCC-34/SC-2 and KDB publication 447498 D01 v04, for SAR measurement performed on the middle channel with levels < 50% of the SAR limit and corresponding channel < 100 MHz, SAR evaluation on the low and high channel are not required and therefore not evaluated. Prior to testing the FCC was contacted on the test approach and the following KDB tracking number 413493 detail the correspondence and the agreed approach.

5. Operation and Configuration of the EUT during Testing

5.1. Operating Modes

The EUT was tested in the following operating mode(s) unless otherwise stated:

- GSM850 Call allocated mode with Communication Test Set configured to allow mobile handset with the EUT to transmit at a maximum power of up to 33 dBm.
- GPRS850 Data allocated mode with Communication Test Set configured to allow mobile handset with the EUT to transmit at a maximum power of up to 33 dBm.
- PCS1900 Call allocated mode with Communication Test Set configured to allow mobile handset with the EUT to transmit at a maximum power of up to 30 dBm.
- GPRS1900 Data allocated mode with Communication Test Set configured to allow mobile handset with the EUT to transmit at a maximum power of up to 30 dBm.
- ISM band was not evaluated as the maximum output power was < 60/f (GHz).
- Simultaneous transmission was not evaluated as the sum of the 1-g SAR for all antenna was < 1.6 W/kg and the ISM band power level was <60/f (GHz).

5.2. Configuration and Peripherals

The EUT was tested in the following configuration(s) unless otherwise stated:

- Standalone battery powered.
- The EUT was tested in the head configuration with the EUT in direct contact with the phantom head section.
- The EUT was tested in the body configuration with 15mm separation distance from the phantom flat section.

Head Configuration

- a) The EUT was placed in a normal operating position with the centre of the ear-piece aligned with the ear canal on the phantom.
- b) With the ear-piece touching the phantom the centre line of the EUT was aligned with an imaginary plane (X and Y axis) consisting of three lines connecting both ears and the mouth.
- c) For the cheek position the EUT was gradually moved towards the cheek until any point of the mouth-piece or keypad touched the cheek.
- d) For the tilted position the EUT was positioned as for the cheek position, and then the horizontal angle was increased by fifteen degrees (the phone keypad was moved away from the cheek by fifteen degrees).
- e) SAR measurements were evaluated at maximum power and the unit was operated for an appropriate period prior to the evaluation in order to minimise the drift.
- f) The device was keyed to operate continuously in the transmit mode for the duration of the test.
- g) The location of the maximum spatial SAR distribution (hot spot) was determined relative to the EUT and its antenna.
- h) The EUT was transmitting at full power throughout the duration of the test powered by a fully charged battery.

Body Configuration

- a) The EUT was placed in a normal operating position where the centre of EUT was aligned with the centre reference point on the flat section of the 'SAM' phantom.
- b) With the EUT touching the phantom at an imaginary centre line. The EUT was aligned with a marked plane (X and Y axis) consisting of two lines.
- c) For the touch-safe position the EUT was gradually moved towards the flat section of the 'SAM' phantom until any point of the EUT touched the phantom.
- d) For position(s) greater than 0mm separation the EUT was positioned as per the touch-safe position, and then the vertical height was decreased/adjusted as required.
- e) SAR measurements were evaluated at maximum power and the unit was operated for an appropriate period prior to the evaluation in order to minimise the drift.
- f) The device was keyed to operate continuously in the transmit mode for the duration of the test.
- g) The location of the maximum spatial SAR distribution (hot spot) was determined relative to the EUT and its antenna.

The EUT was transmitting at full power throughout the duration of the test powered by a fully charged battery.

6. Summary of Test Results

Test Name	Specification Reference	Result
Specific Absorption Rate-GSM 850 Head Configuration 1g	OET Bulletin 65 Supplement C: (2001-01)	Complied
Specific Absorption Rate-GSM 850 Body Configuration 1g	OET Bulletin 65 Supplement C: (2001-01)	Complied
Specific Absorption Rate-GPRS 850 Body Configuration 1g	OET Bulletin 65 Supplement C: (2001-01)	Complied
Specific Absorption Rate-PCS 1900 Head Configuration 1g	OET Bulletin 65 Supplement C: (2001-01)	Complied
Specific Absorption Rate-GPRS 1900 Body Configuration 1g	OET Bulletin 65 Supplement C: (2001-01)	Complied
Specific Absorption Rate-PCS 1900 Body Configuration 1g	OET Bulletin 65 Supplement C: (2001-01)	Complied

SAR Individual Transmitter Evaluation

device, mode	Frequency, (MHz)	P _x (mW)	P _{REF} (mW)	Single SAR, W/kg	Remarks
WWAN, GSM	850	407	71	0.299	Routine Evaluation
WWAN, GSM	1900	43	32	0.028	Routine Evaluation
RF, ISM	318	< 0 dBm	150	:=0	{P _{ISM} ≤ 2P _{REF} } {d _{GSM, ISM} < 5cm}

SAR Simultaneous Transmitter Evaluation

(x,y)	D(x,y) cm	L(x,y) cm	SPLSR _{xy}	Sim-Tx SAR	Remarks
(WWAN _{GSM} , ISM)	<5	n/a	n/a	n/a	{no stand-alone SAR for ISM} {ISM + WWAN SAR < 1.6 w/kg}

Note(s):

1. Simultaneous transmission evaluation was not required as the output power for ISM band was < (60/f) and the Sum of all antenna < 1.6 w/kg.
2. P_x: power level is the device maximum measured output power, measured by RFI and verify by the customer.
3. Single SAR value was measured by RFI.
4. The "Antenna-to-Antenna distance and Antenna-to-User distance were provided by the customer.

6.1. Location of Tests

All the measurements described in this report were performed at the premises of RFI Global Services Ltd, Pavilion A, Ashwood Park, Ashwood Way, Basingstoke, Hampshire, RG23 8BG United Kingdom

7. Measurements, Examinations and Derived Results**7.1. General Comments**

This section contains test results only.

Measurement uncertainties are evaluated in accordance with current best practice. Our reported expanded uncertainties are based on standard uncertainties, which are multiplied by an appropriate coverage factor to provide a statistical confidence level of approximately 95%. Please refer to section 8 for details of measurement uncertainties.

7.2. Test Results**7.2.1. Specific Absorption Rate - GSM 850 Head Configuration 1g****Test Summary:**

Tissue Volume:	1g
Maximum Level (W/kg):	0.133

Environmental Conditions:

Temperature Variation in Lab (°C):	23.0 to 23.0
Temperature Variation in Liquid (°C):	22.8 to 22.8

Results:

EUT Position	Phantom Configuration	Channel Number	Level (W/kg)	Limit (W/kg)	Margin (W/kg)	Note(s)	Result
Touch	Left	189	0.133	1.600	1.467	1	Complied
Tilt	Left	189	0.075	1.600	1.525	1	Complied
Touch	Right	189	0.112	1.600	1.488	1	Complied
Tilt	Right	189	0.054	1.600	1.546	1	Complied

Note(s):

5. As per the FCC Public Notice DA 02-1438 by the SCC-34/SC-2 and KDB publication 447498 D01 v04, for SAR measurement performed on the middle channel with levels < 50% of the SAR limit and corresponding channel < 100 MHz, SAR evaluation on the low and high channel are not required and therefore not evaluated.

7.2.2. Specific Absorption Rate - GSM 850 Body Configuration 1g**Test Summary:**

Tissue Volume:	1g
Maximum Level (W/kg):	0.164

Environmental Conditions:

Temperature Variation in Lab (°C):	23.0 to 23.0
Temperature Variation in Liquid (°C):	22.6 to 22.6

Results:

EUT Position	Phantom Configuration	Channel Number	Level (W/kg)	Limit (W/kg)	Margin (W/kg)	Note(s)	Result
Front of EUT Facing Phantom	Flat (SAM)	189	0.109	1.600	1.491	1, 2	Complied
Rear of EUT Facing Phantom	Flat (SAM)	189	0.164	1.600	1.436	1, 2	Complied

Note(s):

1. SAR measurements were performed with the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.
2. As per the FCC Public Notice DA 02-1438 by the SCC-34/SC-2 and KDB publication 447498 D01 v04, for SAR measurement performed on the middle channel with levels < 50% of the SAR limit and corresponding channel < 100 MHz, SAR evaluation on the low and high channel are not required and therefore not evaluated.

7.2.3. Specific Absorption Rate - GPRS 850 Body Configuration 1g**Test Summary:**

Tissue Volume:	1g
Maximum Level (W/kg):	0.299

Environmental Conditions:

Temperature Variation in Lab (°C):	23.0 to 23.0
Temperature Variation in Liquid (°C):	22.6 to 22.6

Results:

EUT Position	Phantom Configuration	Channel Number	Level (W/kg)	Limit (W/kg)	Margin (W/kg)	Note(s)	Result
Front of EUT Facing Phantom	Flat (SAM)	189	0.220	1.600	1.380	1, 2	Complied
Rear of EUT Facing Phantom	Flat (SAM)	189	0.299	1.600	1.301	1, 2	Complied

Note(s):

1. SAR measurements were performed with the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.
2. As per the FCC Public Notice DA 02-1438 by the SCC-34/SC-2 and KDB publication 447498 D01 v04, for SAR measurement performed on the middle channel with levels < 50% of the SAR limit and corresponding channel < 100 MHz, SAR evaluation on the low and high channel are not required and therefore not evaluated.

7.2.4. Specific Absorption Rate - PCS 1900 Head Configuration 1g**Test Summary:**

Tissue Volume:	1g
Maximum Level (W/kg):	0.032

Environmental Conditions:

Temperature Variation in Lab (°C):	23.0 to 23.0
Temperature Variation in Liquid (°C):	22.5 to 22.5

Results:

EUT Position	Phantom Configuration	Channel Number	Level (W/kg)	Limit (W/kg)	Margin (W/kg)	Note(s)	Result
Touch	Left	660	0.028	1.600	1.572	1	Complied
Tilt	Left	660	0.007	1.600	1.593	1	Complied
Touch	Right	660	0.032	1.600	1.569	1	Complied
Tilt	Right	660	0.007	1.600	1.593	1	Complied

Note(s):

1. As per the FCC Public Notice DA 02-1438 by the SCC-34/SC-2 and KDB publication 447498 D01 v04, for SAR measurement performed on the middle channel with levels < 50% of the SAR limit and corresponding channel < 100 MHz, SAR evaluation on the low and high channel are not required and therefore not evaluated.

7.2.5. Specific Absorption Rate - PCS 1900 Body Configuration 1g**Test Summary:**

Tissue Volume:	1g
Maximum Level (W/kg):	0.014

Environmental Conditions:

Temperature Variation in Lab (°C):	23.0 to 23.0
Temperature Variation in Liquid (°C):	23.0 to 23.0

Results:

EUT Position	Phantom Configuration	Channel Number	Level (W/kg)	Limit (W/kg)	Margin (W/kg)	Note(s)	Result
Front of EUT Facing Phantom	Flat (SAM)	660	0.014	1.600	1.586	1, 2	Complied
Rear of EUT Facing Phantom	Flat (SAM)	660	0.008	1.600	1.592	1, 2	Complied

Note(s):

1. SAR measurements were performed with the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.
2. As per the FCC Public Notice DA 02-1438 by the SCC-34/SC-2 and KDB publication 447498 D01 v04, for SAR measurement performed on the middle channel with levels < 50% of the SAR limit and corresponding channel < 100 MHz, SAR evaluation on the low and high channel are not required and therefore not evaluated.

7.2.6. Specific Absorption Rate - GPRS 1900 Body Configuration 1g**Test Summary:**

Tissue Volume:	1g
Maximum Level (W/kg):	0.028

Environmental Conditions:

Temperature Variation in Lab (°C):	23.0 to 23.0
Temperature Variation in Liquid (°C):	23.0 to 23.0

Results:

EUT Position	Phantom Configuration	Channel Number	Level (W/kg)	Limit (W/kg)	Margin (W/kg)	Note(s)	Result
Front of EUT Facing Phantom	Flat (SAM)	660	0.028	1.600	1.572	1, 2	Complied
Rear of EUT Facing Phantom	Flat (SAM)	660	0.015	1.600	1.585	1, 2	Complied

Note(s):

1. SAR measurements were performed with the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.
2. As per the FCC Public Notice DA 02-1438 by the SCC-34/SC-2 and KDB publication 447498 D01 v04, for SAR measurement performed on the middle channel with levels < 50% of the SAR limit and corresponding channel < 100 MHz, SAR evaluation on the low and high channel are not required and therefore not evaluated.

7.2.7. ERP/EIRP Measurement

Channel Number	Frequency (MHZ)	ISM – TX Power before Test (dBm)	Note
418	418	-51.6	ERP

Channel Number	Frequency (MHZ)	GSM – TX Power before Test (dBm)	GPRS – TX Power before Test (dBm)	Note
128	824.2	23.7	23.5	ERP
189	836.4	25.0	25.1	ERP
251	848.8	26.1	26.1	ERP
512	1850.2	16.3	16.3	EIRP
660	1879.8	15.0	15.0	EIRP
810	1909.8	16.3	16.3	EIRP

8. Measurement Uncertainty

No measurement or test can ever be perfect and the imperfections give rise to error of measurement in the results. Consequently, the result of a measurement is only an approximation to the value of the measurand (the specific quantity subject to measurement) and is only complete when accompanied by a statement of the uncertainty of the approximation.

The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards.

The uncertainty of the result may need to be taken into account when interpreting the measurement results.

The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor, such that a confidence level of approximately 95% is maintained. For the purposes of this document "approximately" is interpreted as meaning "effectively" or "for most practical purposes".

Test Name	Confidence Level	Calculated Uncertainty
Specific Absorption Rate-GSM 850 Head Configuration 1g	95%	±19.38%
Specific Absorption Rate-GSM / GPRS850 Body Configuration 1g	95%	±19.51%
Specific Absorption Rate-PCS 1900 Head Configuration 1g	95%	±20.18%
Specific Absorption Rate-PCS / GPRS 1900 Body Configuration 1g	95%	±19.44%

The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty, the published guidance of the appropriate accreditation body is followed.

8.1. Specific Absorption Rate- GSM 850 Head Configuration 1g

Type	Source of uncertainty	+ Value	- Value	Probability Distribution	Divisor	c _i (10g)	Standard Uncertainty		v _i or v _{eff}
							+ u (%)	- u (%)	
B	Probe calibration	11.000	11.000	normal (k=2)	2.0000	1.0000	5.500	5.500	∞
B	Axial Isotropy	0.500	0.500	normal (k=2)	2.0000	1.0000	0.250	0.250	∞
B	Hemispherical Isotropy	2.600	2.600	normal (k=2)	2.0000	1.0000	1.300	1.300	∞
B	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	∞
B	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	∞
B	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	∞
B	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	∞
B	Readout Electronics	0.320	0.320	normal (k=2)	2.0000	1.0000	0.160	0.160	∞
B	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	∞
B	Integration Time	1.730	1.730	Rectangular	1.7321	1.0000	0.999	0.999	∞
B	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	∞
B	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
B	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	∞
B	Extrapolation and integration/ Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	∞
A	Test Sample Positioning	2.400	2.400	normal (k=1)	1.0000	1.0000	2.400	2.400	10
A	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
B	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
B	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞
B	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	∞
A	Liquid Conductivity (measured value)	4.920	4.920	normal (k=1)	1.0000	0.6400	3.149	3.149	5
B	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	∞
A	Liquid Permittivity (measured value)	4.970	4.970	normal (k=1)	1.0000	0.6000	2.982	2.982	5
	Combined standard uncertainty			t-distribution			9.89	9.89	>200
	Expanded uncertainty			k = 1.96			19.38	19.38	>200

8.2. Specific Absorption Rate- GSM 850 / GPRS850 Body Configuration 1g

Type	Source of uncertainty	+ Value	- Value	Probability Distribution	Divisor	c _i (10g)	Standard Uncertainty		v _i or v _{eff}
							+ u (%)	- u (%)	
B	Probe calibration	11.000	11.000	normal (k=2)	2.0000	1.0000	5.500	5.500	∞
B	Axial Isotropy	0.500	0.500	normal (k=2)	2.0000	1.0000	0.250	0.250	∞
B	Hemispherical Isotropy	2.600	2.600	normal (k=2)	2.0000	1.0000	1.300	1.300	∞
B	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	∞
B	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	∞
B	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	∞
B	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	∞
B	Readout Electronics	0.320	0.320	normal (k=2)	2.0000	1.0000	0.160	0.160	∞
B	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	∞
B	Integration Time	1.730	1.730	Rectangular	1.7321	1.0000	0.999	0.999	∞
B	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	∞
B	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
B	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	∞
B	Extrapolation and integration/ Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	∞
A	Test Sample Positioning	2.900	2.900	normal (k=1)	1.0000	1.0000	2.900	2.900	10
A	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
B	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
B	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞
B	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	∞
A	Liquid Conductivity (measured value)	4.690	4.690	normal (k=1)	1.0000	0.6400	3.002	3.002	5
B	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	∞
A	Liquid Permittivity (measured value)	4.860	4.860	normal (k=1)	1.0000	0.6000	2.916	2.916	5
	Combined standard uncertainty			t-distribution			9.96	9.96	>250
	Expanded uncertainty			k = 1.96			19.51	19.51	>250

8.3. Specific Absorption Rate- PCS1900 Head Configuration 1g

Type	Source of uncertainty	+ Value	- Value	Probability Distribution	Divisor	c _i (10g)	Standard Uncertainty		v _i or v _{eff}
							+ u (%)	- u (%)	
B	Probe calibration	11.000	11.000	normal (k=2)	2.0000	1.0000	5.500	5.500	∞
B	Axial Isotropy	0.500	0.500	normal (k=2)	2.0000	1.0000	0.250	0.250	∞
B	Hemispherical Isotropy	2.600	2.600	normal (k=2)	2.0000	1.0000	1.300	1.300	∞
B	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	∞
B	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	∞
B	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	∞
B	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	∞
B	Readout Electronics	0.320	0.320	normal (k=2)	2.0000	1.0000	0.160	0.160	∞
B	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	∞
B	Integration Time	1.730	1.730	Rectangular	1.7321	1.0000	0.999	0.999	∞
B	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	∞
B	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
B	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	∞
B	Extrapolation and integration/ Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	∞
A	Test Sample Positioning	3.800	3.800	normal (k=1)	1.0000	1.0000	3.800	3.800	10
A	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
B	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
B	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞
B	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	∞
A	Liquid Conductivity (measured value)	4.900	4.900	normal (k=1)	1.0000	0.6400	3.136	3.136	5
B	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	∞
A	Liquid Permittivity (measured value)	4.880	4.880	normal (k=1)	1.0000	0.6000	2.928	2.928	5
	Combined standard uncertainty			t-distribution			10.30	10.30	>200
	Expanded uncertainty			k = 1.96			20.18	20.18	>200

8.4. Specific Absorption Rate- PCS1900 / GPRS1900 Body Configuration 1g

Type	Source of uncertainty	+ Value	- Value	Probability Distribution	Divisor	c _i (10g)	Standard Uncertainty		v _i or v _{eff}
							+ u (%)	- u (%)	
B	Probe calibration	11.000	11.000	normal (k=2)	2.0000	1.0000	5.500	5.500	∞
B	Axial Isotropy	0.500	0.500	normal (k=2)	2.0000	1.0000	0.250	0.250	∞
B	Hemispherical Isotropy	2.600	2.600	normal (k=2)	2.0000	1.0000	1.300	1.300	∞
B	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	∞
B	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	∞
B	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	∞
B	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	∞
B	Readout Electronics	0.320	0.320	normal (k=2)	2.0000	1.0000	0.160	0.160	∞
B	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	∞
B	Integration Time	1.730	1.730	Rectangular	1.7321	1.0000	0.999	0.999	∞
B	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	∞
B	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
B	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	∞
B	Extrapolation and integration/ Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	∞
A	Test Sample Positioning	2.500	2.500	normal (k=1)	1.0000	1.0000	2.500	2.500	10
A	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
B	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
B	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞
B	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	∞
A	Liquid Conductivity (measured value)	4.940	4.940	normal (k=1)	1.0000	0.6400	3.162	3.162	5
B	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	∞
A	Liquid Permittivity (measured value)	4.980	4.980	normal (k=1)	1.0000	0.6000	2.988	2.988	5
	Combined standard uncertainty			t-distribution			9.92	9.92	>200
	Expanded uncertainty			k = 1.96			19.44	19.44	>200

Appendix 1. Test Equipment Used

RFI No.	Instrument	Manufacturer	Type No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
A034	Narda 20W Termination	Narda	374BNM	8706	Calibrated as part of system	-
A1097	SMA Directional Coupler	Midisco	MDC6223-30	None	Calibrated as part of system	-
A1137	3dB Attenuator	Narda	779	04690	Calibrated as part of system	-
A1174	Dielectric Probe Kit	Agilent Technologies	85070C	Us99360072	Calibrated before use	-
A1328	Handset Positioner	Schmid & Partner Engineering AG	Modification	SD 000 H01 DA	-	-
A1182	Handset Positioner	Schmid & Partner Engineering AG	V3.0	None	-	-
A1184	Data Acquisition Electronics	Schmid & Partner Engineering AG	DAE3	394	19 Apr 2010	12
A1237	1900 MHz Dipole Kit	Schmid & Partner Engineering AG	D1900V2	540	26 June 2009	24
A1238	SAM Phantom	Schmid & Partner Engineering AG	SAM b	001	Calibrated before use	-
A1329	900 MHz Dipole Kit	Schmid & Partner Engineering AG	D900V2	185	18 Aug 2009	24
A1497	Amplifier	Mini-Circuits	zhl-42w (sma)	e020105	Calibrated as part of system	-
A1566	SAM Phantom	Schmid & Partner Engineering AG	SAM a	002	Calibrated before use	-
A1990	Digital Camera	Samsung	E515	A23WC90 8A05431K	-	-
A215	20 dB Attenuator	Narda	766-20	9402	Calibrated as part of system	-
A1531	Antenna	AARONIA AG	7025	02458	-	-
C1042	Network Analyzer Cable	Agilent	8120-4779	349	-	-
C1145	Cable	Rosenberger MICRO-COAX	FA147A F003003030	41843-1	Calibrated as part of system	-
C1146	Cable	Rosenberger MICRO-COAX	FA147A F030003030	41752-1	Calibrated as part of system	-
G0528	Robot Power Supply	Schmid & Partner Engineering AG	DASY4	None	Calibrated before use	-

RFI No.	Instrument	Manufacturer	Type No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
G087	PSU	Thurlby Thandar	CPX200	100701	Calibrated before use	-
L1019	Probe	Schmid & Partner Engineering AG	EX3 DV3	3531	23 Feb 2010	12
M1015	Network Analyser	Agilent Technologies	8753ES	US39172406	27 Sept 2010	12
M1047	Robot Arm	Staubli	RX908 L	F00/SD8 9A1/A/01	Calibrated before use	-
M1159	Signal Generator	Agilent Technologies	E8241A	US42110332	Internal Checked 15 Dec 2010	4
M1071	Spectrum Analyzer	Agilent	HP8590E	3647U00514	(Monitoring use only)	-
M1270	Temperature/ Humidity/ Pressure Meter	RS Components	None	None	Internal Checked 31 Mar 2010	12
S256	SAR Lab	RFI	Site 56	N/A	Calibrated before use	-
M1071	Spectrum Analyzer	Agilent	HP8590E	3647U00514	(Monitoring use only)	-
M1044	Diode Power Sensor	Rohde & Schwarz	NRV-Z1	893350/019	26 May 2010	12
M265	Diode Power Sensor	Rohde & Schwarz	NRV-Z1	893350/017	26 May 2010	12
M263	Dual Channel Power Meter	Rohde & Schwarz	NRVD	826558/004	27 May 2010	12

A.1.1. Calibration Certificates

This section contains the calibration certificates and data for the Probe(s) and Dipole(s) used, which are not included in the total number of pages for this report.

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client

RFI

Accreditation No.: SCS 108

Certificate No: D1900V2-540-Jun09

CALIBRATION CERTIFICATE

Object D1900V2 - SN: 540

Calibration procedure(s) QA CAL-05.v7
Calibration procedure for dipole validation kits

Calibration date: June 26, 2009

Condition of the calibrated item In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	08-Oct-08 (No. 217-00898)	Oct-09
Power sensor HP 8481A	US37292783	08-Oct-08 (No. 217-00898)	Oct-09
Reference 20 dB Attenuator	SN: 5086 (20g)	31-Mar-09 (No. 217-01025)	Mar-10
Type-N mismatch combination	SN: 5047.2 / 06327	31-Mar-09 (No. 217-01029)	Mar-10
Reference Probe ES3DV2	SN: 3025	30-Apr-09 (No. ES3-3025_Apr09)	Apr-10
DAE4	SN: 601	07-Mar-09 (No. DAE4-601_Mar09)	Mar-10
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-07)	In house check: Oct-09
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-07)	In house check: Oct-09
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-08)	In house check: Oct-09

Calibrated by:	Name	Function	Signature
	Jeton Kastrati	Laboratory Technician	
Approved by:	Katja Pokovic	Technical Manager	

Issued: June 29, 2009

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz)", July 2001
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

- d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz \pm 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 \pm 0.2) °C	41.0 \pm 6 %	1.42 mho/m \pm 6 %
Head TSL temperature during test	(22.0 \pm 0.2) °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	condition	
SAR measured	250 mW input power	10.1 mW / g
SAR normalized	normalized to 1W	40.4 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	40.3 mW / g \pm 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.29 mW / g
SAR normalized	normalized to 1W	21.2 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	21.1 mW / g \pm 16.5 % (k=2)

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.9 ± 6 %	1.55 mho/m ± 6 %
Body TSL temperature during test	(21.2 ± 0.2) °C	---	---

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.3 mW / g
SAR normalized	normalized to 1W	41.2 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	40.9 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.40 mW / g
SAR normalized	normalized to 1W	21.6 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	21.5 mW / g ± 16.5 % (k=2)

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$48.5 \Omega + 2.7 j\Omega$
Return Loss	- 30.0 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$44.9 \Omega + 2.8 j\Omega$
Return Loss	- 24.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.198 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 26, 2001

DASY5 Validation Report for Head TSL

Date/Time: 26.06.2009 12:43:03

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:540

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL U11 BB

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.42$ mho/m; $\epsilon_r = 41$; $\rho = 1000$ kg/m³

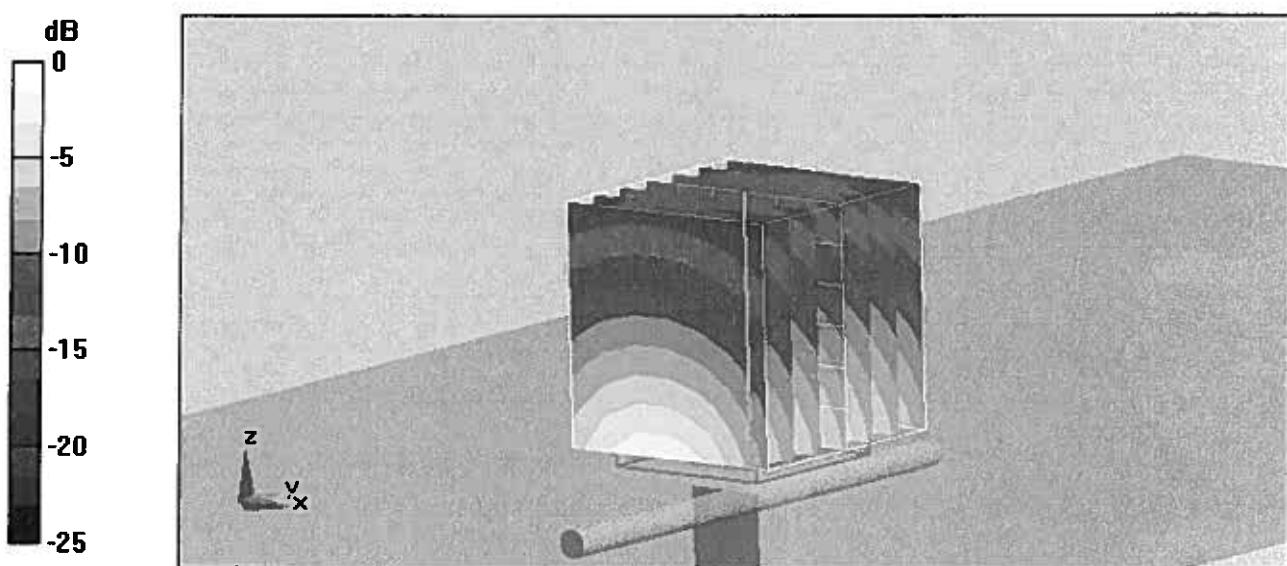
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

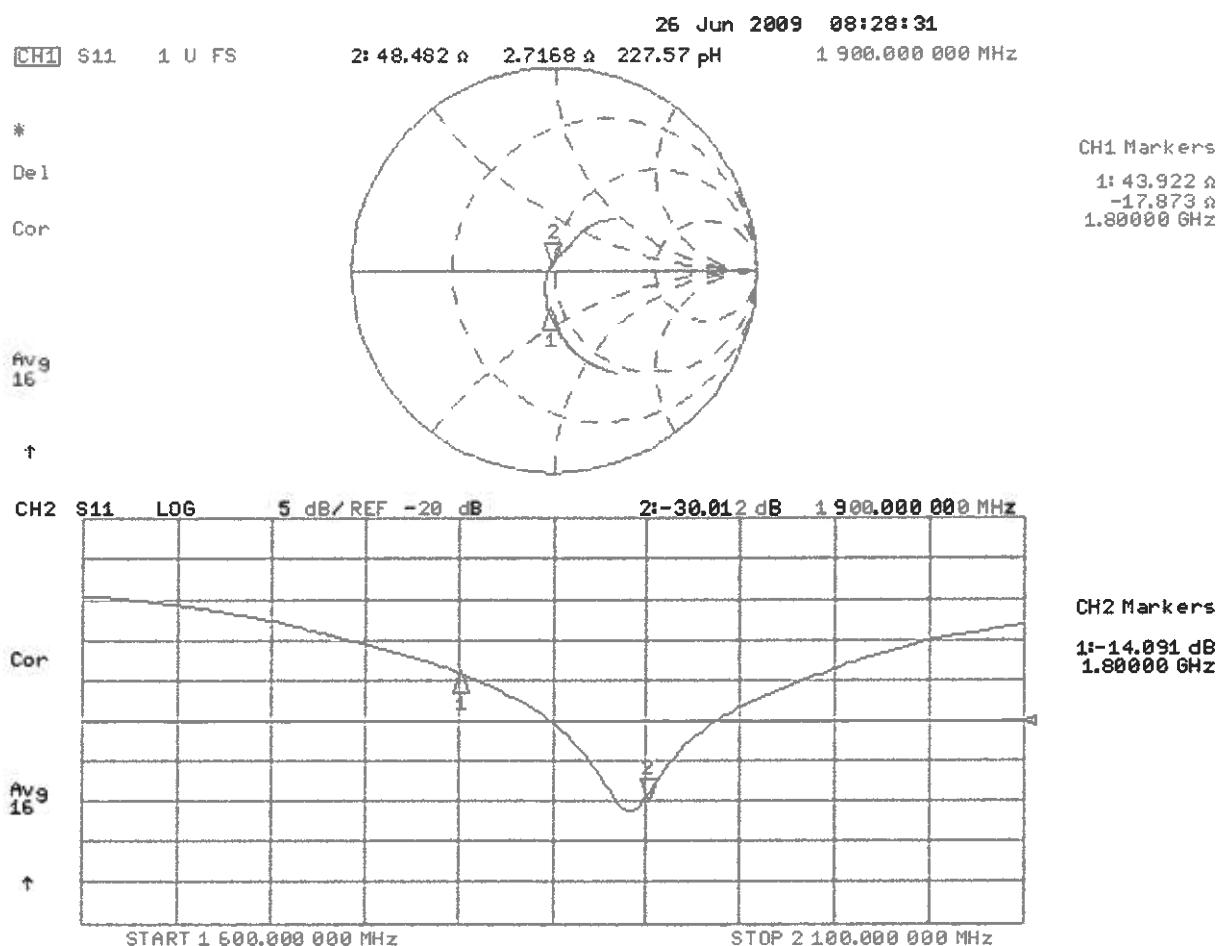
- Probe: ES3DV2 - SN3025; ConvF(4.88, 4.88, 4.88); Calibrated: 30.04.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Pin = 250 mW; dip = 10 mm/Zoom Scan (dist=3.0 mm, probe 0deg) (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.9 V/m; Power Drift = 0.037 dB

Peak SAR (extrapolated) = 18.4 W/kg


SAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.29 mW/g

Maximum value of SAR (measured) = 12.5 mW/g

0 dB = 12.5mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date/Time: 26.06.2009 14:10:45

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:540

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL U10 BB

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.55$ mho/m; $\epsilon_r = 54$; $\rho = 1000$ kg/m³

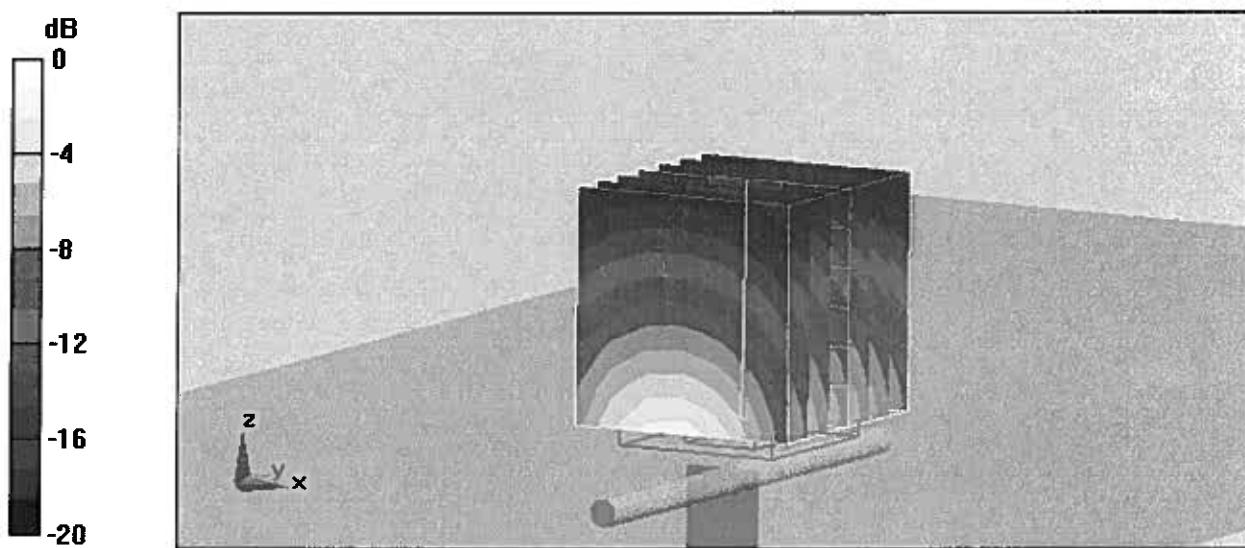
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

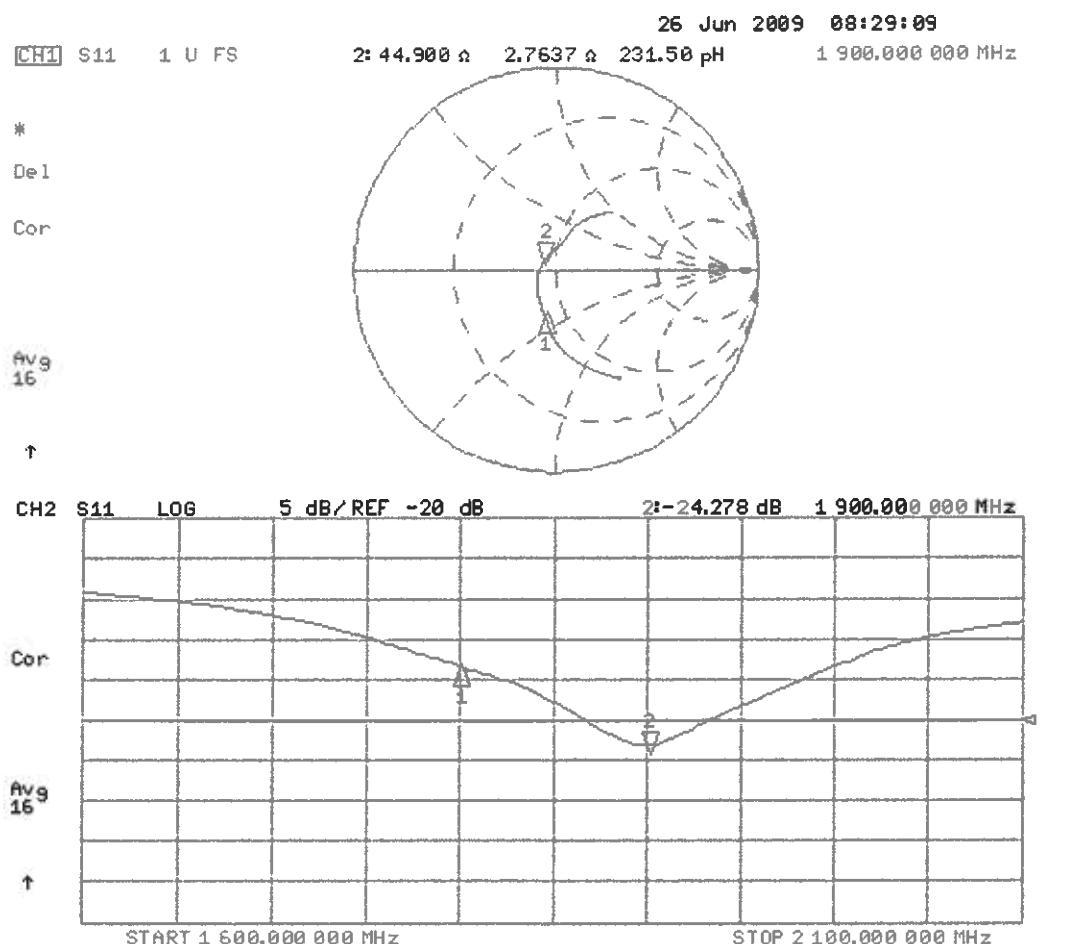
DASY5 Configuration:

- Probe: ES3DV2 - SN3025; ConvF(4.46, 4.46, 4.46); Calibrated: 30.04.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Pin = 250 mW; dip = 10 mm/Zoom Scan (dist=3.0mm, probe 0deg) (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.1 V/m; Power Drift = 0.011 dB


Peak SAR (extrapolated) = 18.1 W/kg

SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.4 mW/g

Maximum value of SAR (measured) = 12.9 mW/g

Impedance Measurement Plot for Body TSL

rechecked by *JK*
27-05-2010

A1329

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

Accreditation No.: **SCS 108**

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client

RFI

Certificate No: **D900V2-185_Aug09**

CALIBRATION CERTIFICATE

Object **D900V2 - SN: 185**

Calibration procedure(s) **QA CAL-05.v7**
Calibration procedure for dipole validation kits

Calibration date: **August 18, 2009**

Condition of the calibrated item **In Tolerance**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	08-Oct-08 (No. 217-00898)	Oct-09
Power sensor HP 8481A	US37292783	08-Oct-08 (No. 217-00898)	Oct-09
Reference 20 dB Attenuator	SN: 5086 (20g)	31-Mar-09 (No. 217-01025)	Mar-10
Type-N mismatch combination	SN: 5047.2 / 06327	31-Mar-09 (No. 217-01029)	Mar-10
Reference Probe ES3DV3	SN: 3205	26-Jun-09 (No. ES3-3205_Jun09)	Jun-10
DAE4	SN: 601	07-Mar-09 (No. DAE4-601_Mar09)	Mar-10

Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-07)	In house check: Oct-09
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-07)	In house check: Oct-09
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-08)	In house check: Oct-09

Calibrated by:	Name	Function	Signature
	Jeton Kastrati	Laboratory Technician	
Approved by:	Katja Pokovic	Technical Manager	

Issued: August 18, 2009

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

- DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions:** Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL:** The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss:** These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay:** One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured:** SAR measured at the stated antenna input power.
- SAR normalized:** SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters:** The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	$dx, dy, dz = 5 \text{ mm}$	
Frequency	$900 \text{ MHz} \pm 1 \text{ MHz}$	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.97 mho/m
Measured Head TSL parameters	$(22.0 \pm 0.2) \text{ °C}$	$40.4 \pm 6 \text{ %}$	$0.96 \text{ mho/m} \pm 6 \text{ %}$
Head TSL temperature during test	$(22.4 \pm 0.2) \text{ °C}$	----	----

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.75 mW / g
SAR normalized	normalized to 1W	11.0 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	11.0 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.76 mW / g
SAR normalized	normalized to 1W	7.04 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	7.06 mW /g ± 16.5 % (k=2)

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.0	1.05 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.7 ± 6 %	1.06 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C	----	----

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.80 mW / g
SAR normalized	normalized to 1W	11.2 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	11.0 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.81 mW / g
SAR normalized	normalized to 1W	7.24 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	7.16 mW / g ± 16.5 % (k=2)

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.5 Ω - 10.3 $j\Omega$
Return Loss	- 19.7 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.5 Ω - 11.2 $j\Omega$
Return Loss	- 18.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.403 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	May 27, 2003

DASY5 Validation Report for Head TSL

Date/Time: 18.08.2009 08:57:04

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN:185

Communication System: CW-900; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: HSL 900 MHz

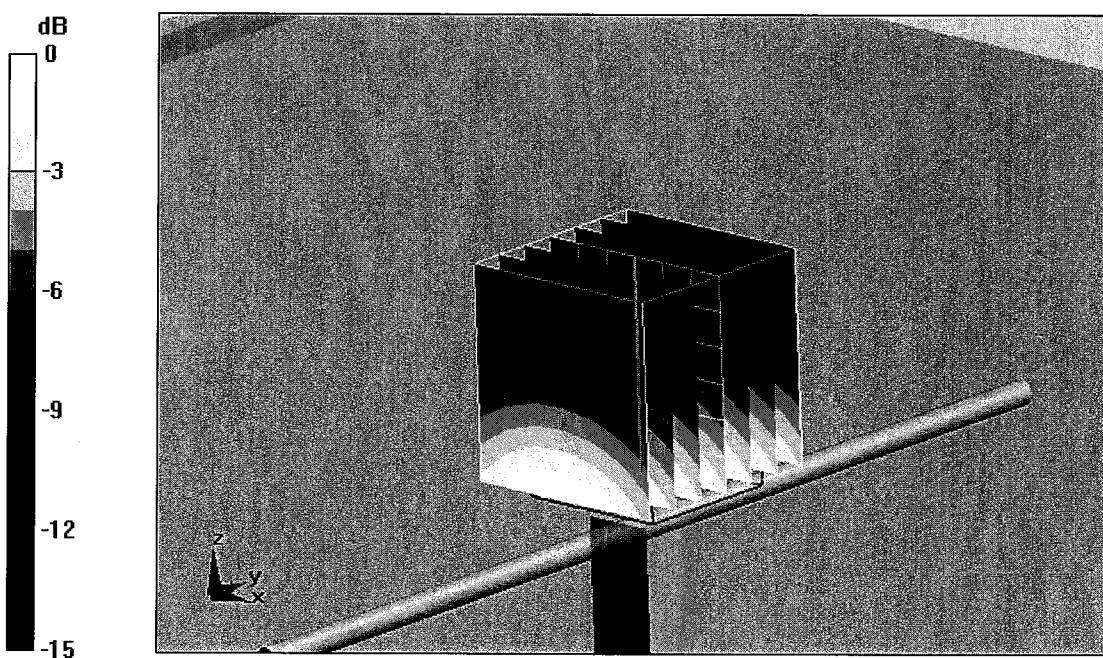
Medium parameters used: $f = 900$ MHz; $\sigma = 0.96$ mho/m; $\epsilon_r = 40.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

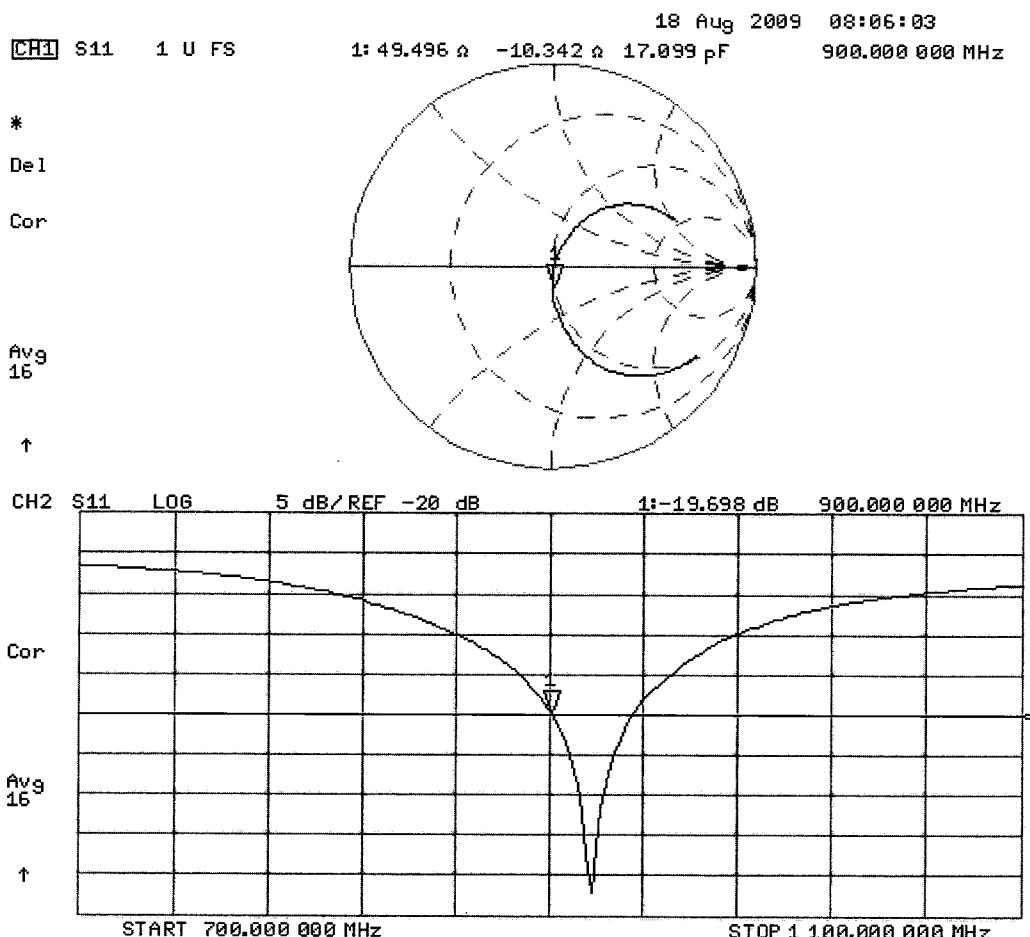
DASY5 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(5.88, 5.88, 5.88); Calibrated: 26.06.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45


Pin=250mW; dip=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 59.7 V/m; Power Drift = 0.015 dB

Peak SAR (extrapolated) = 4.17 W/kg


SAR(1 g) = 2.75 mW/g; SAR(10 g) = 1.76 mW/g

Maximum value of SAR (measured) = 3.23 mW/g

0 dB = 3.23mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body

Date/Time: 17.08.2009 11:23:13

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN:185

Communication System: CW-900; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: MSL900

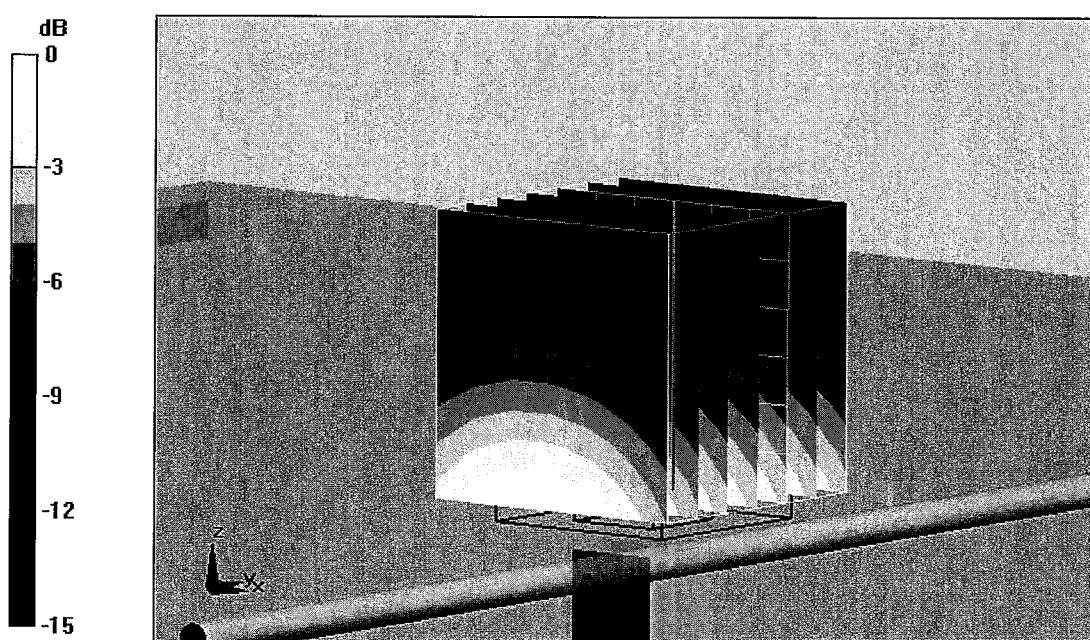
Medium parameters used: $f = 900$ MHz; $\sigma = 1.06$ mho/m; $\epsilon_r = 52.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(5.81, 5.81, 5.81); Calibrated: 26.06.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

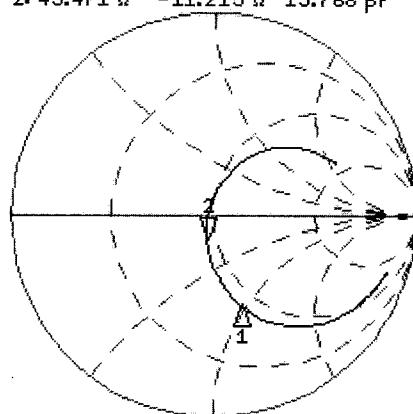

Pin=250mW; dip=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.2 V/m; Power Drift = 0.00569 dB

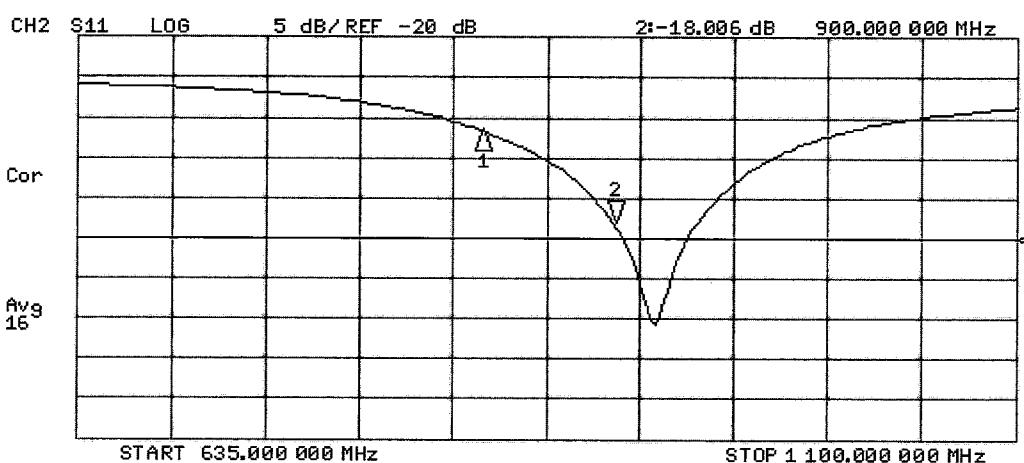
Peak SAR (extrapolated) = 4.19 W/kg

SAR(1 g) = 2.8 mW/g; SAR(10 g) = 1.81 mW/g

Maximum value of SAR (measured) = 3.24 mW/g



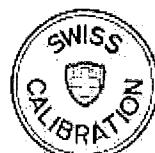
0 dB = 3.24mW/g


Impedance Measurement Plot for Body TSL

17 Aug 2009 08:58:55
CH1 S11 1 U FS 2: 45.471 Ω -11.215 Δ 15.768 pF 900.000 000 MHz

*
Del
Cor

Avg
16


CH1 Markers
1: 41.352 Ω
-46.816 Δ
835.000 MHz

CH2 Markers
1:-6.6738 dB
835.000 MHz

L1019 checked by *AS*
20-Dec-2010

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

Accreditation No.: SCS 108

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client: CCS

Certificate No: EX3-3531_Feb10

CALIBRATION CERTIFICATE

Object: EX3DV3 - SN:3531

Calibration procedure(s): QA CAL-01.v6, QA CAL-12.v6, QA CAL-14.v3, QA CAL-23.v3 and
QA CAL-25.v2
Calibration procedure for dosimetric E-field probes

Calibration date: February 23, 2010

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	1-Apr-09 (No. 217-01030)	Apr-10
Power sensor E4412A	MY41495277	1-Apr-09 (No. 217-01030)	Apr-10
Power sensor E4412A	MY41498087	1-Apr-09 (No. 217-01030)	Apr-10
Reference 3 dB Attenuator	SN: S5054 (3c)	31-Mar-09 (No. 217-01026)	Mar-10
Reference 20 dB Attenuator	SN: S5086 (20b)	31-Mar-09 (No. 217-01026)	Mar-10
Reference 30 dB Attenuator	SN: S5129 (30b)	31-Mar-09 (No. 217-01027)	Mar-10
Reference Probe ES3DV2	SN: 3013	30-Dec-09 (No. ES3-3013_Dec09)	Déc-10
DAE4	SN: 660	29-Sep-09 (No. DAE4-660_Sep09)	Sep-10

Secondary Standards	ID #	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-09)	In house check Oct-11
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-09)	In house check Oct10

Calibrated by	Name	Function	Signature
	Katja Pokovic	Technical Manager	

Approved by:	Name	Function	Signature
	Niels Kuster	Quality Manager	

Issued: February 27, 2010

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

Accreditation No.: SCS 108

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORM x,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORM x,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization β	β rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\beta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- $NORM_{x,y,z}$: Assessed for E-field polarization $\beta = 0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). $NORM_{x,y,z}$ are only intermediate values, i.e., the uncertainties of $NORM_{x,y,z}$ does not effect the E^2 -field uncertainty inside TSL (see below ConvF).
- $NORM(f)x,y,z = NORM_{x,y,z} * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- $DCPx,y,z$: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- $A_{x,y,z}$; $B_{x,y,z}$; $C_{x,y,z}$; $VR_{x,y,z}$: A , B , C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters*: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to $NORM_{x,y,z} * ConvF$ whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy)*: in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset*: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe EX3DV3

SN:3531

Manufactured: May 17, 2004
Last calibrated: April 23, 2008
Recalibrated: February 23, 2010

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: EX3DV3 SN:3531

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μ V/(V/m)) ^a	0.74	0.62	0.66	$\pm 10.1\%$
DCP (mV) ^b	91.1	91.8	100.2	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	C	VR mV	Unc ^c (k=2)
10000	CW	0.00	X Y Z	0.00 0.00 0.00	0.00 0.00 0.00	1.00 1.00 1.00	300 300 300	$\pm 1.5\%$

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^a The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6)

^b Numerical linearization parameter uncertainty not required

^c Uncertainty is determined using the maximum deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

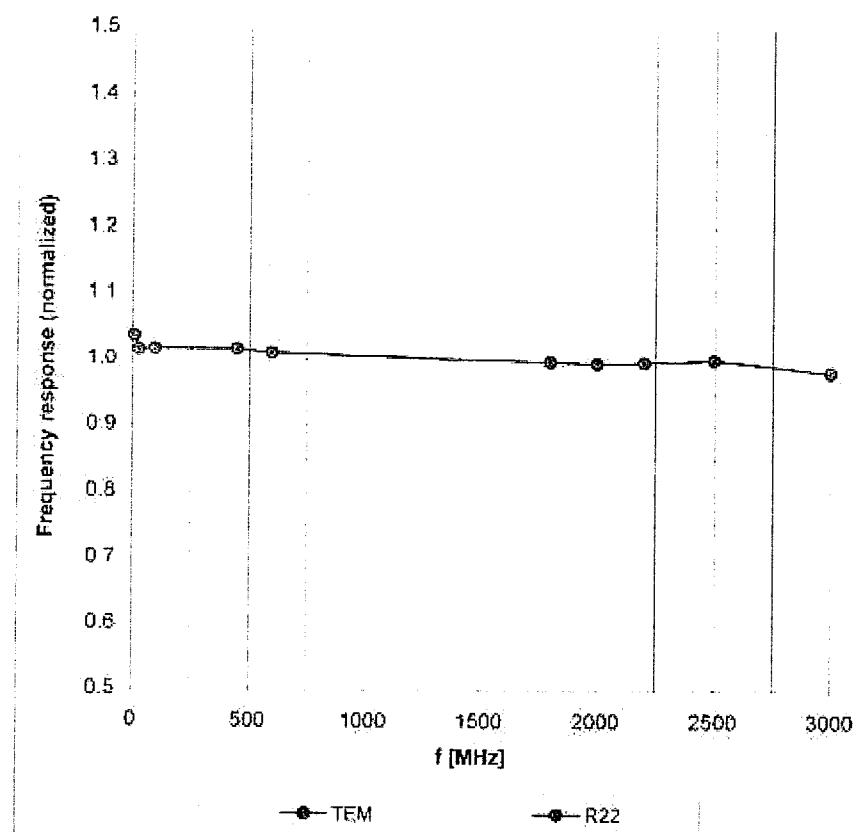
DASY - Parameters of Probe: EX3DV3 SN:3531

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X	ConvF Y	ConvF Z	Alpha	Depth Unc (k=2)
450	± 50 / ± 100	43.5 ± 5%	0.87 ± 5%	11.47	11.47	11.47	0.00	1.00 ± 13.3%
835	± 50 / ± 100	41.5 ± 5%	0.90 ± 5%	10.13	10.13	10.13	0.24	0.90 ± 11.0%
900	± 50 / ± 100	41.5 ± 5%	0.97 ± 5%	9.88	9.88	9.88	0.28	0.82 ± 11.0%
1450	± 50 / ± 100	40.5 ± 5%	1.20 ± 5%	9.22	9.22	9.22	0.29	0.92 ± 11.0%
1640	± 50 / ± 100	40.3 ± 5%	1.29 ± 5%	9.20	9.20	9.20	0.36	0.70 ± 11.0%
1750	± 50 / ± 100	40.1 ± 5%	1.37 ± 5%	8.94	8.94	8.94	0.26	0.84 ± 11.0%
1900	± 50 / ± 100	40.0 ± 5%	1.40 ± 5%	8.64	8.64	8.64	0.22	0.95 ± 11.0%
1950	± 50 / ± 100	40.0 ± 5%	1.40 ± 5%	8.26	8.26	8.26	0.27	0.81 ± 11.0%
2000	± 50 / ± 100	40.0 ± 5%	1.40 ± 5%	8.35	8.35	8.35	0.31	0.76 ± 11.0%
2300	± 50 / ± 100	39.5 ± 5%	1.67 ± 5%	7.99	7.99	7.99	0.20	0.98 ± 11.0%
2450	± 50 / ± 100	39.2 ± 5%	1.80 ± 5%	7.60	7.60	7.60	0.13	1.49 ± 11.0%
2600	± 50 / ± 100	39.0 ± 5%	1.96 ± 5%	7.50	7.50	7.50	0.13	1.92 ± 11.0%
3500	± 50 / ± 100	37.9 ± 5%	2.91 ± 5%	6.91	6.91	6.91	0.24	1.34 ± 13.1%
4950	± 50 / ± 100	36.3 ± 5%	4.40 ± 5%	5.37	5.37	5.37	0.15	1.80 ± 13.1%
5200	± 50 / ± 100	36.0 ± 5%	4.66 ± 5%	4.89	4.89	4.89	0.30	1.90 ± 13.1%
5300	± 50 / ± 100	35.9 ± 5%	4.76 ± 5%	4.67	4.67	4.67	0.28	1.90 ± 13.1%
5500	± 50 / ± 100	35.6 ± 5%	4.96 ± 5%	4.39	4.39	4.39	0.30	1.90 ± 13.1%
5600	± 50 / ± 100	35.5 ± 5%	5.07 ± 5%	4.11	4.11	4.11	0.40	1.90 ± 13.1%
5800	± 50 / ± 100	35.3 ± 5%	5.27 ± 5%	4.18	4.18	4.18	0.40	1.90 ± 13.1%

^C The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

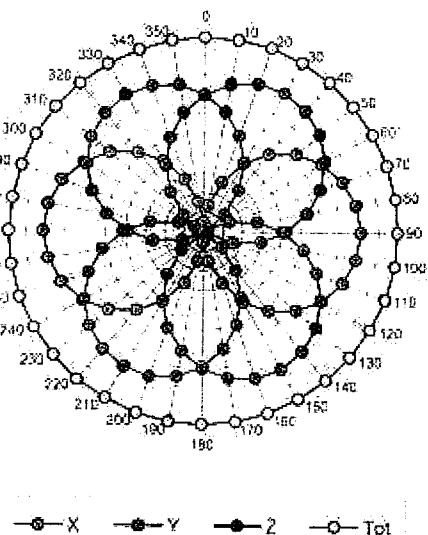
DASY - Parameters of Probe: EX3DV3 SN:3531

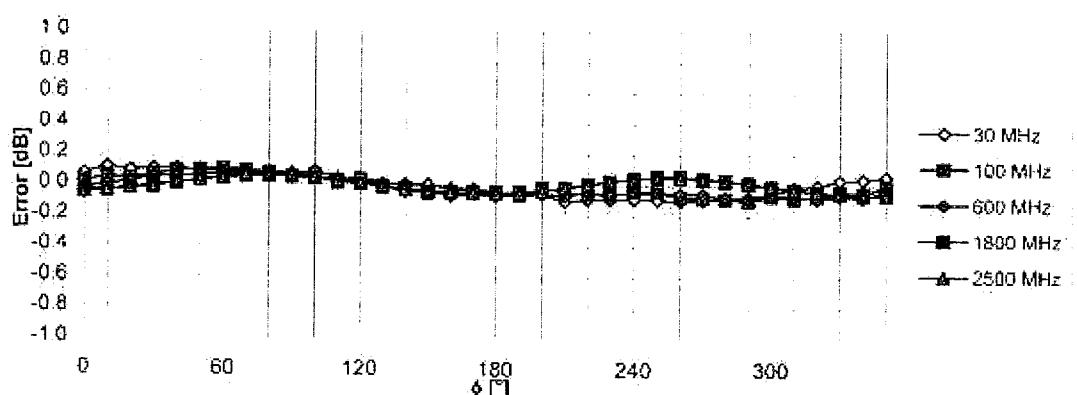
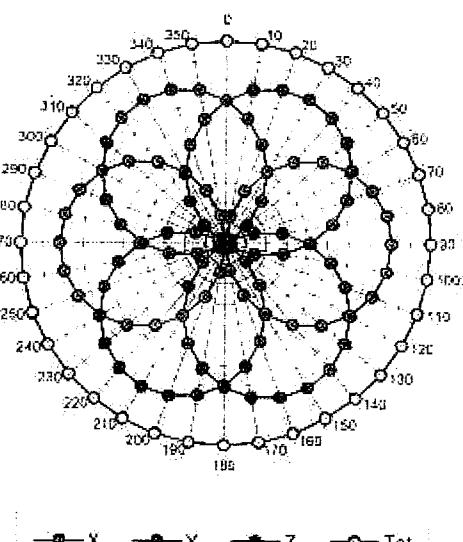

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz]	Validity [MHz] ^c	Permittivity	Conductivity	ConvF X	ConvF Y	ConvF Z	Alpha	Depth Unc (k=2)
450	± 50 / ± 100	56.7 ± 5%	0.94 ± 5%	10.96	10.96	10.96	0.23	2.75 ± 13.3%
835	± 50 / ± 100	55.2 ± 5%	0.97 ± 5%	10.18	10.18	10.18	0.31	0.87 ± 11.0%
900	± 50 / ± 100	55.0 ± 5%	1.05 ± 5%	9.92	9.92	9.92	0.28	0.91 ± 11.0%
1450	± 50 / ± 100	54.0 ± 5%	1.30 ± 5%	9.58	9.58	9.58	0.31	0.86 ± 11.0%
1640	± 50 / ± 100	53.8 ± 5%	1.40 ± 5%	9.36	9.36	9.36	0.33	0.74 ± 11.0%
1750	± 50 / ± 100	53.4 ± 5%	1.49 ± 5%	8.51	8.51	8.51	0.33	0.77 ± 11.0%
1900	± 50 / ± 100	53.3 ± 5%	1.52 ± 5%	8.04	8.04	8.04	0.23	0.91 ± 11.0%
1950	± 50 / ± 100	53.3 ± 5%	1.52 ± 5%	8.23	8.23	8.23	0.19	1.04 ± 11.0%
2000	± 50 / ± 100	53.3 ± 5%	1.52 ± 5%	8.10	8.10	8.10	0.15	1.37 ± 11.0%
2300	± 50 / ± 100	52.8 ± 5%	1.85 ± 5%	7.80	7.80	7.80	0.13	1.71 ± 11.0%
2450	± 50 / ± 100	52.7 ± 5%	1.95 ± 5%	7.58	7.58	7.58	0.14	1.24 ± 11.0%
2600	± 50 / ± 100	52.5 ± 5%	2.16 ± 5%	7.40	7.40	7.40	0.14	1.51 ± 11.0%
3500	± 50 / ± 100	51.3 ± 5%	3.31 ± 5%	6.45	6.45	6.45	0.27	1.51 ± 13.1%
4950	± 50 / ± 100	49.4 ± 5%	5.01 ± 5%	4.11	4.11	4.11	0.45	1.90 ± 13.1%
5200	± 50 / ± 100	49.0 ± 5%	5.30 ± 5%	4.04	4.04	4.04	0.45	1.90 ± 13.1%
5300	± 50 / ± 100	48.5 ± 5%	5.42 ± 5%	3.79	3.79	3.79	0.50	1.90 ± 13.1%
5500	± 50 / ± 100	48.6 ± 5%	5.65 ± 5%	3.57	3.57	3.57	0.50	1.90 ± 13.1%
5600	± 50 / ± 100	48.5 ± 5%	5.77 ± 5%	3.32	3.32	3.32	0.55	1.90 ± 13.1%
5800	± 50 / ± 100	48.2 ± 5%	6.00 ± 5%	3.48	3.48	3.48	0.55	1.90 ± 13.1%

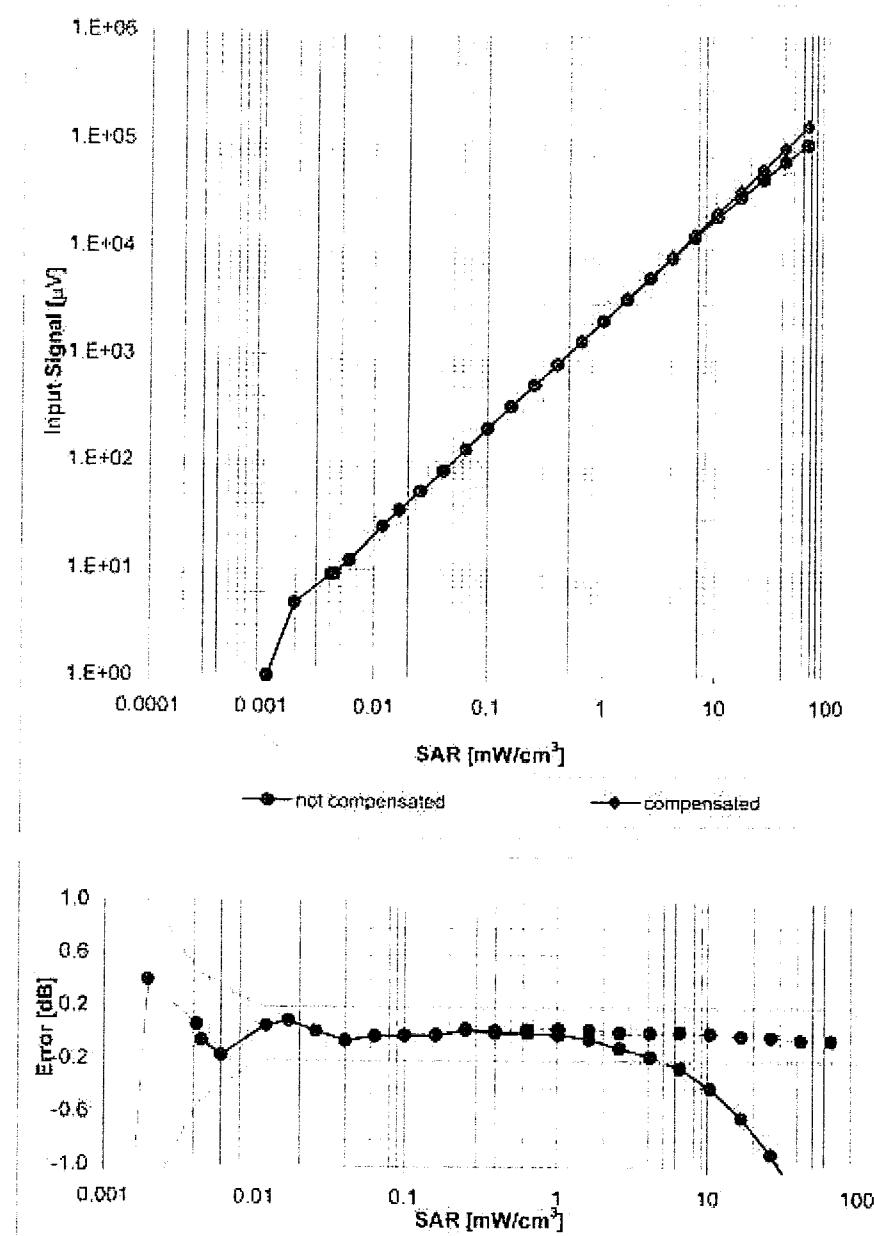
^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band

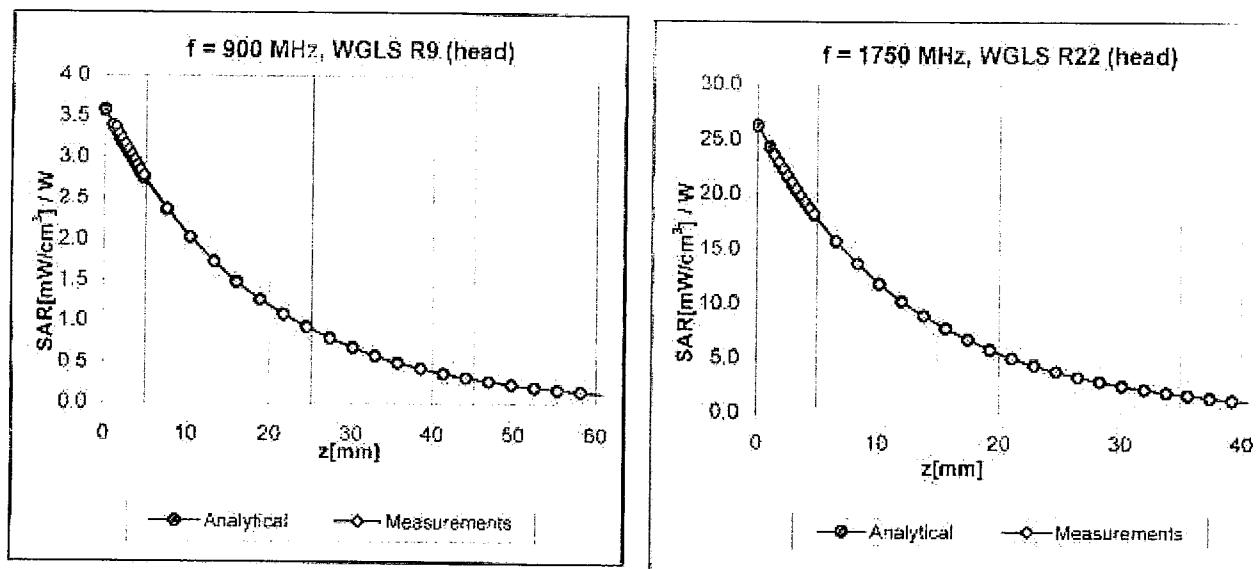
Frequency Response of E-Field


(TEM-Cell:ifit10 EXX, Waveguide: R22)

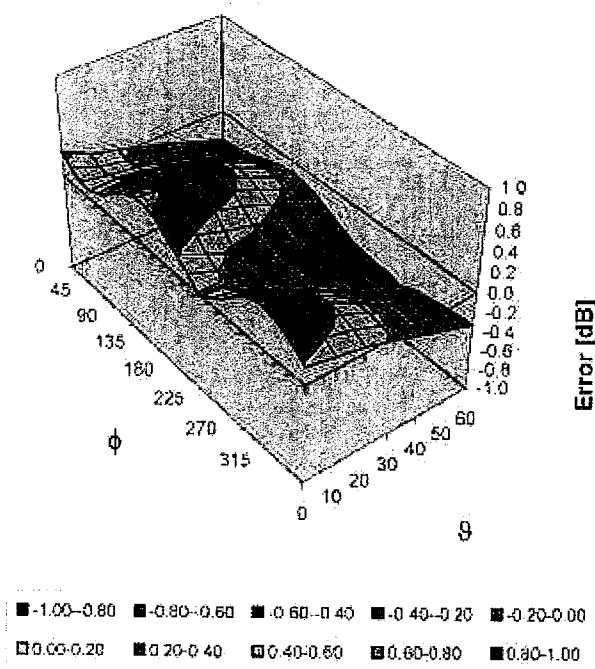


Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ (k=2)

Receiving Pattern (ϕ), $\theta = 0^\circ$


$f = 600$ MHz, TEM ifi110EXX


$f = 1800$ MHz, WG R22

Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ ($k=2$)


Dynamic Range $f(\text{SAR}_{\text{head}})$ (Waveguide R22, $f = 1800$ MHz)Uncertainty of Linearity Assessment: $\pm 0.6\%$ ($k=2$)

Conversion Factor Assessment

Deviation from Isotropy in HSL

Error (ϕ, θ), $f = 900$ MHz

Uncertainty of Spherical Isotropy Assessment: $\pm 2.6\%$ ($k=2$)

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Appendix 2. Measurement Methods

A.2.1. Evaluation Procedure

The Specific Absorption Rate (SAR) evaluation was performed in the following manner:

- a) (i) The evaluation was performed in an applicable area of the phantom depending on the type of device being tested. For devices worn about the ear during normal operation, both the left and right ear positions were evaluated at the centre frequency of the band at maximum power. The side, which produced the greatest SAR, determined which side of the phantom would be used for the entire evaluation. The positioning of the head worn device relative to the phantom was dictated by the test specification identified in section 3.1 of this report.
(ii) For body worn devices or devices which can be operated within 20 cm of the body, the flat section of the SAM phantom was used were the size of the device(s) is normal. for bigger devices and base station the 2mm Oval phantom is used for evaluation. The type of device being evaluated dictated the distance of the EUT to the outer surface of the phantom flat section.
- b) The SAR was determined by a pre-defined procedure within the DASY4 software. The exposed region of the phantom was scanned near the inner surface with a grid spacing of 20mm x 20mm or appropriate resolution.
- c) A 5x5x7 matrix was performed around the greatest spatial SAR distribution found during the area scan of the applicable exposed region. SAR values were then calculated using a 3-D spline interpolation algorithm and averaged over spatial volumes of 1 and 10 grams.
- d) If the EUT had any appreciable drift over the course of the evaluation, then the EUT was re-evaluated. Any unusual anomalies over the course of the test also warranted a re-evaluation.

A.2.2. Specific Absorption Rate (SAR) Measurements to OET Bulletin 65 Supplement C: (2001-01)

Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields

SAR measurements were performed in accordance with Appendix D of the standard FCC OET Bulletin 65 Supplement C: 2001, IEEE 1528 and FCC KDB procedures, against appropriate limits for each measurement position in accordance with the standard. In some cases the FCC was contacted using a PBA or KDB process to ensure test is performed correctly.

The test was performed in a shielded enclosure with the temperature controlled to remain between +18.0°C and +25.0°C. The tissue equivalent material fluid temperature was controlled to give a maximum variation of $\pm 2.0^{\circ}\text{C}$

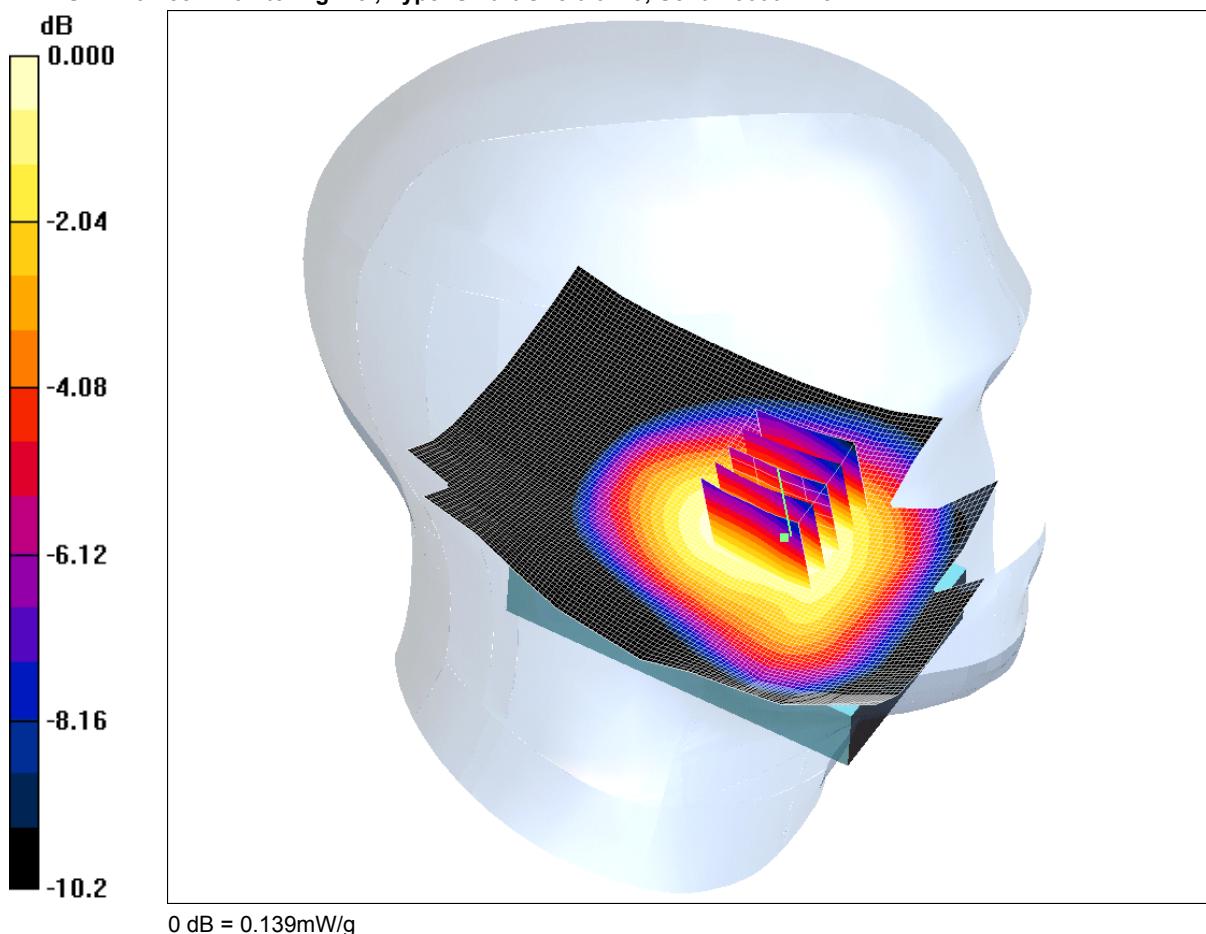
Prior to any SAR measurements on the EUT, system validation and material dielectric property measurements were conducted. In the absence of a detailed procedure within the specification, system validation and material dielectric property measurements were performed in accordance with Appendix C and Appendix D of FCC OET Bulletin 65 Supplement C: 2001 and FCC KDB publication 450824.

Following the successful system validation and material dielectric property measurements, a SAR versus time sweep shall be performed within 10 mm of the phantom inner surface. If the EUT power output is stable after three minutes then the measurement probe will perform a coarse surface level scan at each test position in order to ascertain the location of the maximum local SAR level. Once this area had been established, a 5x5x7 cube of 343 points (5 mm spacing in each axis $\approx 27\text{g}$) will be centred at the area of concern. Extrapolation and interpolation will then be carried out on the 27g of tissue and the highest averaged SAR over a 10g cube determined.

Once the maximum interpolated SAR measurement is complete; the coarse scan is visually assessed to check for secondary peaks within 50% of the maximum SAR level. If there are any further SAR measurements required, extra 5x5x7 cubes shall be centred on each of these extra local SAR maxima.

At the end of each position test case a second time sweep shall be performed to check whether the EUT has remained stable throughout the test.

Appendix 3. SAR Distribution Scans


This appendix contains SAR distribution scans which are not included in the total number of pages for this report.

Scan Reference Number	Title
SCN/80091JD08/001	Touch Left GSM CH189
SCN/80091JD08/002	Tilt Left GSM CH189
SCN/80091JD08/003	Touch Right GSM CH189
SCN/80091JD08/004	Tilt Right GSM CH189
SCN/80091JD08/005	Front of EUT Facing Phantom GSM CH189
SCN/80091JD08/006	Rear of EUT Facing Phantom GSM CH189
SCN/80091JD08/007	Front of EUT Facing Phantom GPRS CH189
SCN/80091JD08/008	Rear of EUT Facing Phantom GPRS CH189
SCN/80091JD08/009	Touch Left PCS CH660
SCN/80091JD08/010	Tilt Left PCS CH660
SCN/80091JD08/011	Touch Right PCS CH660
SCN/80091JD08/012	Tilt Right PCS CH660
SCN/80091JD08/013	Front of EUT Facing Phantom PCS CH660
SCN/80091JD08/014	Rear of EUT Facing Phantom PCS CH660
SCN/80091JD08/015	Front of EUT Facing Phantom GPRS CH660
SCN/80091JD08/016	Rear of EUT Facing Phantom GPRS CH660
SCN/80091JD08/017	System Performance Check 900MHz Head 21 12 10
SCN/80091JD08/018	System Performance Check 1900MHz Head 21 12 10
SCN/80091JD08/019	System Performance Check 1900MHz Head 22 12 10

SCN/80091JD08/001: Touch Left GSM CH189

Date 21/12/2010

DUT: Pro Tech Monitoring inc ; Type: Smart One 0.6418; Serial: 35002718

Communication System: 850 MHz; Frequency: 836.4 MHz; Duty Cycle: 1:8.3

Medium: 900 MHz HSL Medium parameters used (interpolated): $f = 836.4$ MHz; $\sigma = 0.893$ mho/m; $\epsilon_r = 41.3$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: EX3DV3 - SN3531; ConvF(10.13, 10.13, 10.13); Calibrated: 23/02/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 19/04/2010
- Phantom: SAM 12a; Type: SAM 4.0; Serial: TP:1193
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

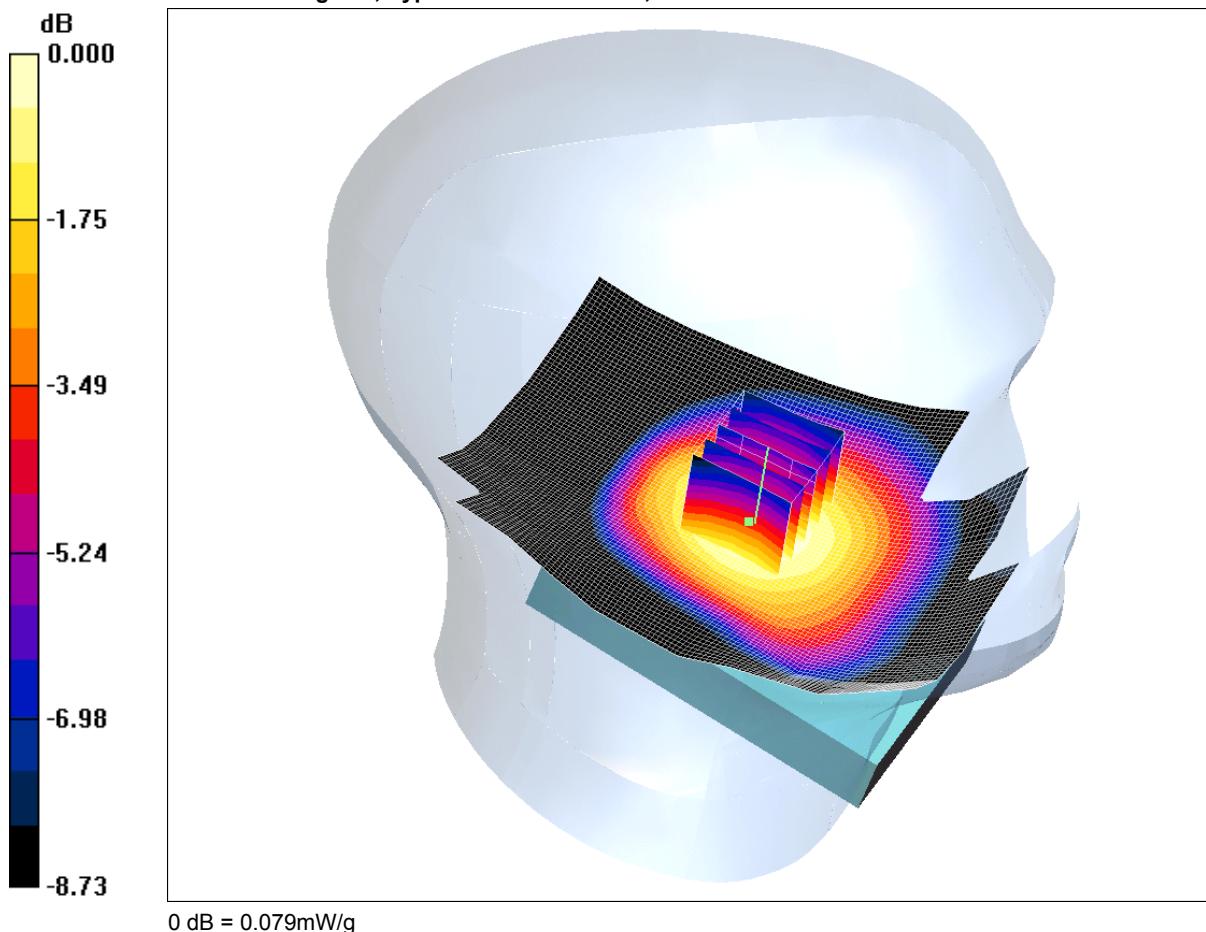
Touch Left- Middle/Area Scan (81x111x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.142 mW/g

Touch Left- Middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.97 V/m; Power Drift = 0.080 dB

Peak SAR (extrapolated) = 0.166 W/kg


SAR(1 g) = 0.133 mW/g; SAR(10 g) = 0.101 mW/g

Maximum value of SAR (measured) = 0.139 mW/g

SCN/80091JD08/002: Tilt Left GSM CH189

Date 21/12/2010

DUT: Pro Tech Monitoring inc ; Type: Smart One 0.6418; Serial: 35002718

0 dB = 0.079mW/g

Communication System: 850 MHz; Frequency: 836.4 MHz; Duty Cycle: 1:8.3

Medium: 900 MHz HSL Medium parameters used (interpolated): $f = 836.4$ MHz; $\sigma = 0.893$ mho/m; $\epsilon_r = 41.3$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: EX3DV3 - SN3531; ConvF(10.13, 10.13, 10.13); Calibrated: 23/02/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 19/04/2010
- Phantom: SAM 12a; Type: SAM 4.0; Serial: TP:1193
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

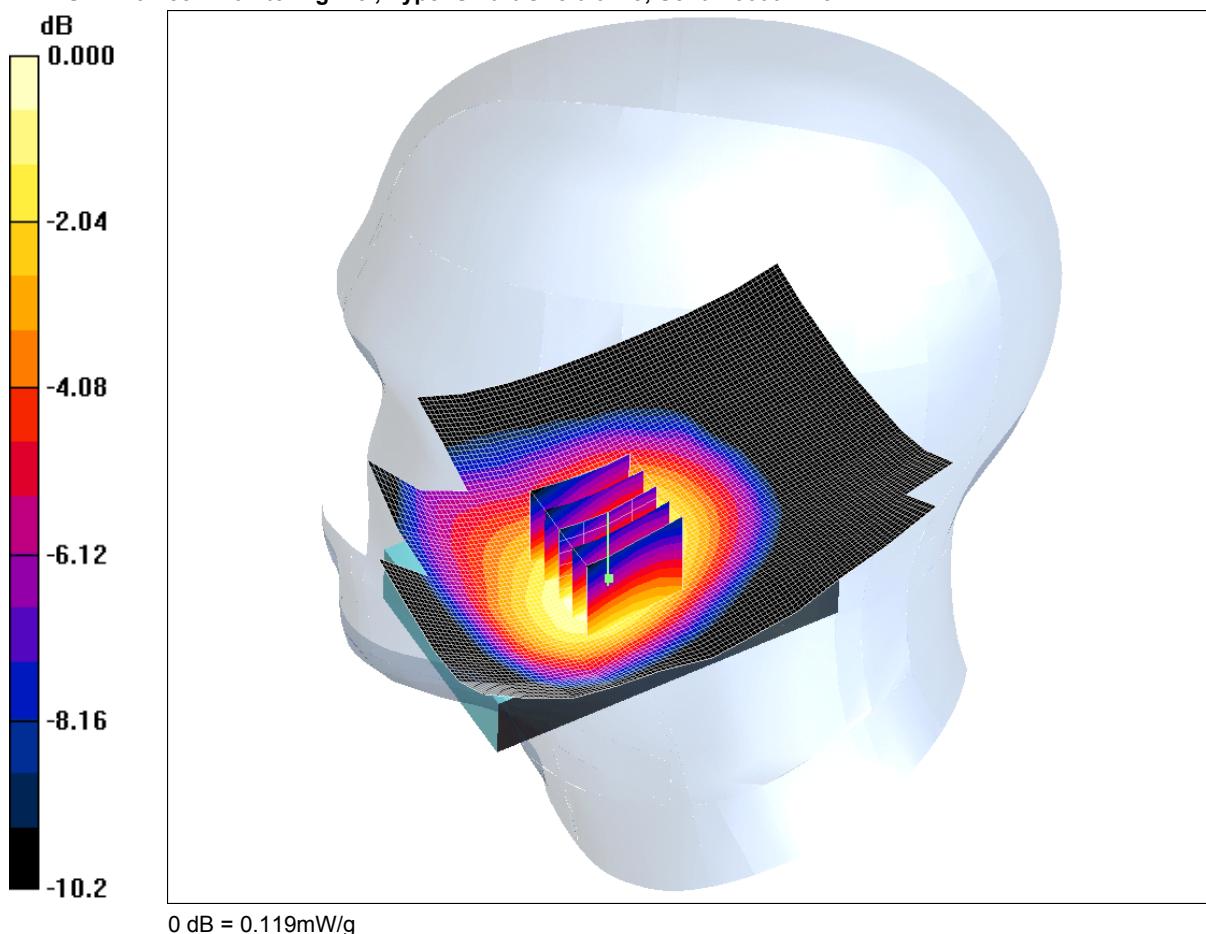
Tilt Left- Middle/Area Scan (81x111x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.082 mW/g

Tilt Left- Middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.00 V/m; Power Drift = 0.039 dB

Peak SAR (extrapolated) = 0.095 W/kg


SAR(1 g) = 0.075 mW/g; SAR(10 g) = 0.057 mW/g

Maximum value of SAR (measured) = 0.079 mW/g

SCN/80091JD08/003: Touch Right GSM CH189

Date 21/12/2010

DUT: Pro Tech Monitoring inc ; Type: Smart One 0.6418; Serial: 35002718

Communication System: 850 MHz; Frequency: 836.4 MHz; Duty Cycle: 1:8.3

Medium: 900 MHz HSL Medium parameters used (interpolated): $f = 836.4$ MHz; $\sigma = 0.893$ mho/m; $\epsilon_r = 41.3$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe: EX3DV3 - SN3531; ConvF(10.13, 10.13, 10.13); Calibrated: 23/02/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 19/04/2010
- Phantom: SAM 12a; Type: SAM 4.0; Serial: TP:1193
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

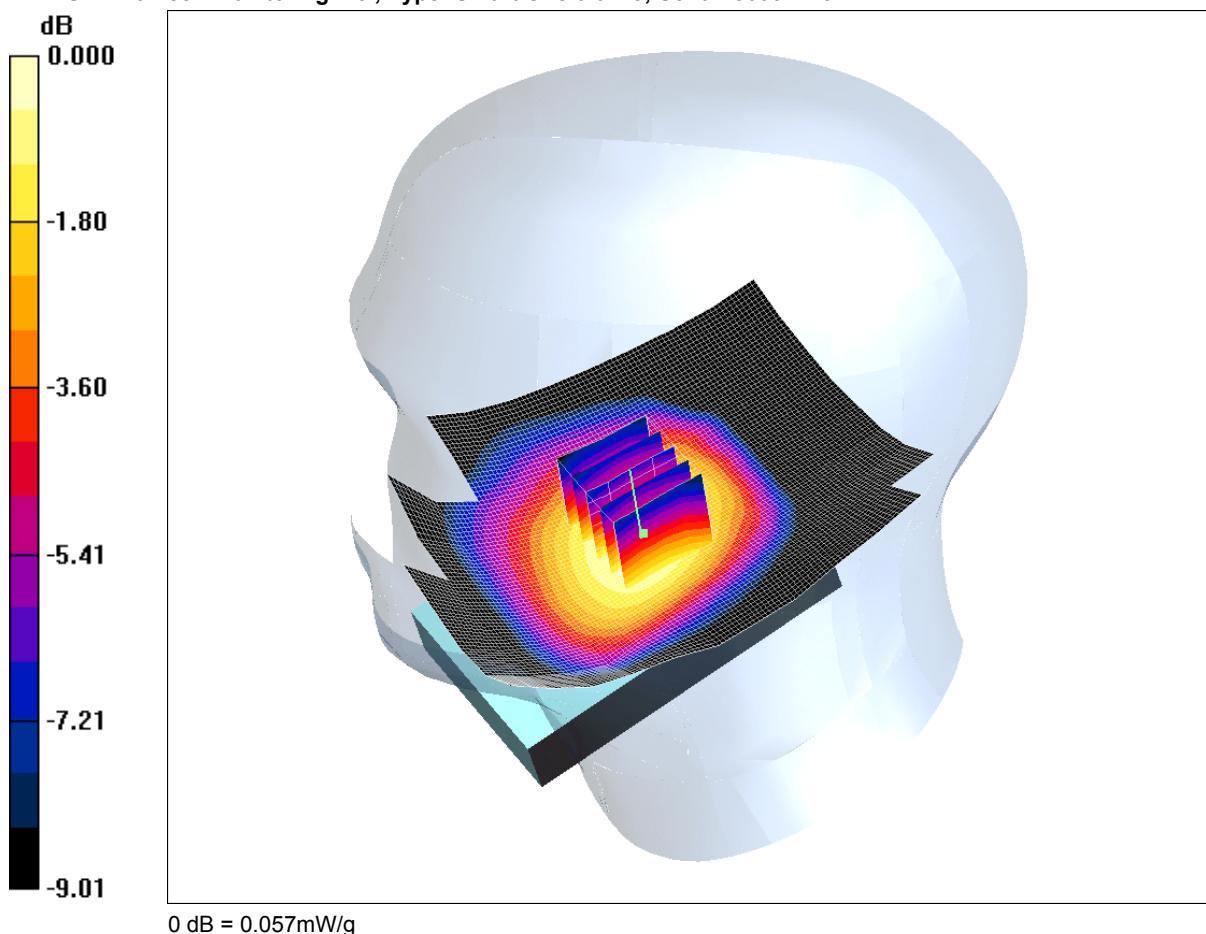
Touch Right - Middle/Area Scan (81x111x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.120 mW/g

Touch Right - Middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.03 V/m; Power Drift = 0.378 dB

Peak SAR (extrapolated) = 0.146 W/kg


SAR(1 g) = 0.112 mW/g; SAR(10 g) = 0.082 mW/g

Maximum value of SAR (measured) = 0.119 mW/g

SCN/80091JD08/004: Tilt Right GSM CH189

Date 21/12/2010

DUT: Pro Tech Monitoring inc ; Type: Smart One 0.6418; Serial: 35002718

Communication System: 850 MHz; Frequency: 836.4 MHz; Duty Cycle: 1:8.3

Medium: 900 MHz HSL Medium parameters used (interpolated): $f = 836.4$ MHz; $\sigma = 0.893$ mho/m; $\epsilon_r = 41.3$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe: EX3DV3 - SN3531; ConvF(10.13, 10.13, 10.13); Calibrated: 23/02/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 19/04/2010
- Phantom: SAM 12a; Type: SAM 4.0; Serial: TP:1193
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

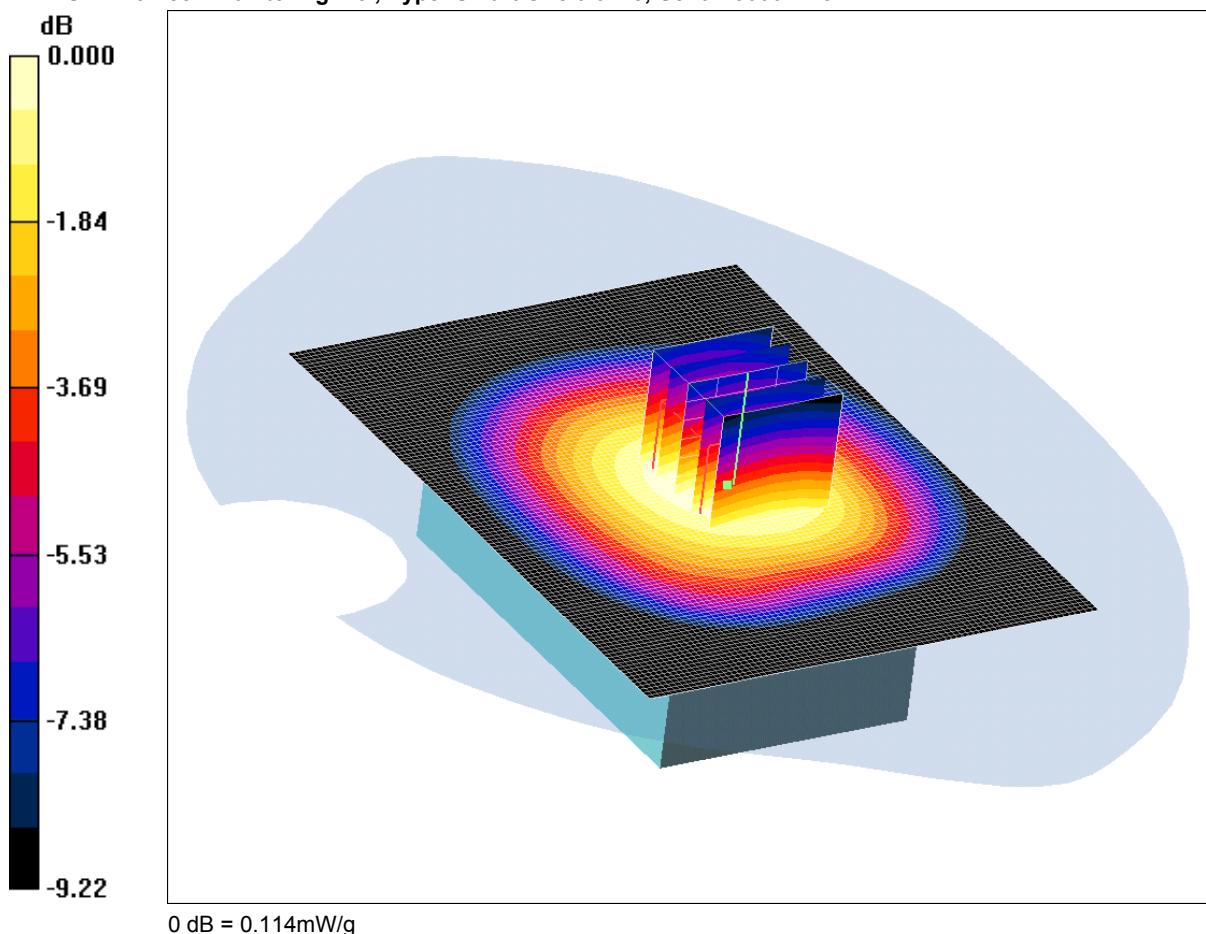
Tilt Right - Middle/Area Scan (81x111x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.057 mW/g

Tilt Right - Middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.24 V/m; Power Drift = 0.089 dB

Peak SAR (extrapolated) = 0.070 W/kg


SAR(1 g) = 0.054 mW/g; SAR(10 g) = 0.040 mW/g

Maximum value of SAR (measured) = 0.057 mW/g

SCN/80091JD08/005: Front of EUT Facing Phantom GSM CH189

Date 21/12/2010

DUT: Pro Tech Monitoring inc ; Type: Smart One 0.6418; Serial: 35002718

0 dB = 0.114mW/g

Communication System: 850 MHz; Frequency: 836.4 MHz; Duty Cycle: 1:8.3

Medium: 900 MHz MSL Medium parameters used (interpolated): $f = 836.4$ MHz; $\sigma = 1.02$ mho/m; $\epsilon_r = 53$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV3 - SN3531; ConvF(10.18, 10.18, 10.18); Calibrated: 23/02/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 19/04/2010
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1207
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

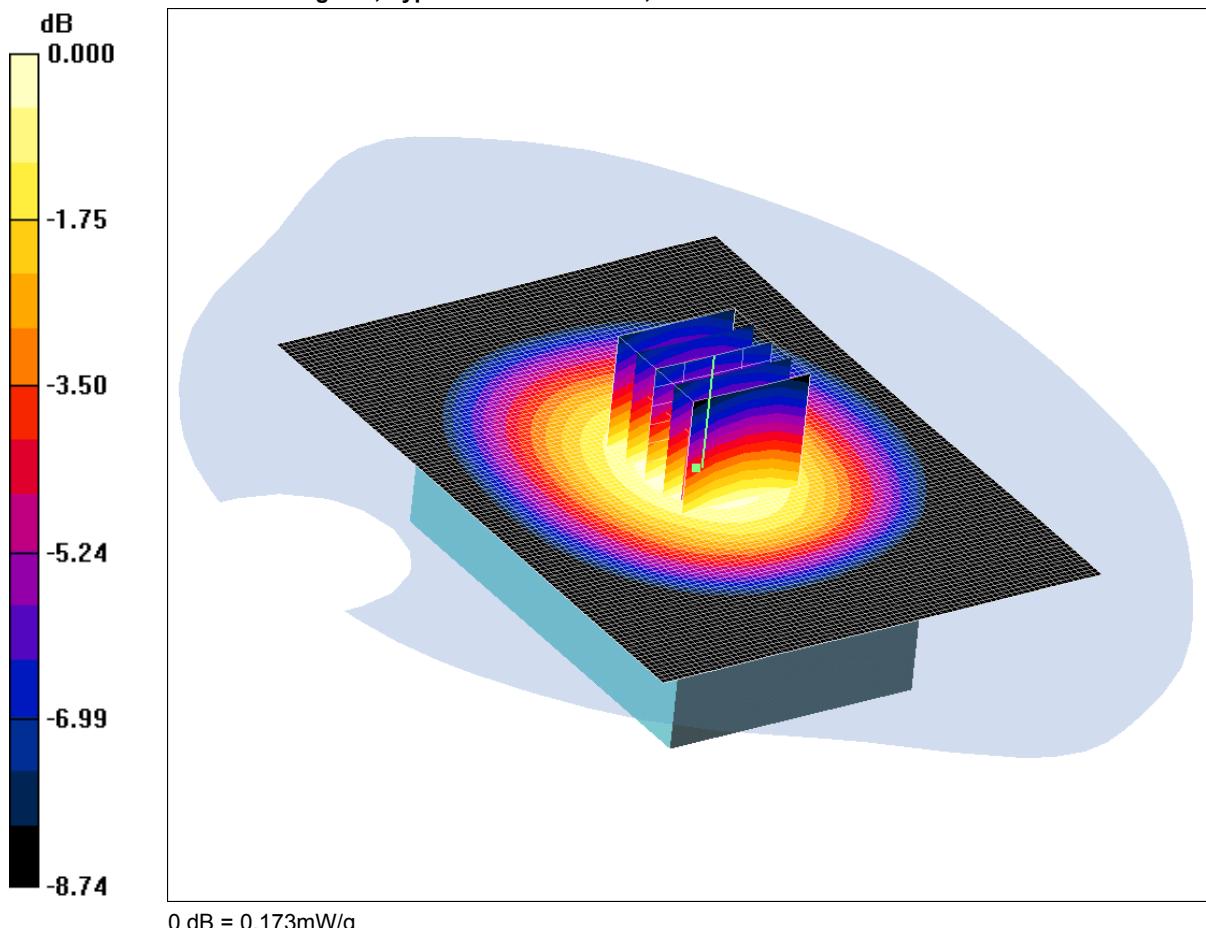
Front of EUT Facing Phantom - Middle/Area Scan (81x111x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.115 mW/g

Front of EUT Facing Phantom - Middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.3 V/m; Power Drift = 0.003 dB

Peak SAR (extrapolated) = 0.141 W/kg


SAR(1 g) = 0.109 mW/g; SAR(10 g) = 0.080 mW/g

Maximum value of SAR (measured) = 0.114 mW/g

SCN/80091JD08/006: Rear of EUT Facing Phantom GSM CH189

Date 21/12/2010

DUT: Pro Tech Monitoring inc ; Type: Smart One 0.6418; Serial: 35002718

Communication System: 850 MHz; Frequency: 836.4 MHz; Duty Cycle: 1:8.3

Medium: 900 MHz MSL Medium parameters used (interpolated): $f = 836.4$ MHz; $\sigma = 1.02$ mho/m; $\epsilon_r = 53$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV3 - SN3531; ConvF(10.18, 10.18, 10.18); Calibrated: 23/02/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 19/04/2010
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1207
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

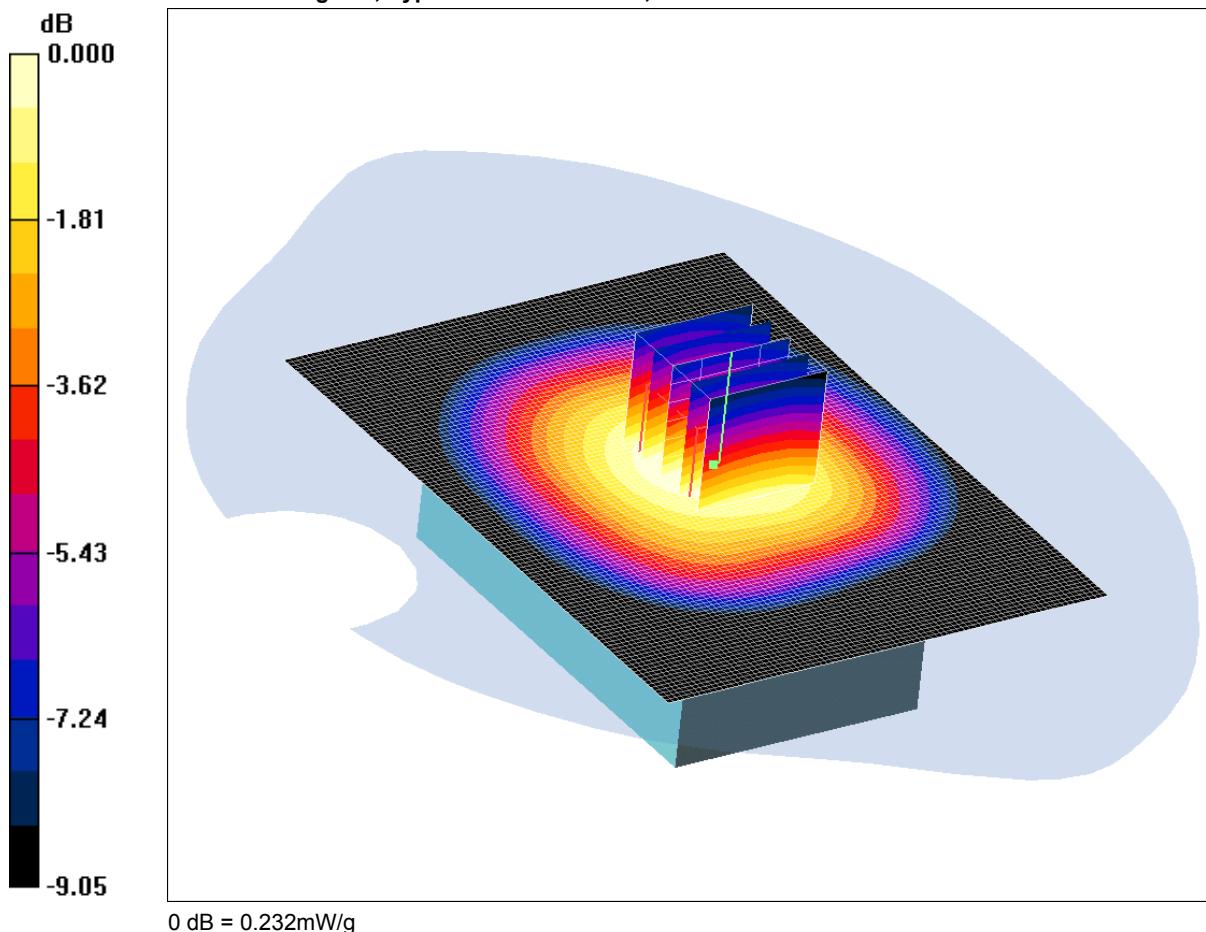
Rear of EUT Facing Phantom - Middle/Area Scan (81x111x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.174 mW/g

Rear of EUT Facing Phantom - Middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.8 V/m; Power Drift = -0.042 dB

Peak SAR (extrapolated) = 0.212 W/kg


SAR(1 g) = 0.164 mW/g; SAR(10 g) = 0.122 mW/g

Maximum value of SAR (measured) = 0.173 mW/g

SCN/80091JD08/007: Front of EUT Facing Phantom GPRS CH189

Date 21/12/2010

DUT: Pro Tech Monitoring inc ; Type: Smart One 0.6418; Serial: 35002718

Communication System: GPRS 850 MHz; Frequency: 836.4 MHz; Duty Cycle: 1:4

Medium: 900 MHz MSL Medium parameters used (interpolated): $f = 836.4$ MHz; $\sigma = 1.02$ mho/m; $\epsilon_r = 53$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV3 - SN3531; ConvF(10.18, 10.18, 10.18); Calibrated: 23/02/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 19/04/2010
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1207
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

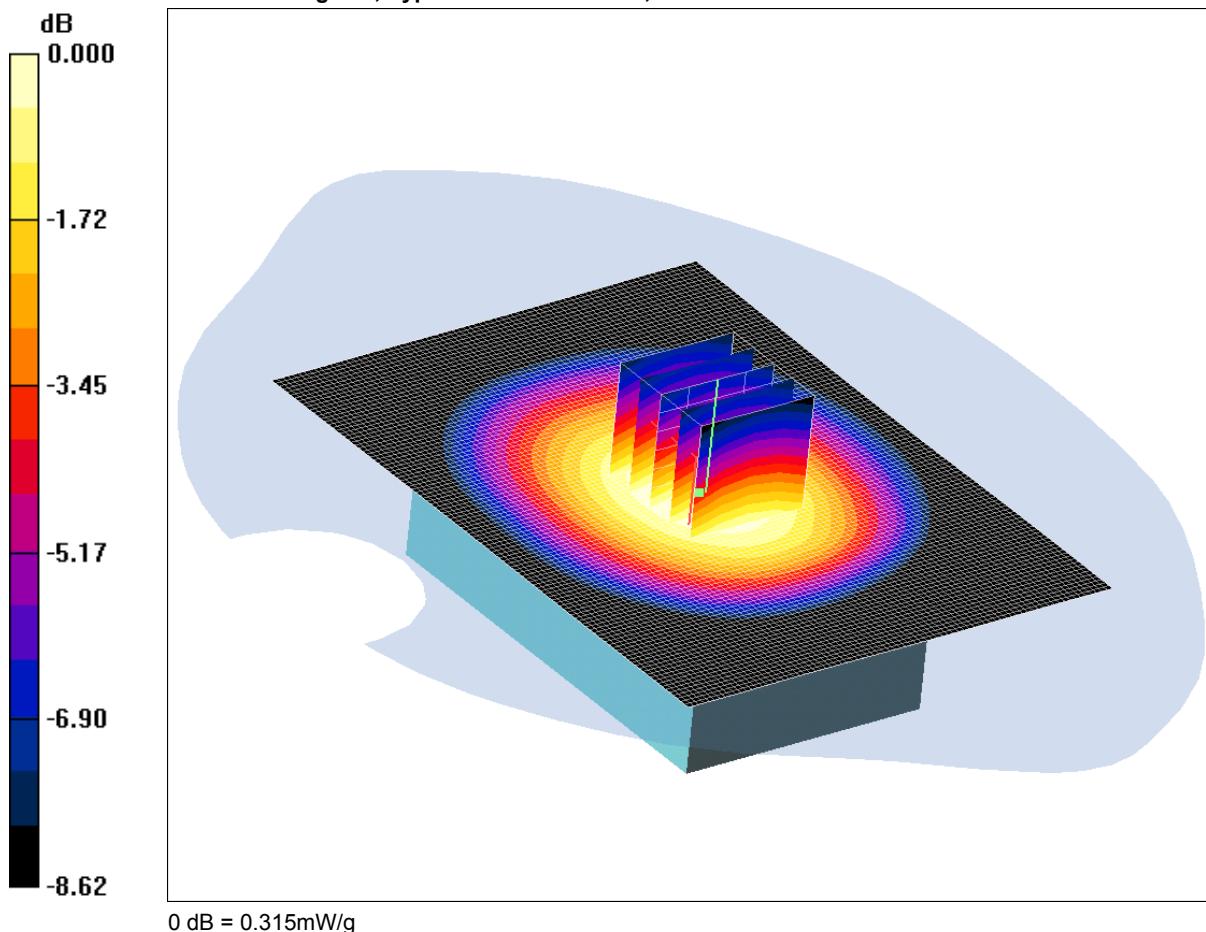
Front of EUT Facing Phantom - Middle/Area Scan (81x111x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.234 mW/g

Front of EUT Facing Phantom - Middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.0 V/m; Power Drift = -0.001 dB

Peak SAR (extrapolated) = 0.287 W/kg


SAR(1 g) = 0.220 mW/g; SAR(10 g) = 0.163 mW/g

Maximum value of SAR (measured) = 0.232 mW/g

SCN/80091JD08/008: Rear of EUT Facing Phantom GPRS CH189

Date 21/12/2010

DUT: Pro Tech Monitoring inc ; Type: Smart One 0.6418; Serial: 35002718

Communication System: GPRS 850 MHz; Frequency: 836.4 MHz; Duty Cycle: 1:4

Medium: 900 MHz MSL Medium parameters used (interpolated): $f = 836.4$ MHz; $\sigma = 1.02$ mho/m; $\epsilon_r = 53$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV3 - SN3531; ConvF(10.18, 10.18, 10.18); Calibrated: 23/02/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 19/04/2010
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1207
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

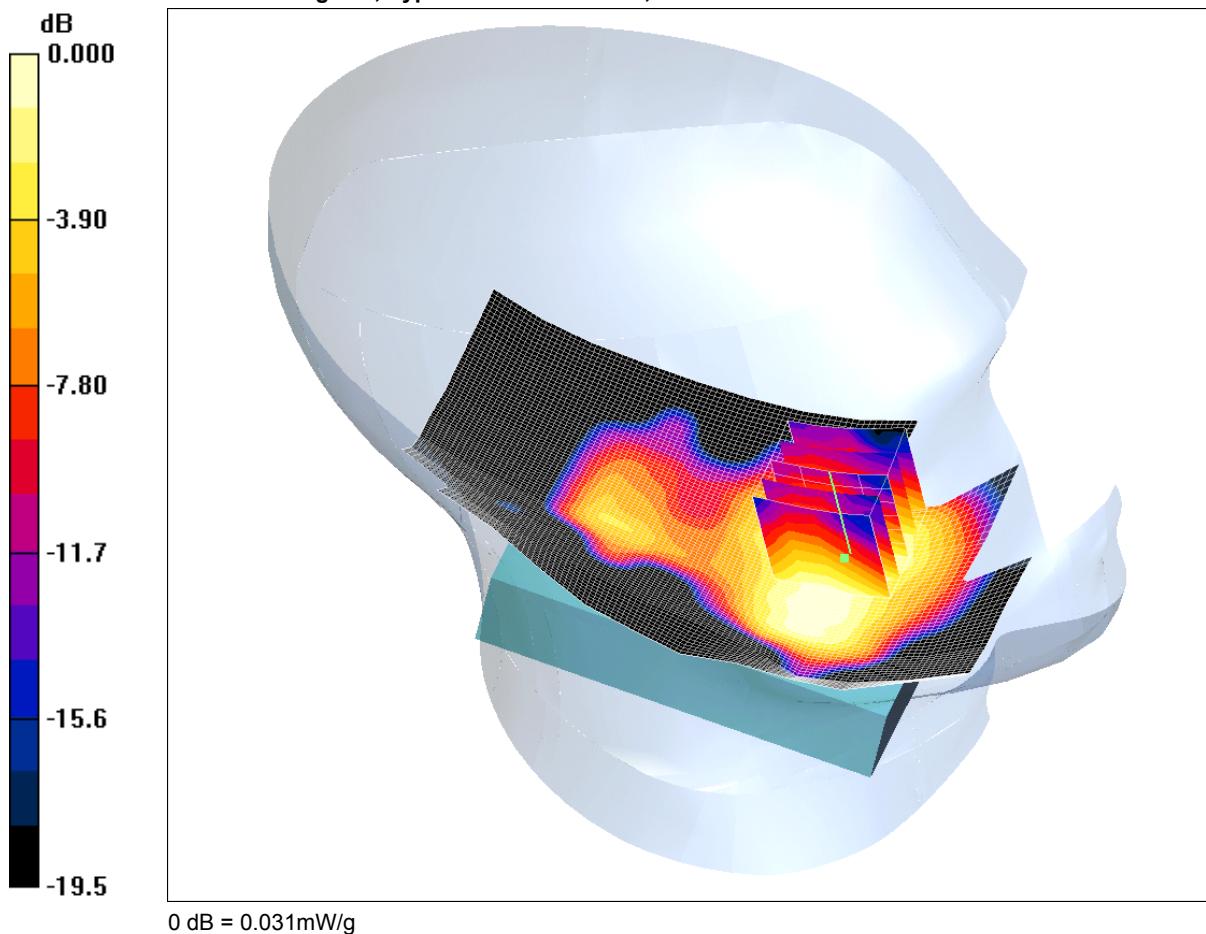
Rear of EUT Facing Phantom - Middle/Area Scan (81x111x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.319 mW/g

Rear of EUT Facing Phantom - Middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.4 V/m; Power Drift = -0.142 dB

Peak SAR (extrapolated) = 0.386 W/kg


SAR(1 g) = 0.299 mW/g; SAR(10 g) = 0.223 mW/g

Maximum value of SAR (measured) = 0.315 mW/g

SCN/80091JD08/009: Touch Left PCS CH660

Date 21/12/2010

DUT: Pro Tech Monitoring inc ; Type: Smart One 0.6418; Serial: 35002718

Communication System: PCS 1900; Frequency: 1879.8 MHz; Duty Cycle: 1:8.3

Medium: 1900 MHz HSL Medium parameters used (interpolated): $f = 1879.8$ MHz; $\sigma = 1.39$ mho/m; $\epsilon_r = 39.9$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: EX3DV3 - SN3531; ConvF(8.64, 8.64, 8.64); Calibrated: 23/02/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 19/04/2010
- Phantom: SAM 12a; Type: SAM 4.0; Serial: TP:1193
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

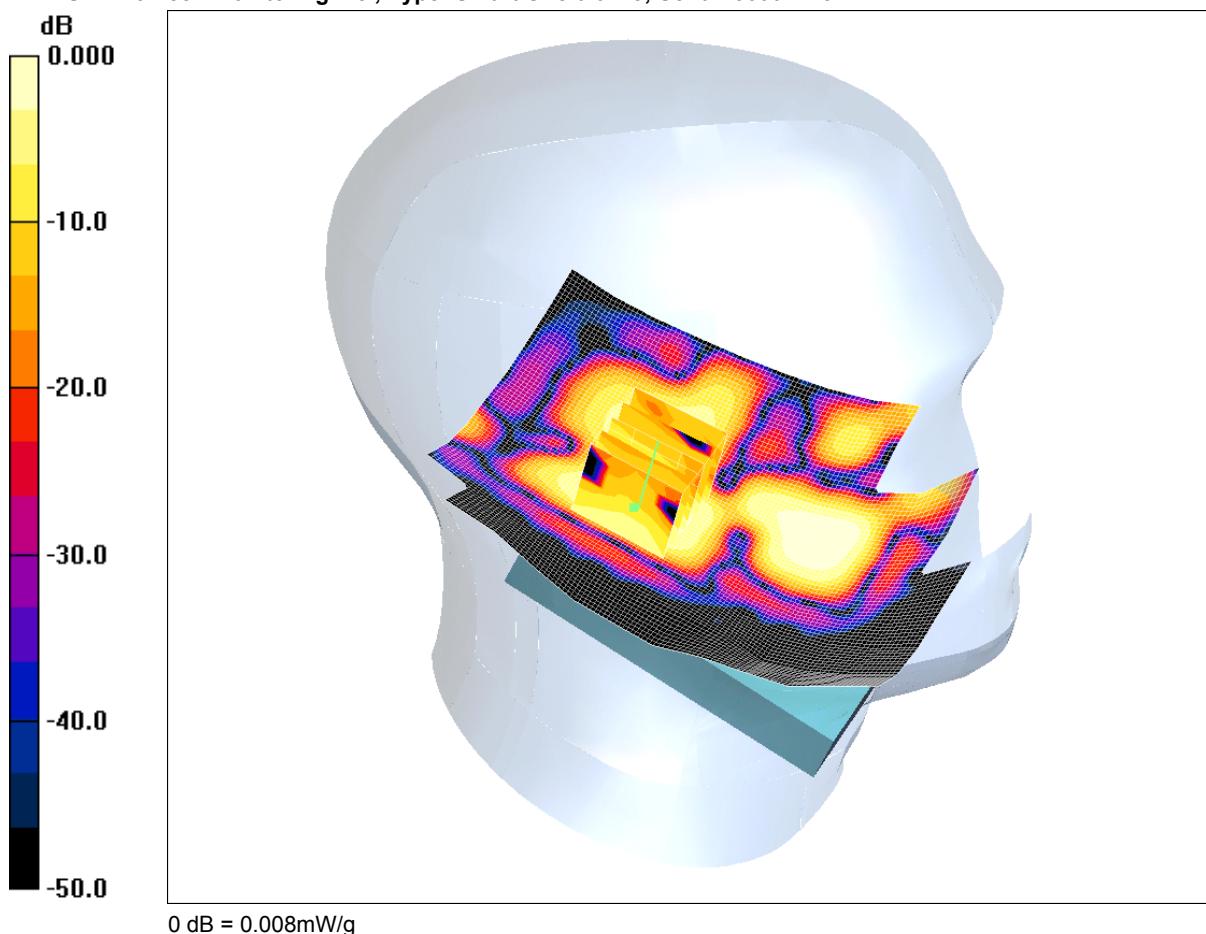
Touch Left- Middle/Area Scan (81x111x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.031 mW/g

Touch Left- Middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.05 V/m; Power Drift = -0.130 dB

Peak SAR (extrapolated) = 0.046 W/kg


SAR(1 g) = 0.028 mW/g; SAR(10 g) = 0.017 mW/g

Maximum value of SAR (measured) = 0.031 mW/g

SCN/80091JD08/010: Tilt Left PCS CH660

Date 21/12/2010

DUT: Pro Tech Monitoring inc ; Type: Smart One 0.6418; Serial: 35002718

0 dB = 0.008mW/g

Communication System: PCS 1900; Frequency: 1879.8 MHz; Duty Cycle: 1:8.3

Medium: 1900 MHz HSL Medium parameters used (interpolated): $f = 1879.8$ MHz; $\sigma = 1.39$ mho/m; $\epsilon_r = 39.9$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: EX3DV3 - SN3531; ConvF(8.64, 8.64, 8.64); Calibrated: 23/02/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 19/04/2010
- Phantom: SAM 12a; Type: SAM 4.0; Serial: TP:1193
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Tilt Left- Middle/Area Scan (81x111x1): Measurement grid: dx=15mm, dy=15mm

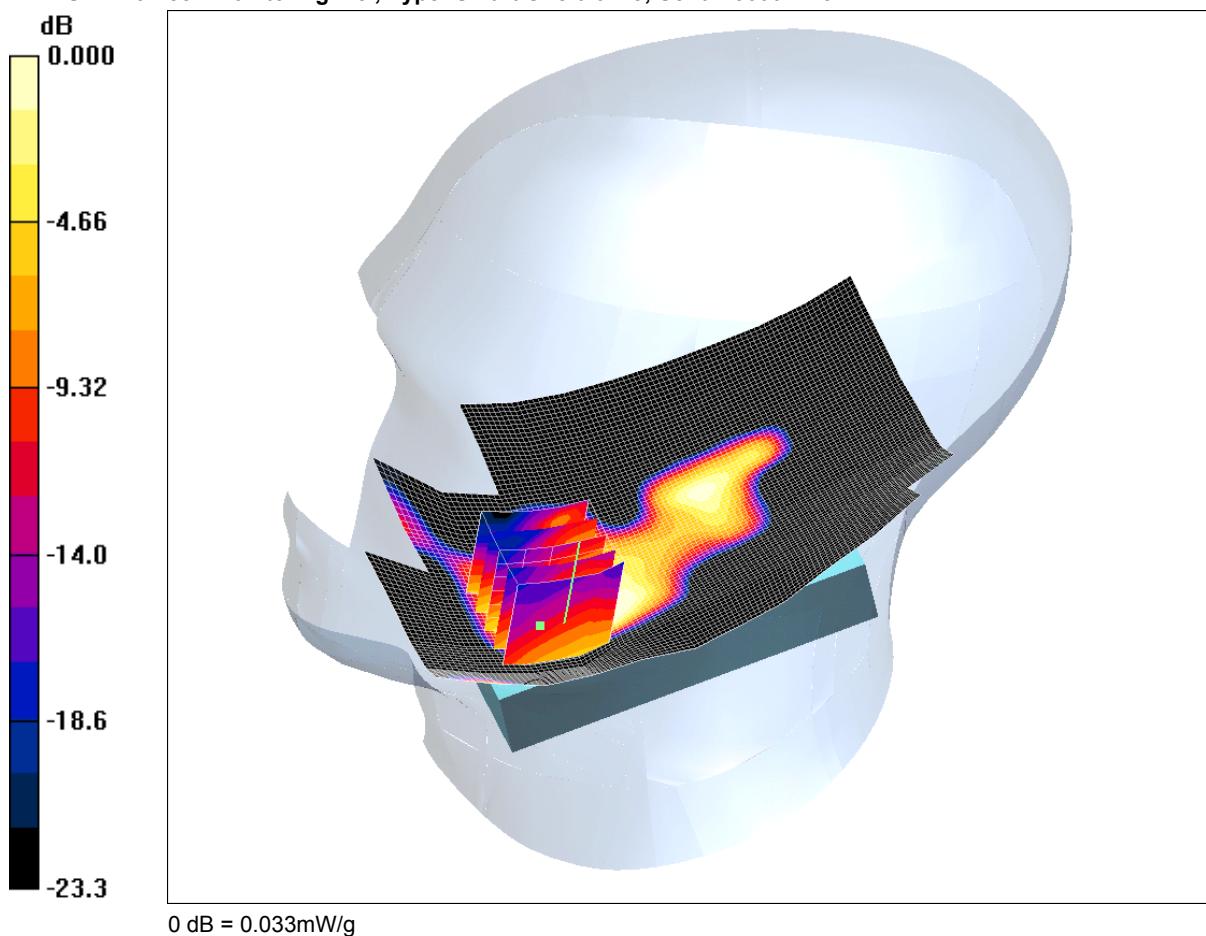
Maximum value of SAR (interpolated) = 0.007 mW/g

Tilt Left- Middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.84 V/m; Power Drift = 0.433 dB

Peak SAR (extrapolated) = 0.010 W/kg

SAR(1 g) = 0.00702 mW/g; SAR(10 g) = 0.00409 mW/g


Maximum value of SAR (measured) = 0.008 mW/g

SCN/80091JD08/011: Touch Right PCS CH660

Date 22/12/2010

DUT: Pro Tech Monitoring inc ; Type: Smart One 0.6418; Serial: 35002718

0 dB = 0.033mW/g

Communication System: PCS 1900; Frequency: 1879.8 MHz; Duty Cycle: 1:8.3

Medium: 1900 MHz HSL Medium parameters used (interpolated): $f = 1879.8$ MHz; $\sigma = 1.39$ mho/m; $\epsilon_r = 39.9$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe: EX3DV3 - SN3531; ConvF(8.64, 8.64, 8.64); Calibrated: 23/02/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 19/04/2010
- Phantom: SAM 12a; Type: SAM 4.0; Serial: TP:1193
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

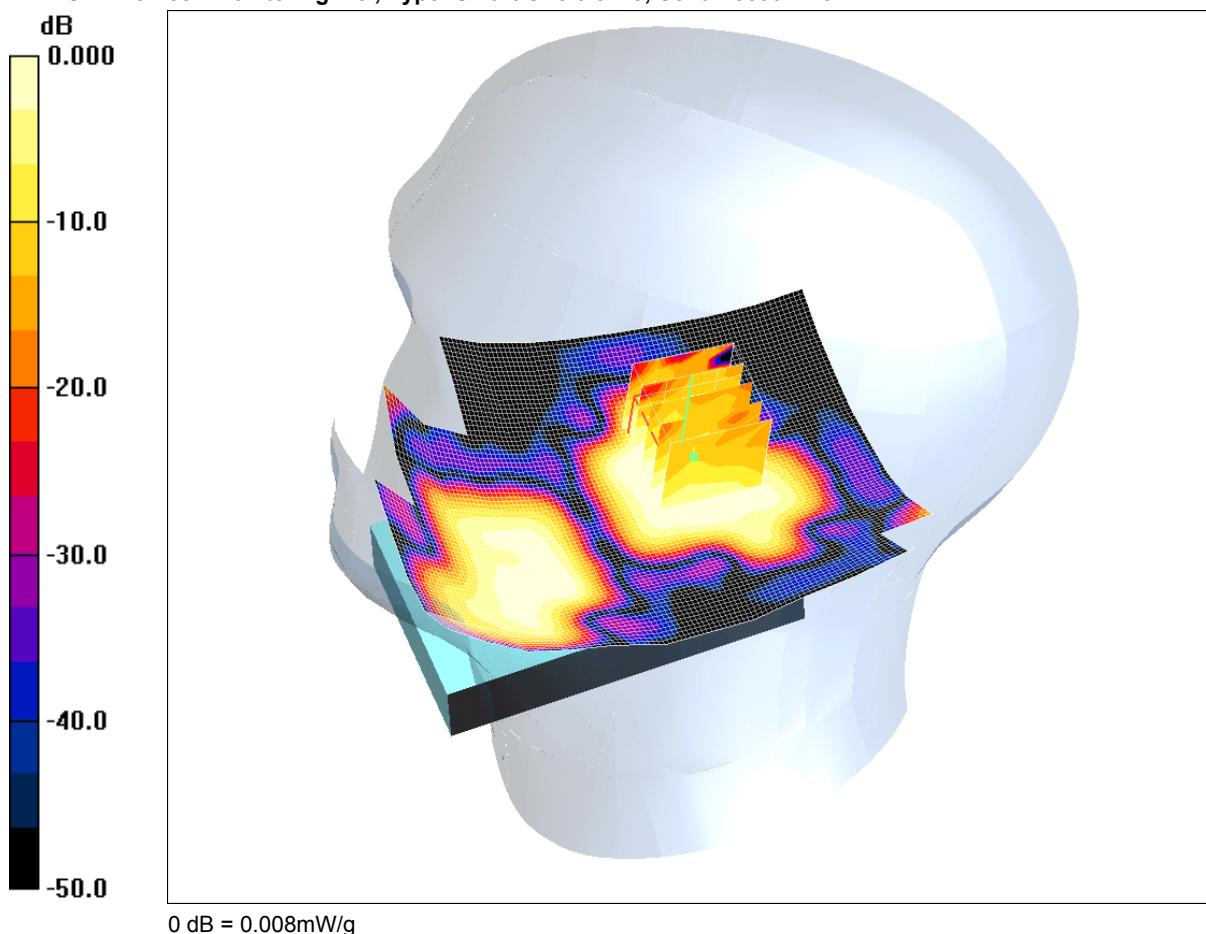
Touch Right - Middle/Area Scan (81x111x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.069 mW/g

Touch Right - Middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.60 V/m; Power Drift = 0.306 dB

Peak SAR (extrapolated) = 0.048 W/kg


SAR(1 g) = 0.032 mW/g; SAR(10 g) = 0.017 mW/g

Maximum value of SAR (measured) = 0.033 mW/g

SCN/80091JD08/012: Tilt Right PCS CH660

Date 22/12/2010

DUT: Pro Tech Monitoring inc ; Type: Smart One 0.6418; Serial: 35002718

Communication System: PCS 1900; Frequency: 1879.8 MHz; Duty Cycle: 1:8.3

Medium: 1900 MHz HSL Medium parameters used (interpolated): $f = 1879.8$ MHz; $\sigma = 1.39$ mho/m; $\epsilon_r = 39.9$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe: EX3DV3 - SN3531; ConvF(8.64, 8.64, 8.64); Calibrated: 23/02/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 19/04/2010
- Phantom: SAM 12a; Type: SAM 4.0; Serial: TP:1193
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

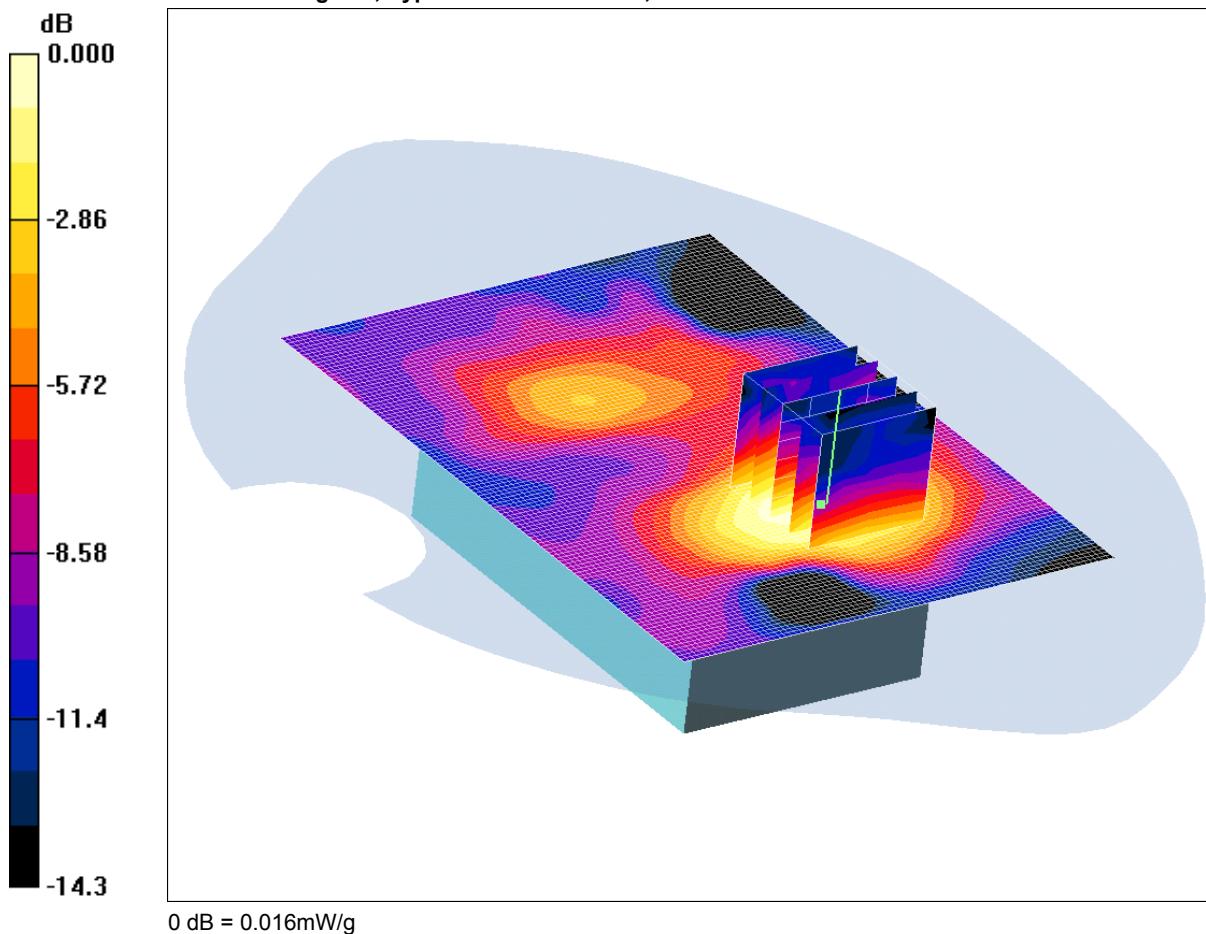
Tilt Right - Middle/Area Scan (81x111x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.013 mW/g

Tilt Right - Middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.76 V/m; Power Drift = 0.358 dB

Peak SAR (extrapolated) = 0.013 W/kg


SAR(1 g) = 0.00709 mW/g; SAR(10 g) = 0.00369 mW/g

Maximum value of SAR (measured) = 0.008 mW/g

SCN/80091JD08/013: Front of EUT Facing Phantom PCS CH660

Date 22/12/2010

DUT: Pro Tech Monitoring inc ; Type: Smart One 0.6418; Serial: 35002718

0 dB = 0.016mW/g

Communication System: PCS 1900; Frequency: 1879.8 MHz; Duty Cycle: 1:8.3

Medium: 1900 MHz MSL Medium parameters used (interpolated): $f = 1879.8$ MHz; $\sigma = 1.56$ mho/m; $\epsilon_r = 52.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV3 - SN3531; ConvF(8.04, 8.04, 8.04); Calibrated: 23/02/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 19/04/2010
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1207
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

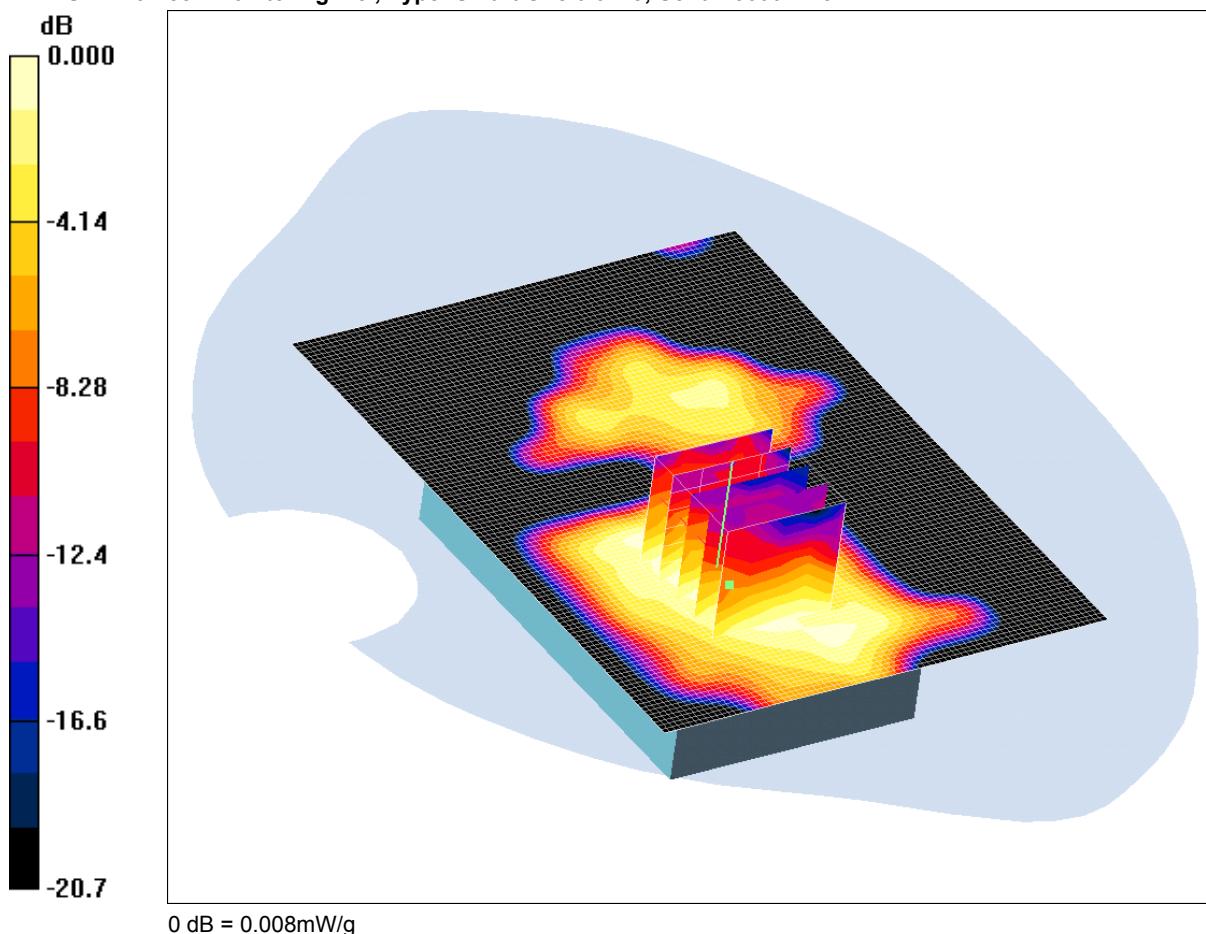
Front of EUT Facing Phantom - Middle/Area Scan (81x111x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.017 mW/g

Front of EUT Facing Phantom - Middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.64 V/m; Power Drift = 0.044 dB

Peak SAR (extrapolated) = 0.023 W/kg


SAR(1 g) = 0.014 mW/g; SAR(10 g) = 0.0087 mW/g

Maximum value of SAR (measured) = 0.016 mW/g

SCN/80091JD08/014: Rear of EUT Facing Phantom PCS CH660

Date 22/12/2010

DUT: Pro Tech Monitoring inc ; Type: Smart One 0.6418; Serial: 35002718

Communication System: PCS 1900; Frequency: 1879.8 MHz; Duty Cycle: 1:8.3

Medium: 1900 MHz MSL Medium parameters used (interpolated): $f = 1879.8$ MHz; $\sigma = 1.56$ mho/m; $\epsilon_r = 52.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV3 - SN3531; ConvF(8.04, 8.04, 8.04); Calibrated: 23/02/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 19/04/2010
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1207
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

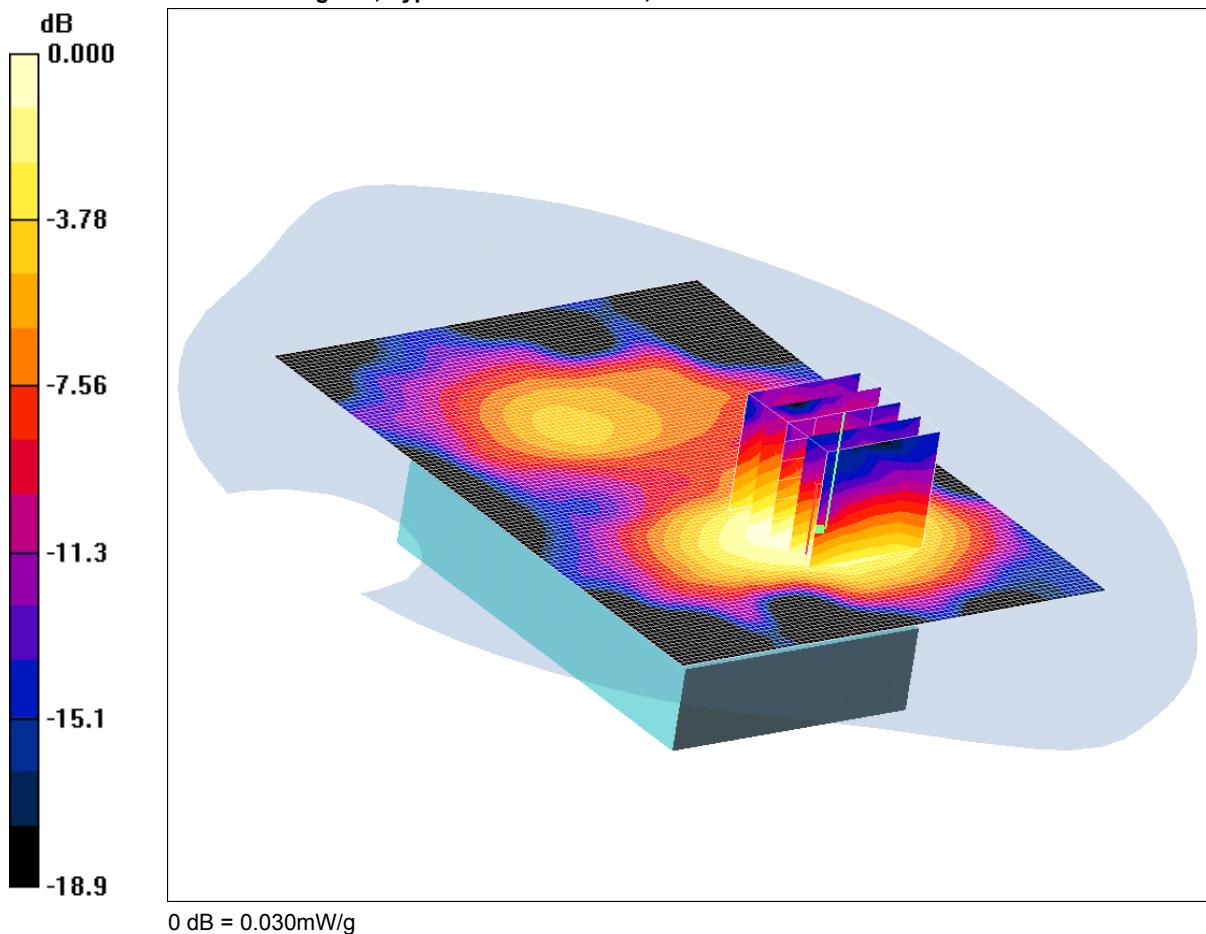
Rear of EUT Facing Phantom - Middle/Area Scan (81x111x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.008 mW/g

Rear of EUT Facing Phantom - Middle/Zoom Scan (5x5x7) 2 (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.809 V/m; Power Drift = -0.100 dB

Peak SAR (extrapolated) = 0.013 W/kg


SAR(1 g) = 0.00778 mW/g; SAR(10 g) = 0.00461 mW/g

Maximum value of SAR (measured) = 0.008 mW/g

SCN/80091JD08/015: Front of EUT Facing Phantom GPRS CH660

Date 22/12/2010

DUT: Pro Tech Monitoring inc ; Type: Smart One 0.6418; Serial: 35002718

Communication System: GPRS 1900; Frequency: 1879.8 MHz; Duty Cycle: 1:4

Medium: 1900 MHz MSL Medium parameters used (interpolated): $f = 1879.8$ MHz; $\sigma = 1.56$ mho/m; $\epsilon_r = 52.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV3 - SN3531; ConvF(8.04, 8.04, 8.04); Calibrated: 23/02/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 19/04/2010
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1207
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

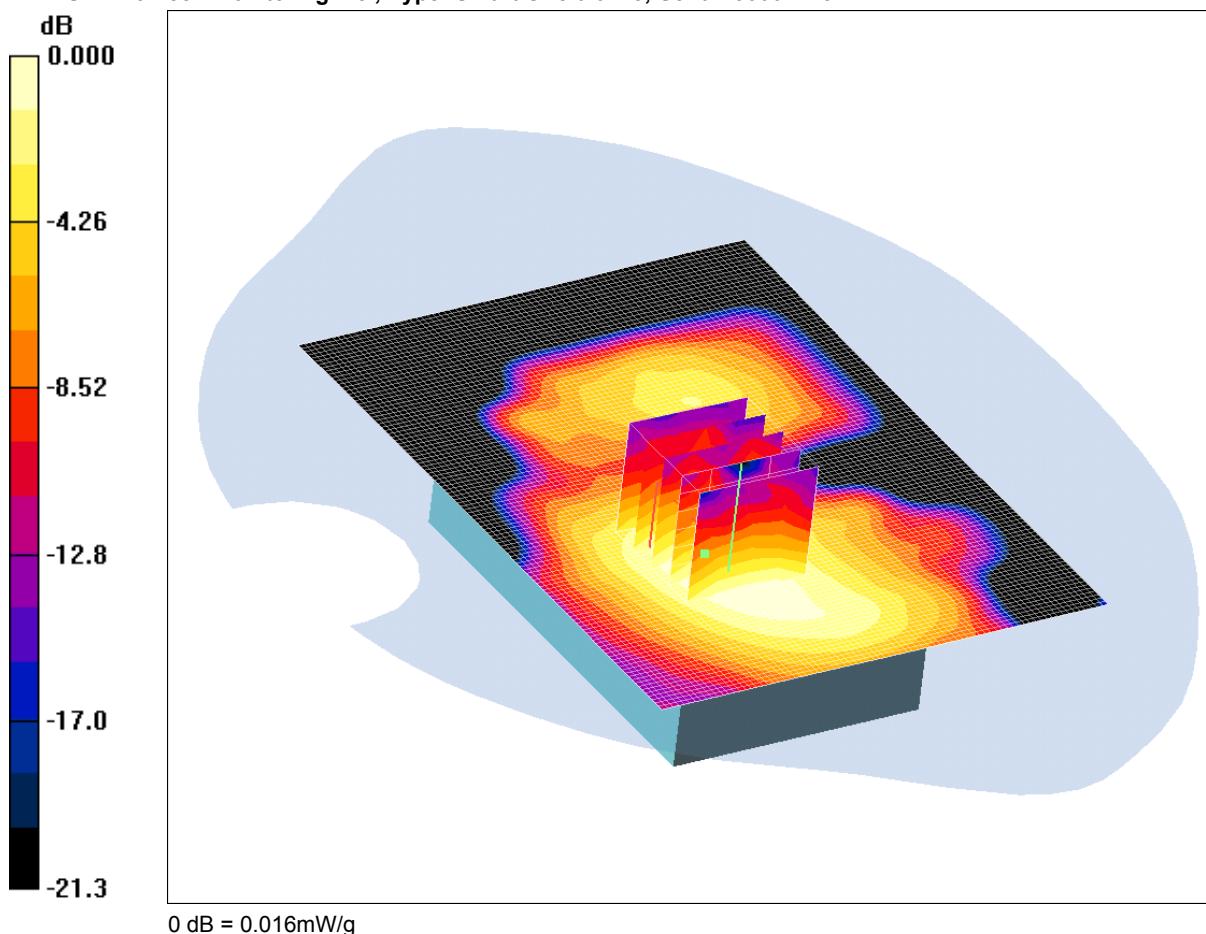
Front of EUT Facing Phantom - Middle/Area Scan (81x111x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.031 mW/g

Front of EUT Facing Phantom - Middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.69 V/m; Power Drift = 0.152 dB

Peak SAR (extrapolated) = 0.047 W/kg


SAR(1 g) = 0.028 mW/g; SAR(10 g) = 0.017 mW/g

Maximum value of SAR (measured) = 0.030 mW/g

SCN/80091JD08/016: Rear of EUT Facing Phantom GPRS CH660

Date 22/12/2010

DUT: Pro Tech Monitoring inc ; Type: Smart One 0.6418; Serial: 35002718

0 dB = 0.016mW/g

Communication System: GPRS 1900; Frequency: 1879.8 MHz; Duty Cycle: 1:4

Medium: 1900 MHz MSL Medium parameters used (interpolated): $f = 1879.8$ MHz; $\sigma = 1.56$ mho/m; $\epsilon_r = 52.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV3 - SN3531; ConvF(8.04, 8.04, 8.04); Calibrated: 23/02/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 19/04/2010
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1207
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

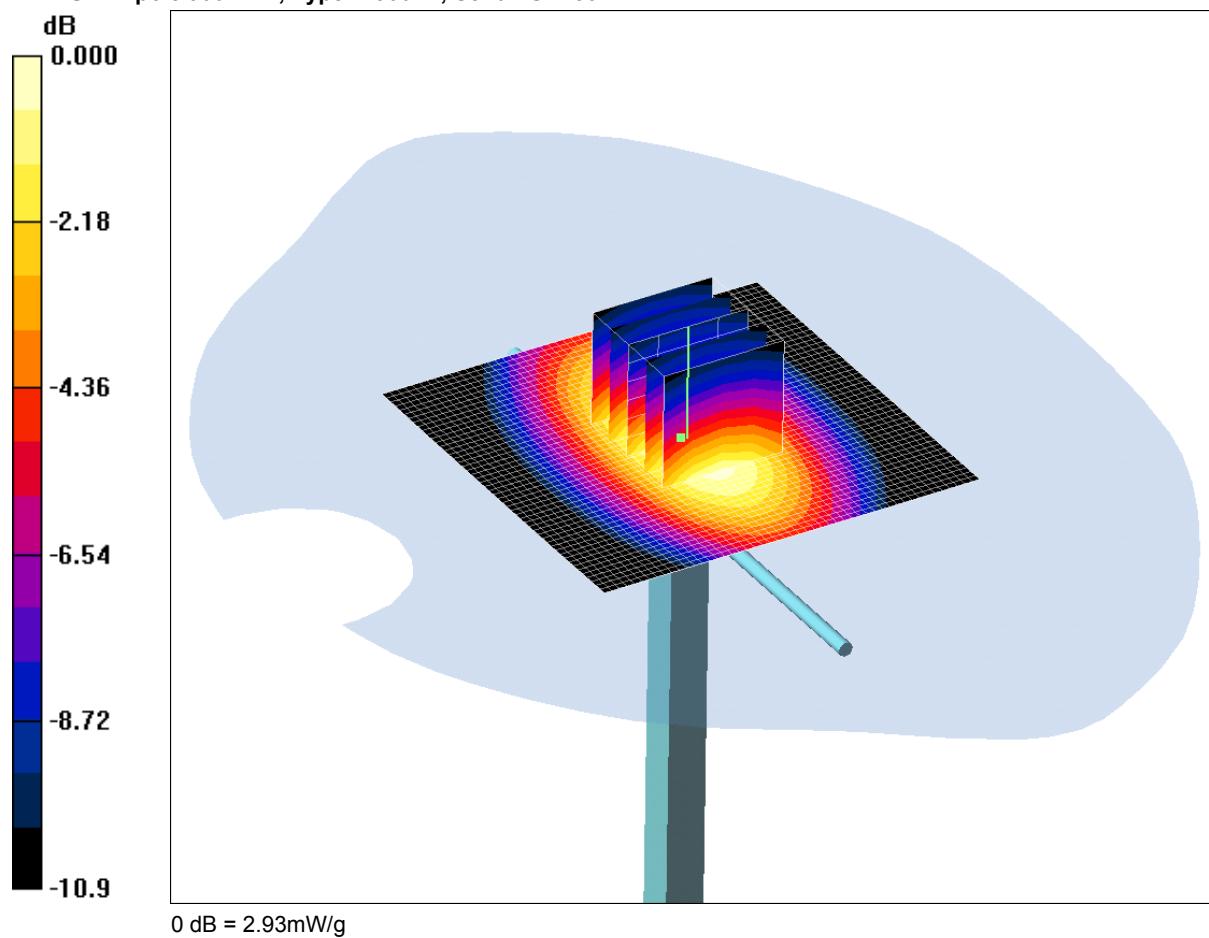
Rear of EUT Facing Phantom - Middle/Area Scan (81x111x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.016 mW/g

Rear of EUT Facing Phantom - Middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.09 V/m; Power Drift = -0.363 dB

Peak SAR (extrapolated) = 0.024 W/kg


SAR(1 g) = 0.015 mW/g; SAR(10 g) = 0.00922 mW/g

Maximum value of SAR (measured) = 0.016 mW/g

SCN/80091JD08/017: System Performance Check 900MHz Head 21 12 10

Date 21/12/2010

DUT: Dipole 900 MHz; Type: D900V2; Serial: SN185

Communication System: CW; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: 900 MHz HSL Medium parameters used: $f = 900$ MHz; $\sigma = 0.935$ mho/m; $\epsilon_r = 41$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV3 - SN3531; ConvF(9.88, 9.88, 9.88); Calibrated: 23/02/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 19/04/2010
- Phantom: SAM 12a; Type: SAM 4.0; Serial: TP:1193
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

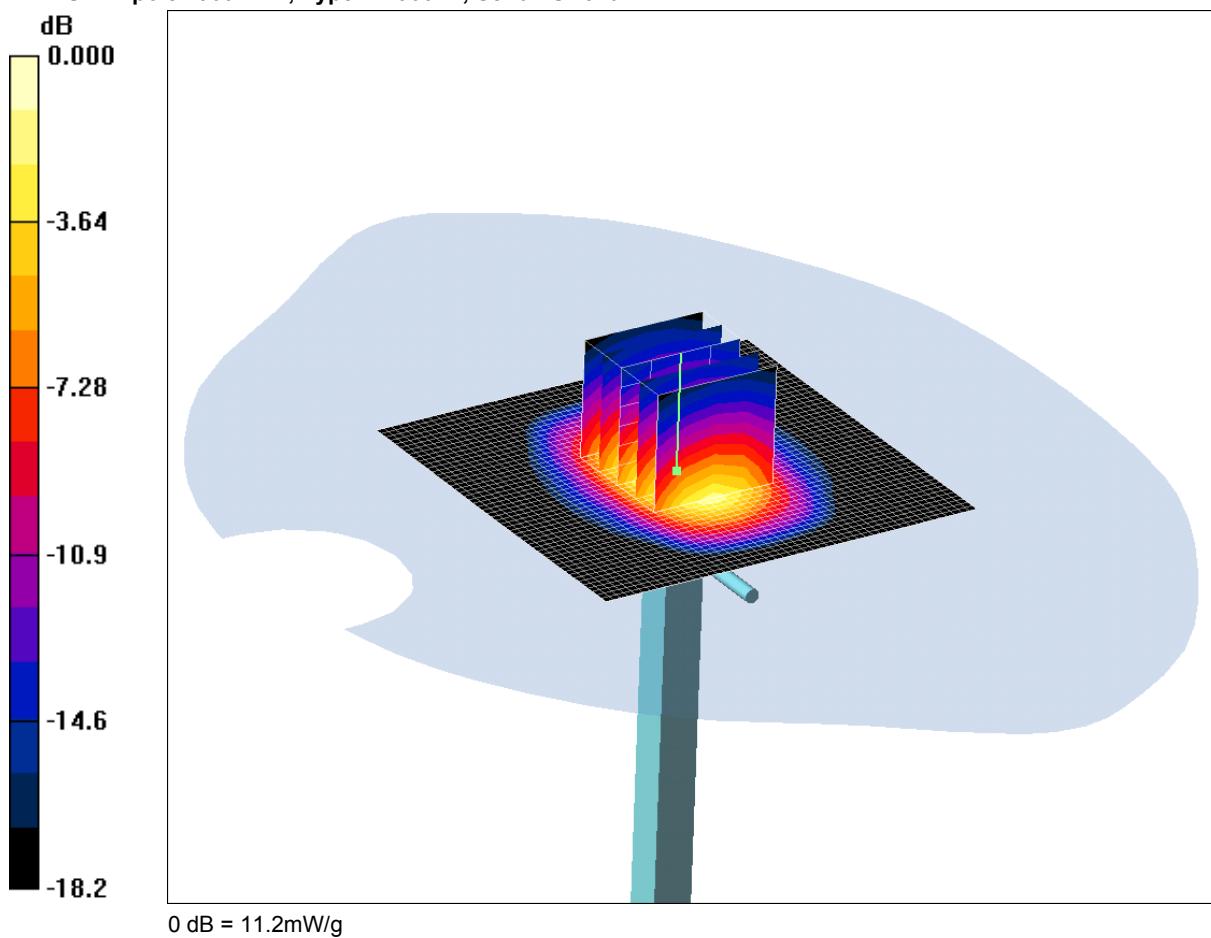
d=15mm, Pin=250mW/Area Scan (51x51x1): Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 2.97 mW/g

d=15mm, Pin=250mW/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 56.0 V/m; Power Drift = 0.003 dB

Peak SAR (extrapolated) = 4.11 W/kg


SAR(1 g) = 2.71 mW/g; SAR(10 g) = 1.76 mW/g

Maximum value of SAR (measured) = 2.93 mW/g

SCN/80091JD08/018: System Performance Check 1900MHz Head 21 12 10

Date 21/12/2010

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: SN540

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: 1900 MHz HSL Medium parameters used: $f = 1900$ MHz; $\sigma = 1.41$ mho/m; $\epsilon_r = 39.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV3 - SN3531; ConvF(8.64, 8.64, 8.64); Calibrated: 23/02/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 19/04/2010
- Phantom: SAM 12a; Type: SAM 4.0; Serial: TP:1193
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

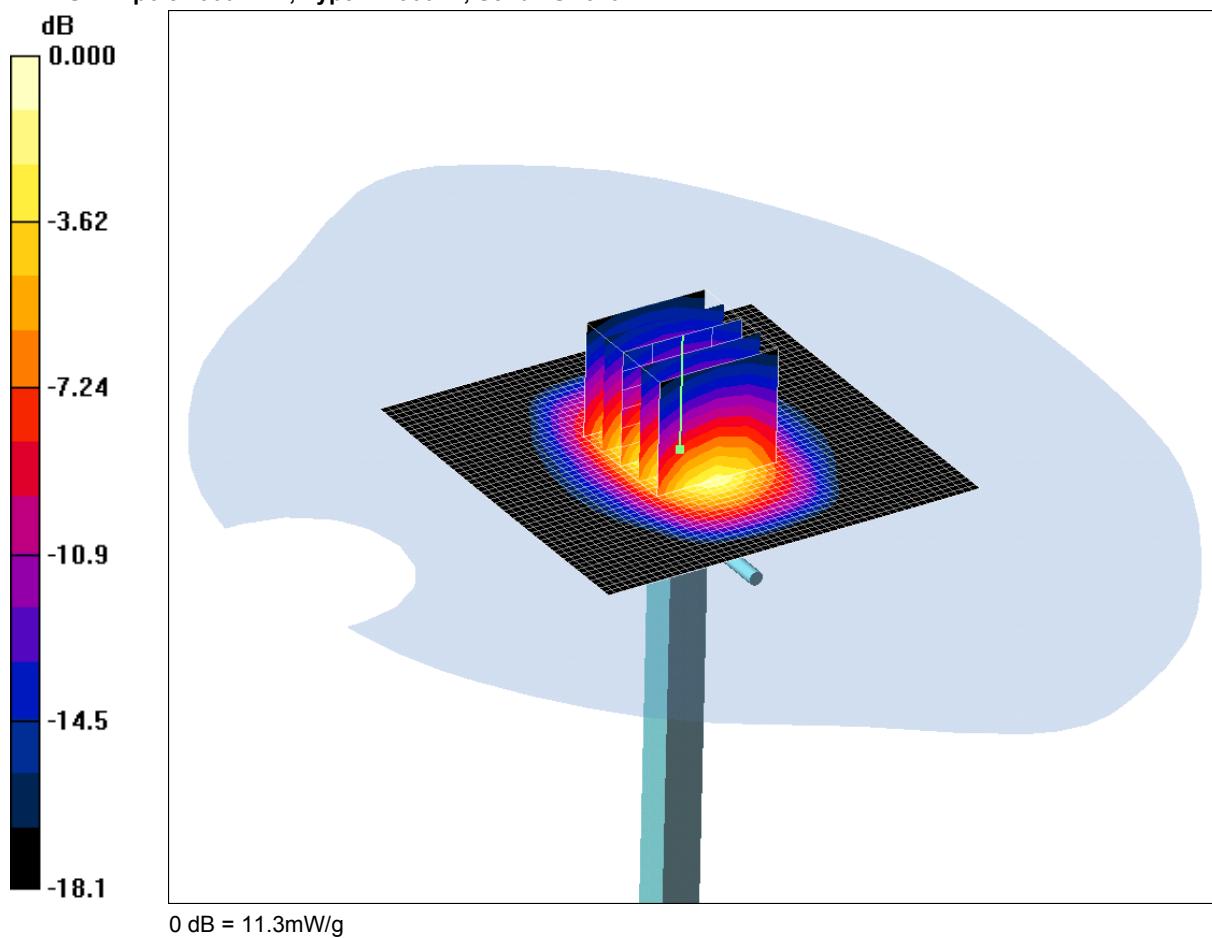
d=10mm, Pin=250mW/Area Scan (51x51x1): Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 16.0 mW/g

d=10mm, Pin=250mW/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 88.8 V/m; Power Drift = 0.028 dB

Peak SAR (extrapolated) = 18.8 W/kg


SAR(1 g) = 9.97 mW/g; SAR(10 g) = 5.13 mW/g

Maximum value of SAR (measured) = 11.2 mW/g

SCN/80091JD08/019: System Performance Check 1900MHz Head 22 12 10

Date 22/12/2010

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: SN540

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: 1900 MHz HSL Medium parameters used: $f = 1900$ MHz; $\sigma = 1.41$ mho/m; $\epsilon_r = 39.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV3 - SN3531; ConvF(8.64, 8.64, 8.64); Calibrated: 23/02/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 19/04/2010
- Phantom: SAM 12a; Type: SAM 4.0; Serial: TP:1193
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

d=10mm, Pin=250mW/Area Scan (51x51x1): Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 16.8 mW/g

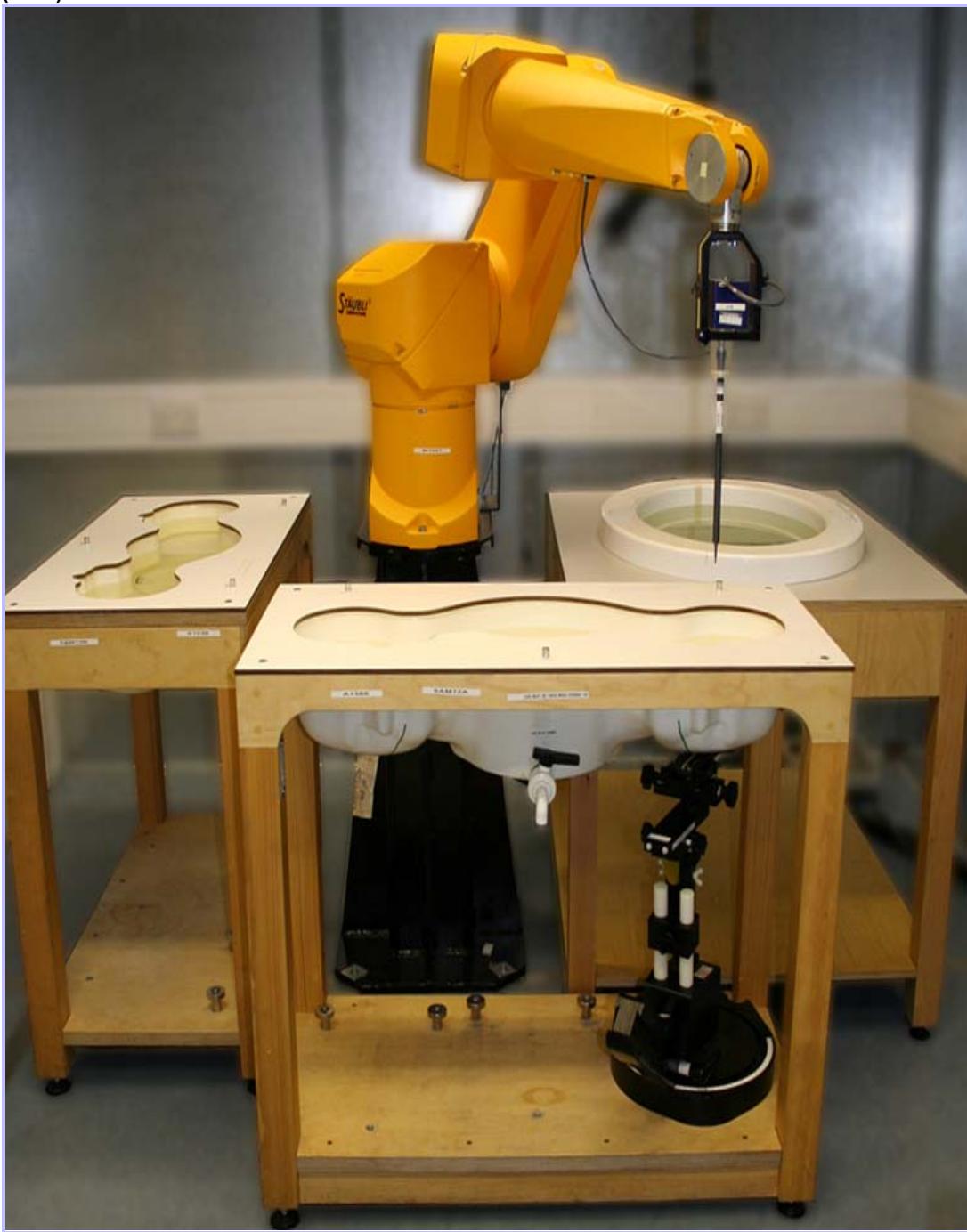
d=10mm, Pin=250mW/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 89.2 V/m; Power Drift = 0.065 dB

Peak SAR (extrapolated) = 19.0 W/kg

SAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.21 mW/g

Maximum value of SAR (measured) = 11.3 mW/g


Appendix 4. Photographs

This appendix contains the following photographs:

Photo Reference Number	Title
PHT/80091JD08/001	Test configuration for the measurement of Specific Absorption Rate (SAR)
PHT/80091JD08/002	Touch Left
PHT/80091JD08/003	Tilt Left
PHT/80091JD08/004	Touch Right
PHT/80091JD08/005	Tilt Right
PHT/80091JD08/006	Front of EUT Facing Phantom
PHT/80091JD08/007	Rear of EUT Facing Phantom
PHT/80091JD08/008	Front View of EUT
PHT/80091JD08/009	Rear View of EUT
PHT/80091JD08/010	Internal View of EUT
PHT/80091JD08/011	Battery View
PHT/80091JD08/012	900 MHz Head Fluid Level
PHT/80091JD08/013	900 MHz Body Fluid Level
PHT/80091JD08/014	1900 MHz Head Fluid Level
PHT/80091JD08/015	1900 MHz Body Fluid Level

PHT/80091JD08/001: Test configuration for the measurement of Specific Absorption Rate (SAR)

PHT/80091JD08/002: Touch Left

PHT/80091JD08/003: Tilt Left

PHT/80091JD08/004: Touch Right

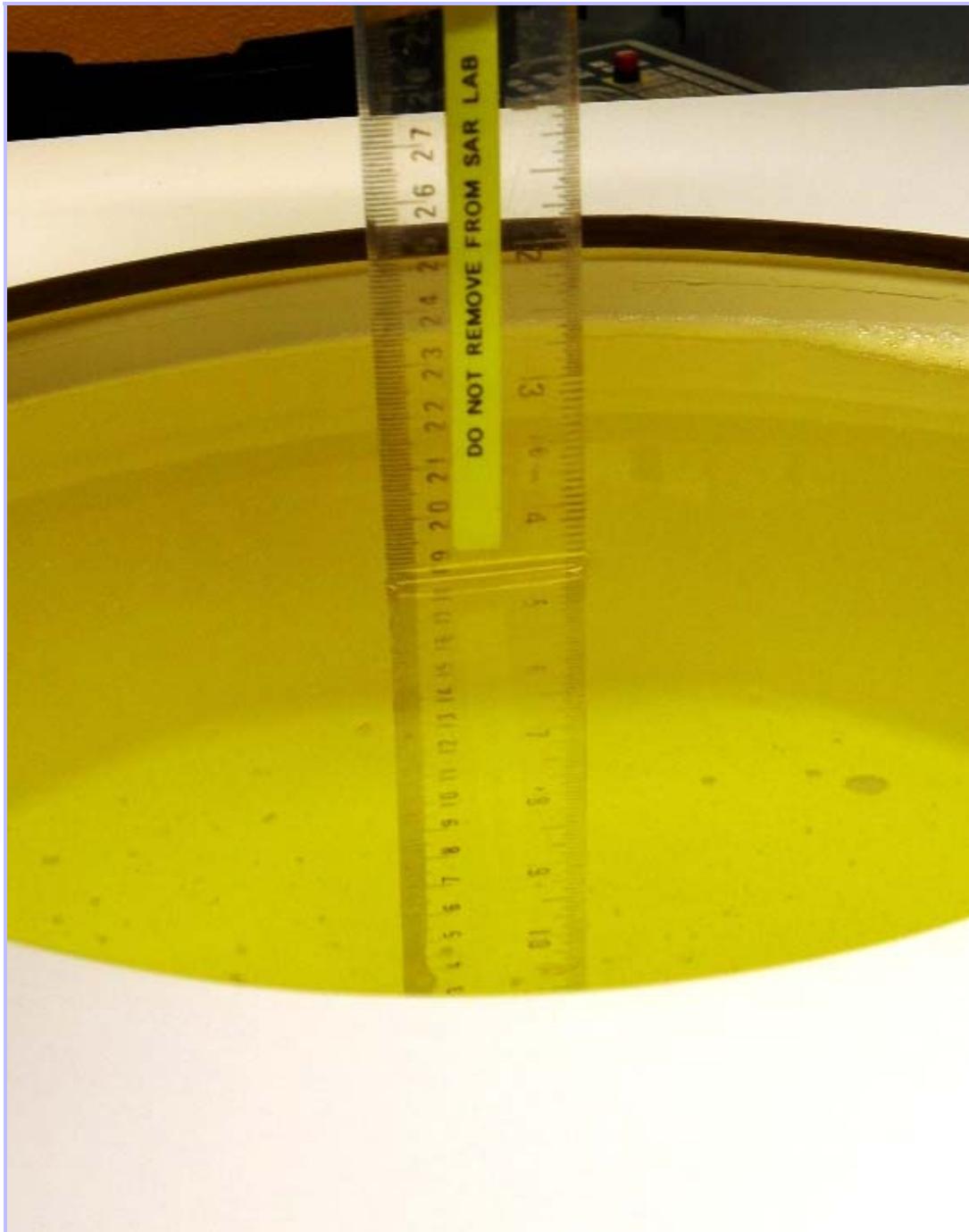
PHT/80091JD08/005: Tilt Right

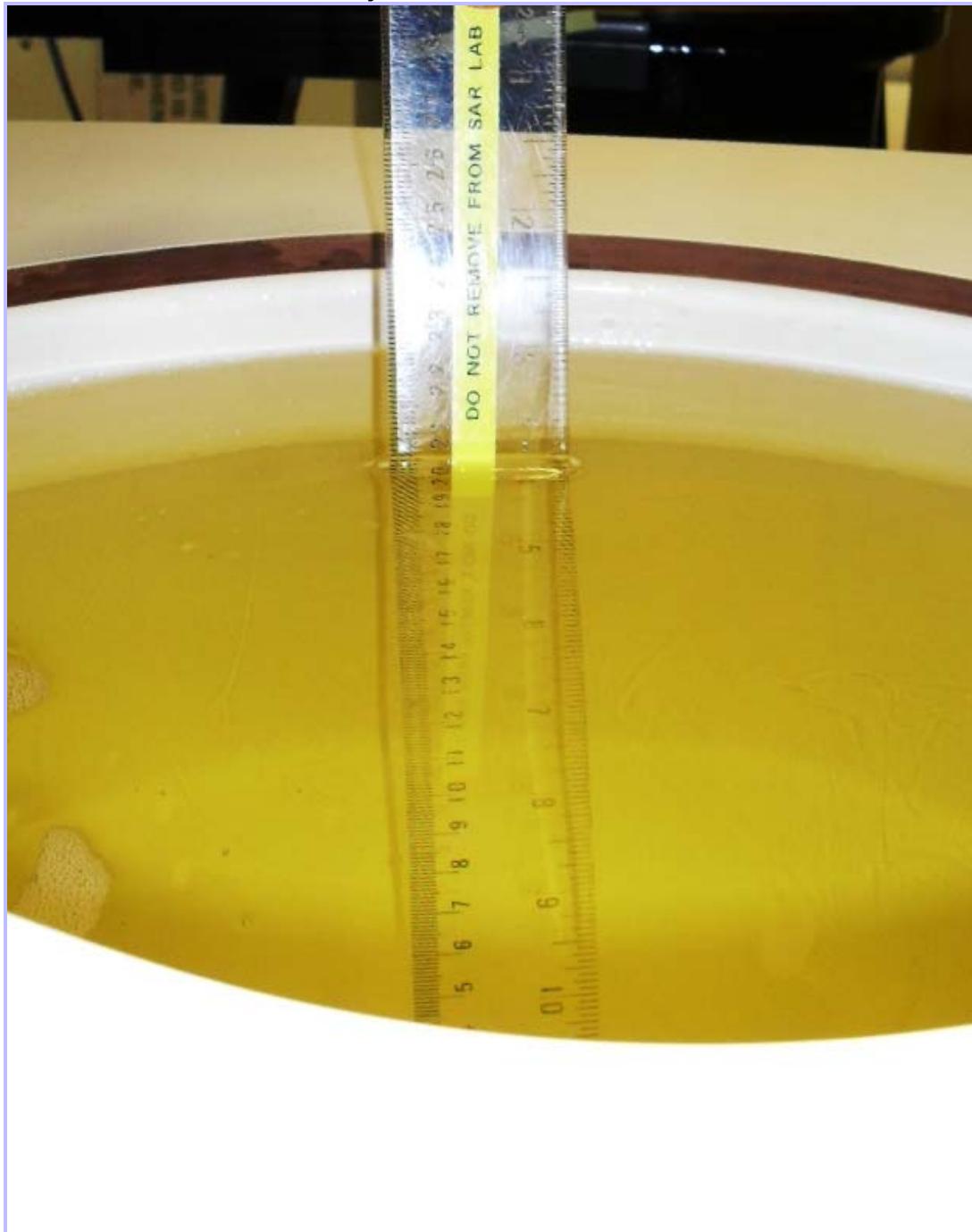
PHT/80091JD08/006: Front of EUT Facing Phantom

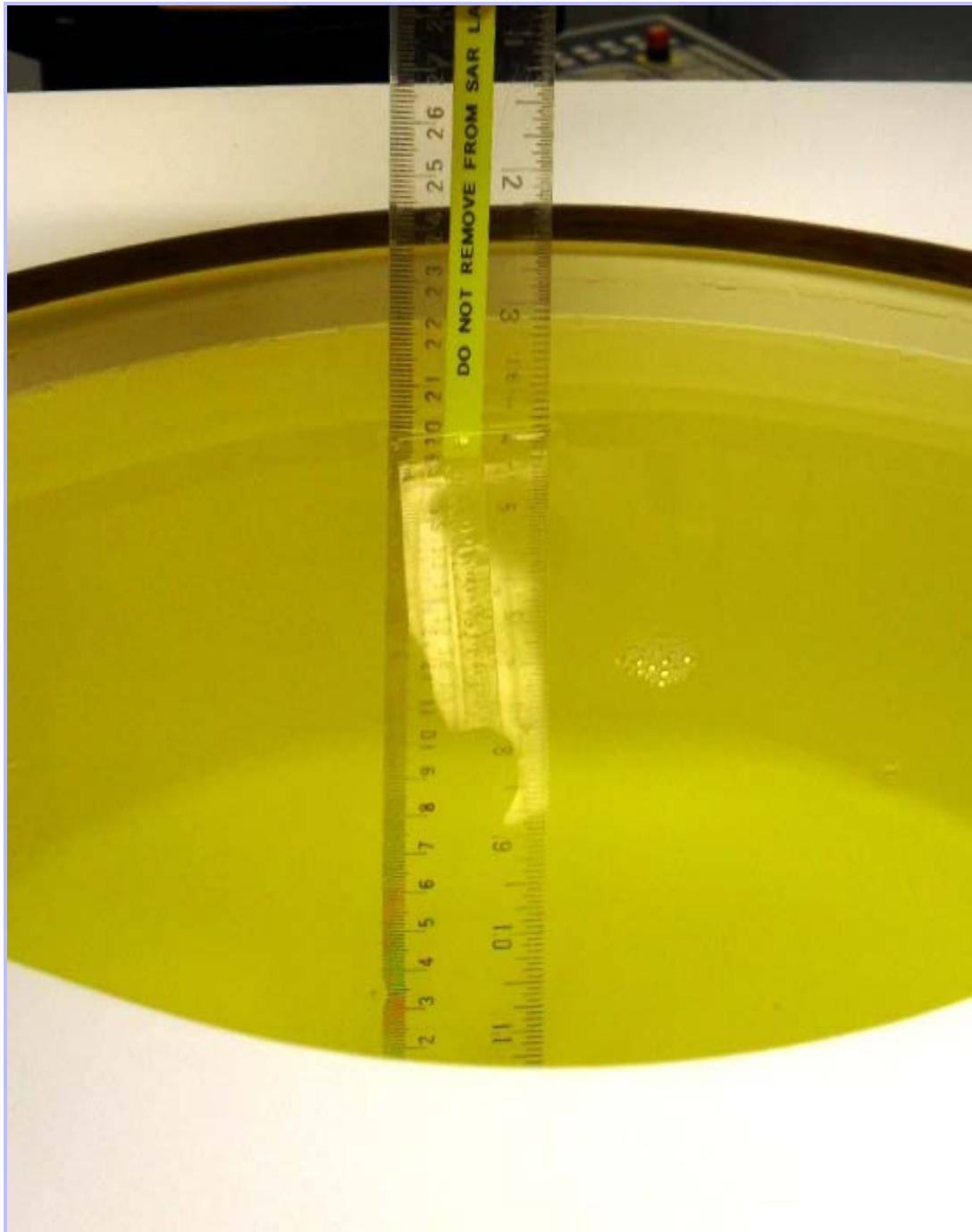
PHT/80091JD08/007: Rear of EUT Facing Phantom

PHT/80091JD08/008: Front View of EUT

PHT/80091JD08/009: Rear View of EUT


PHT/80091JD08/010: Internal View of EUT


PHT/80091JD08/011: Battery View


PHT/80091JD08/012: 900 MHz Head Fluid Level

PHT/80091JD08/013: 900 MHz Body Fluid Level

PHT/80091JD08/014: 1900 MHz Head Fluid Level

PHT/80091JD08/015: 1900 MHz Body Fluid Level

Appendix 5. Validation of System

Prior to the assessment, the system was verified in the flat region of the phantom.

900 MHz and 1900 MHZ dipoles were used. A forward power of 250 mW was applied to the dipole and the system was verified to a tolerance of $\pm 5\%$ for the 900 MHz and 1900 MHz dipole. The applicable verification (normalised to 1 Watt).

Date: 21/12/2010

Validation Dipole and Serial Number: D900V2; SN: 185

Simulant	Frequency (MHz)	Room Temp	Liquid Temp	Parameters	Target Value	Measured Value	Deviation (%)	Limit (%)
Head	900	23.0 °C	22.8 °C	ϵ_r	41.50	40.96	-1.31	5.00
				σ	0.97	0.93	-3.79	5.00
				1g SAR	11.00	10.84	-1.45	5.00
				10g SAR	7.06	7.04	-0.28	5.00

Date: 21/12/2010

Simulant	Frequency (MHz)	Room Temp	Liquid Temp	Parameters	Target Value	Measured Value	Deviation (%)	Limit (%)
Body	900	23.0 °C	22.6 °C	ϵ_r	55.00	52.76	-4.07	5.00
				σ	1.05	1.06	0.92	5.00

Date: 21/12/2010

Validation Dipole and Serial Number: D1900V2; SN: 540

Simulant	Frequency (MHz)	Room Temp	Liquid Temp	Parameters	Target Value	Measured Value	Deviation (%)	Limit (%)
Head	1900	23.0 °C	22.5 °C	ϵ_r	40.00	39.89	-0.28	5.00
				σ	1.40	1.40	0.35	5.00
				1g SAR	40.30	39.88	-1.04	5.00
				10g SAR	21.10	20.52	-2.75	5.00

Date: 22/12/2010

Validation Dipole and Serial Number: D1900V2; SN: 540

Simulant	Frequency (MHz)	Room Temp	Liquid Temp	Parameters	Target Value	Measured Value	Deviation (%)	Limit (%)
Head	1900	23.0 °C	22.5 °C	ϵ_r	40.00	39.89	-0.28	5.00
				σ	1.40	1.40	0.35	5.00
				1g SAR	40.30	40.40	0.25	5.00
				10g SAR	21.10	20.84	-1.23	5.00

Date: 22/12/2010

Simulant	Frequency (MHz)	Room Temp	Liquid Temp	Parameters	Target Value	Measured Value	Deviation (%)	Limit (%)
Body	1900	23.0 °C	23.0 °C	ϵ_r	53.30	52.10	-2.25	5.00
				σ	1.52	1.58	3.73	5.00

Appendix 6. Simulated Tissues

The body mixture consists of water and glycol. Visual inspection is made to ensure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the tissue.

Ingredient	Frequency
	835/850/900 MHz Head
De-Ionized Water	52.87
Polysorbate 20 (Tween 20)	46.10
Salt	1.03

Ingredient	Frequency
	835/850/900 MHz Body
De-Ionized Water	71.30
Polysorbate 20 (Tween 20)	28.00
Salt	0.70

Ingredient	Frequency
	1800/1900 MHz Head
De-Ionized Water	55.40
Polysorbate 20 (Tween 20)	44.22
Salt	0.38

Ingredient	Frequency
	1800/1900 MHz Body
De-Ionized Water	71.50
Polysorbate 20 (Tween 20)	28.00
Salt	0.50

Appendix 7. DASY4 System Details

A.7.1. DASY4 SAR Measurement System

RFI Global Services Ltd, SAR measurement facility utilises the Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY4 system is comprised of the robot controller, computer, near-field probe, probe alignment sensor, and the SAM phantom containing brain or muscle equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller; teach pendant (Joystick), and remote control. This is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. The data acquisition electronics (DAE) performs signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection etc. The DAE is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card. The DAE3 utilises a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

A.7.2. DASY4 SAR System Specifications

Robot System	
Positioner:	Stäubli Unimation Corp. Robot Model: RX90L
Repeatability:	0.025 mm
No. of Axis:	6
Serial Number:	F00/SD89A1/A/01
Reach:	1185 mm
Payload:	3.5 kg
Control Unit:	CS7
Programming Language:	V+
Data Acquisition Electronic (DAE) System	
Serial Number:	DAE3 SN:394
PC Controller	
PC:	Dell Precision 340
Operating System:	Windows 2000
Data Card:	DASY4 Measurement Server
Serial Number:	1080
Data Converter	
Features:	Signal Amplifier, multiplexer, A/D converted and control logic.
Software:	DASY4 Software
Connecting Lines:	Optical downlink for data and status info. Optical uplink for commands and clock.
PC Interface Card	
Function:	24 bit (64 MHz) DSP for real time processing Link to DAE3 16 bit A/D converter for surface detection system serial link to robot direct emergency stop output for robot.

DASY4 SAR System Specifications (Continued)**E-Filed Probe**

Model:	EX3DV3
Serial No:	3531
Construction:	Triangular core
Frequency:	10 MHz to >6 GHz
Linearity:	± 0.2 dB (30 MHz to 6 GHz)
Probe Length (mm):	330
Probe Diameter (mm):	12
Tip Length (mm):	20
Tip Diameter (mm):	2.5
Sensor X Offset (mm):	1
Sensor Y Offset (mm):	1
Sensor Z Offset (mm):	1
Phantom	
Phantom:	SAM Phantom
Shell Material:	Fibreglass
Thickness:	2.0 ± 0.1 mm