

 Celltech <small>Testing and Engineering Services Ltd</small>	<u>Date(s) of Evaluation</u> March 10-11, 2008	<u>Test Report Serial No.</u> 031008NC3-T888-S24G	<u>Test Report Revision No.</u> Rev. 1.2 (3rd Release)	 Test Lab Certificate No. 2470.01
	<u>Test Report Issue Date</u> May 16, 2008	<u>Description of Test(s)</u> Specific Absorption Rate	<u>RF Exposure Category</u> General Population	

APPENDIX F - PROBE CALIBRATION

Company:	Pro Tech Monitoring, Inc.		FCC ID:	NC3WMTD3000	824.2-848.8 / 1850.2-1909.8 MHz	
Model(s):	WMTD3000		DUT Type:	Dual-Band PCS/Cellular GSM/GPRS Ankle-worn Tracking Device		
2008 Celltech Labs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 54 of 64

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
S Service suisse d'étalonnage
C Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client **Celltech Labs**

Certificate No: ET3-1387_Mar07

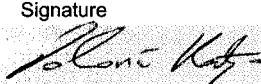
CALIBRATION CERTIFICATE

Object **ET3DV6 - SN:1387**

Calibration procedure(s) **QA CAL-01.v5**
Calibration procedure for dosimetric E-field probes

Calibration date: **March 16, 2007**

Condition of the calibrated item **In Tolerance**


This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	5-Apr-06 (METAS, No. 251-00557)	Apr-07
Power sensor E4412A	MY41495277	5-Apr-06 (METAS, No. 251-00557)	Apr-07
Power sensor E4412A	MY41498087	5-Apr-06 (METAS, No. 251-00557)	Apr-07
Reference 3 dB Attenuator	SN: S5054 (3c)	10-Aug-06 (METAS, No. 217-00592)	Aug-07
Reference 20 dB Attenuator	SN: S5086 (20b)	4-Apr-06 (METAS, No. 251-00558)	Apr-07
Reference 30 dB Attenuator	SN: S5129 (30b)	10-Aug-06 (METAS, No. 217-00593)	Aug-07
Reference Probe ES3DV2	SN: 3013	4-Jan-07 (SPEAG, No. ES3-3013_Jan07)	Jan-08
DAE4	SN: 654	21-Jun-06 (SPEAG, No. DAE4-654_Jun06)	Jun-07

Secondary Standards	ID #	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (SPEAG, in house check Nov-05)	In house check: Nov-07
Network Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check Oct-06)	In house check: Oct-07

Calibrated by: **Katja Pokovic** **Name** **Technical Manager** **Function** **Signature**

Approved by: **Fin Bomholt** **R&D Director** **Signature**

Issued: March 19, 2007

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Accredited by the Swiss Federal Office of Metrology and Accreditation
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

TSL	tissue simulating liquid
NORM x,y,z	sensitivity in free space
ConF	sensitivity in TSL / NORM x,y,z
DCP	diode compression point
Polarization φ	φ rotation around probe axis
Polarization ϑ	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORM x,y,z** : Assessed for E-field polarization $\vartheta = 0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). NORM x,y,z are only intermediate values, i.e., the uncertainties of NORM x,y,z does not effect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f) $x,y,z = NORMx,y,z * frequency_response$** (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- DCPx,y,z**: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters**: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORM $x,y,z * ConvF$ whereby the uncertainty corresponds to that given for *ConvF*. A frequency dependent *ConvF* is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy)**: in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset**: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe ET3DV6

SN:1387

Manufactured:	September 21, 1999
Last calibrated:	March 16, 2006
Recalibrated:	March 16, 2007

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: ET3DV6 SN:1387

Sensitivity in Free Space ^A			Diode Compression ^B	
NormX	1.68 \pm 10.1%	$\mu\text{V}/(\text{V}/\text{m})^2$	DCP X	91 mV
NormY	1.73 \pm 10.1%	$\mu\text{V}/(\text{V}/\text{m})^2$	DCP Y	92 mV
NormZ	1.73 \pm 10.1%	$\mu\text{V}/(\text{V}/\text{m})^2$	DCP Z	92 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

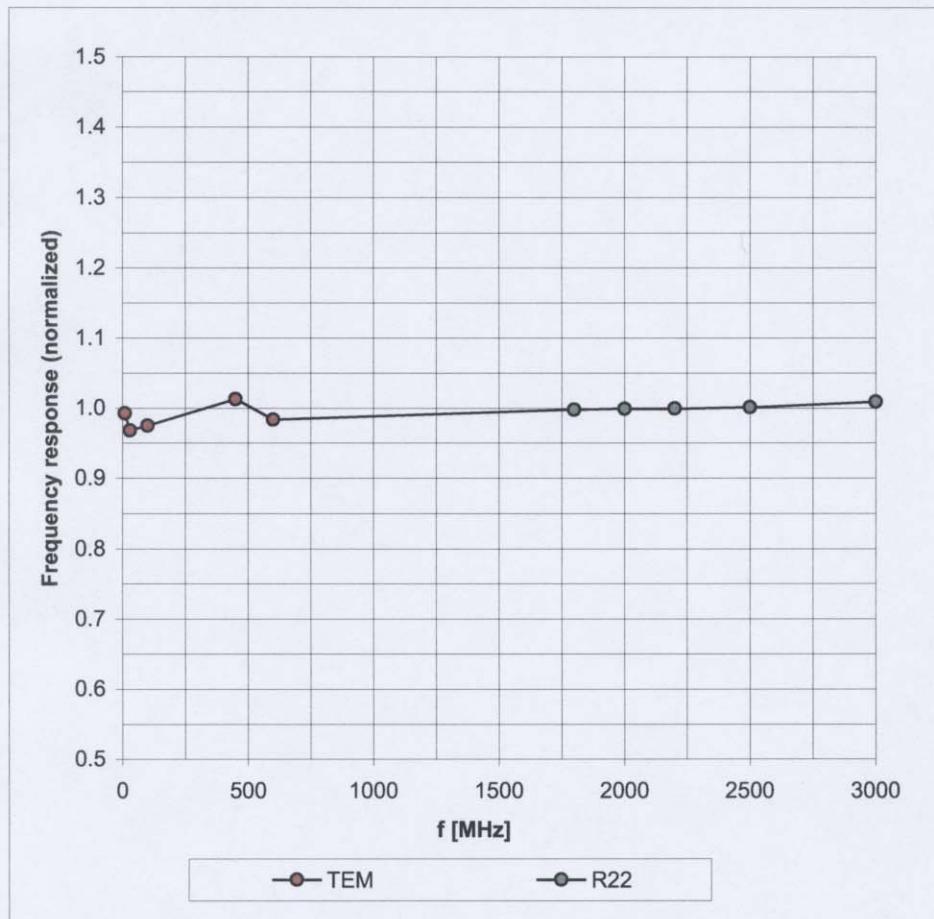
Boundary Effect

TSL 835 MHz Typical SAR gradient: 5 % per mm

Sensor Center to Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%] Without Correction Algorithm	8.2	3.7
SAR _{be} [%] With Correction Algorithm	0.8	0.9

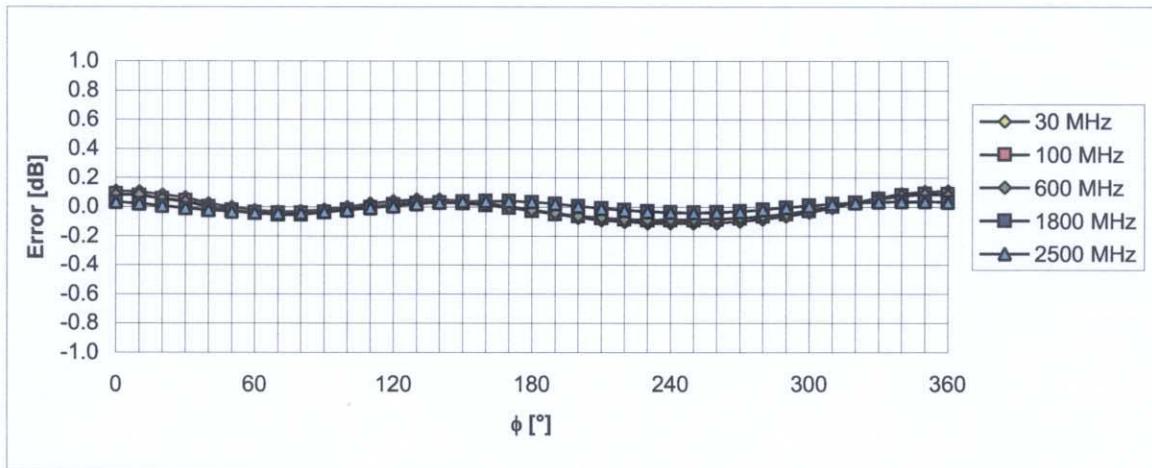
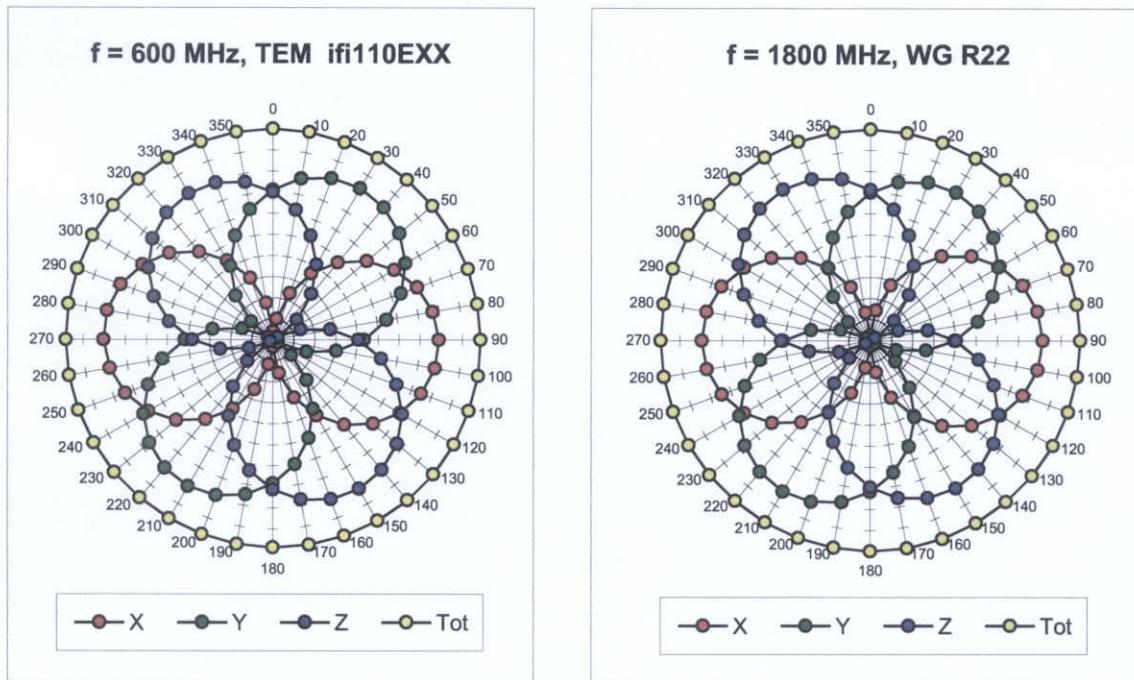
Sensor Offset

Probe Tip to Sensor Center **2.7** mm

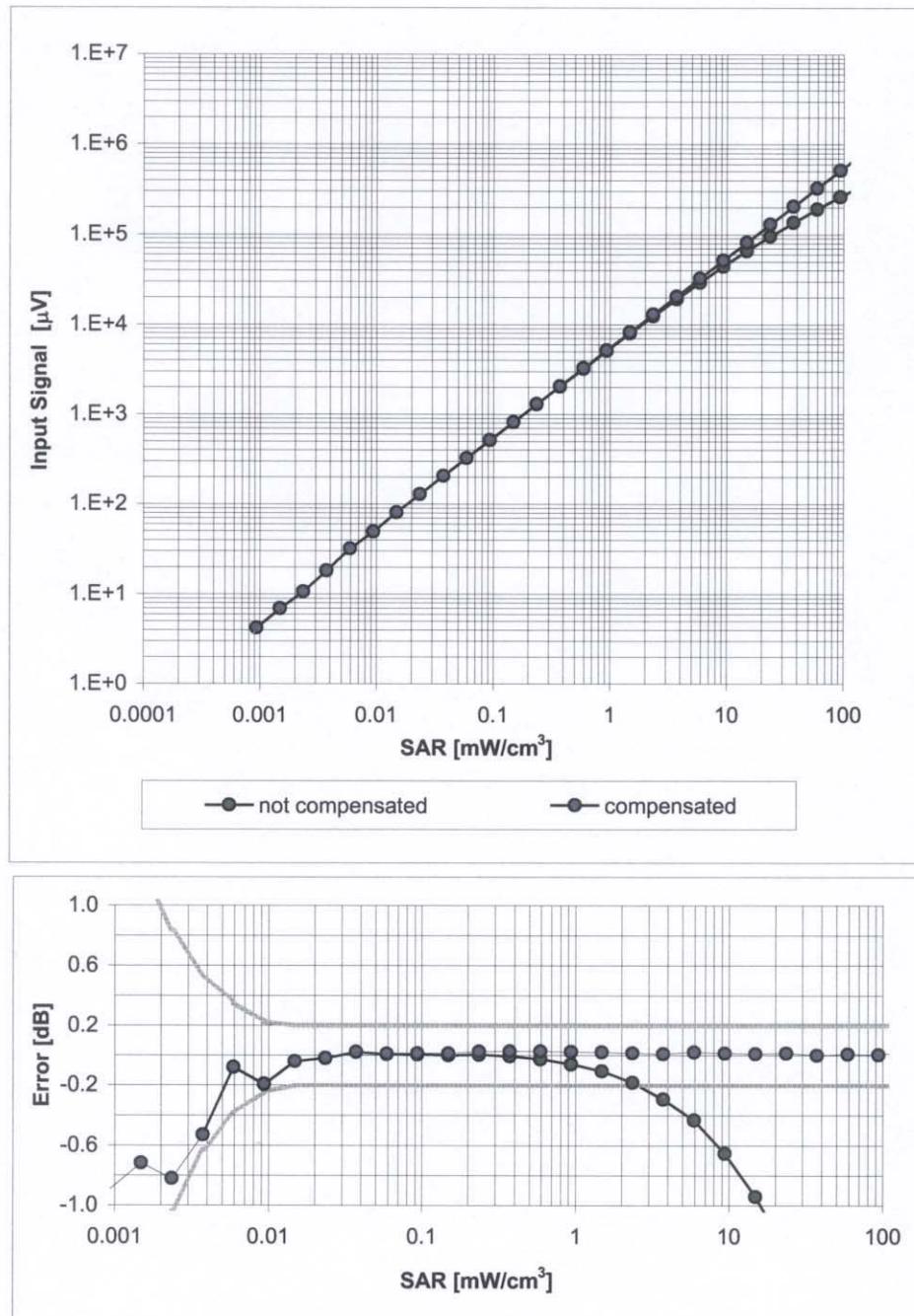

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

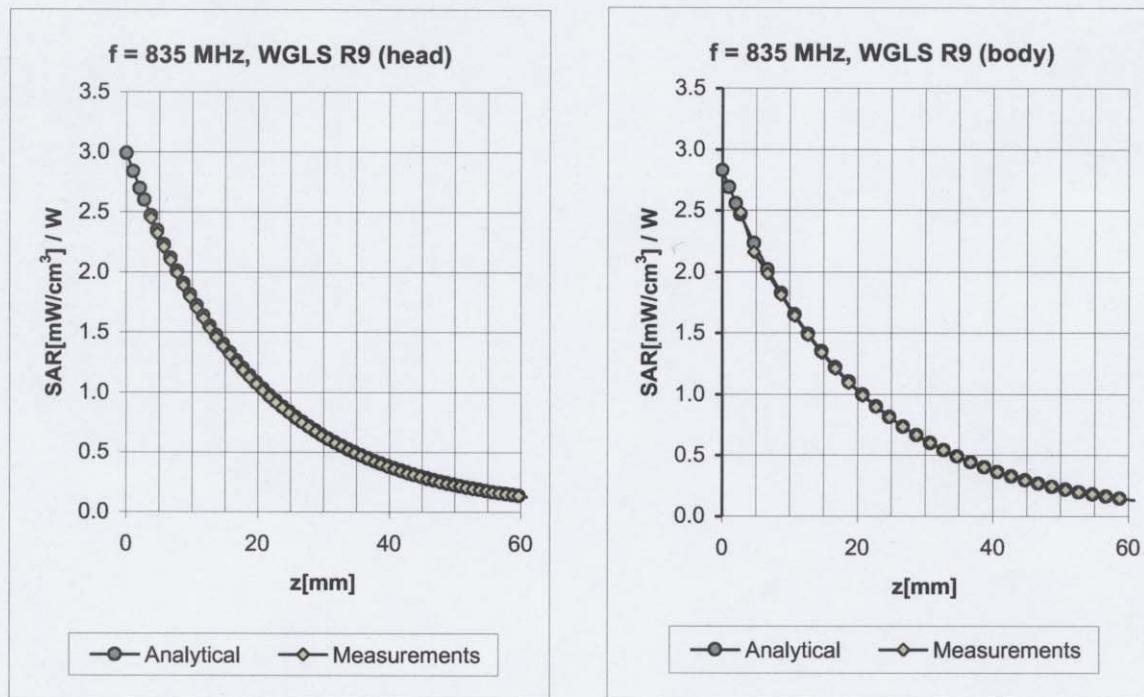
^B Numerical linearization parameter: uncertainty not required.



Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: $\pm 6.3\% (k=2)$

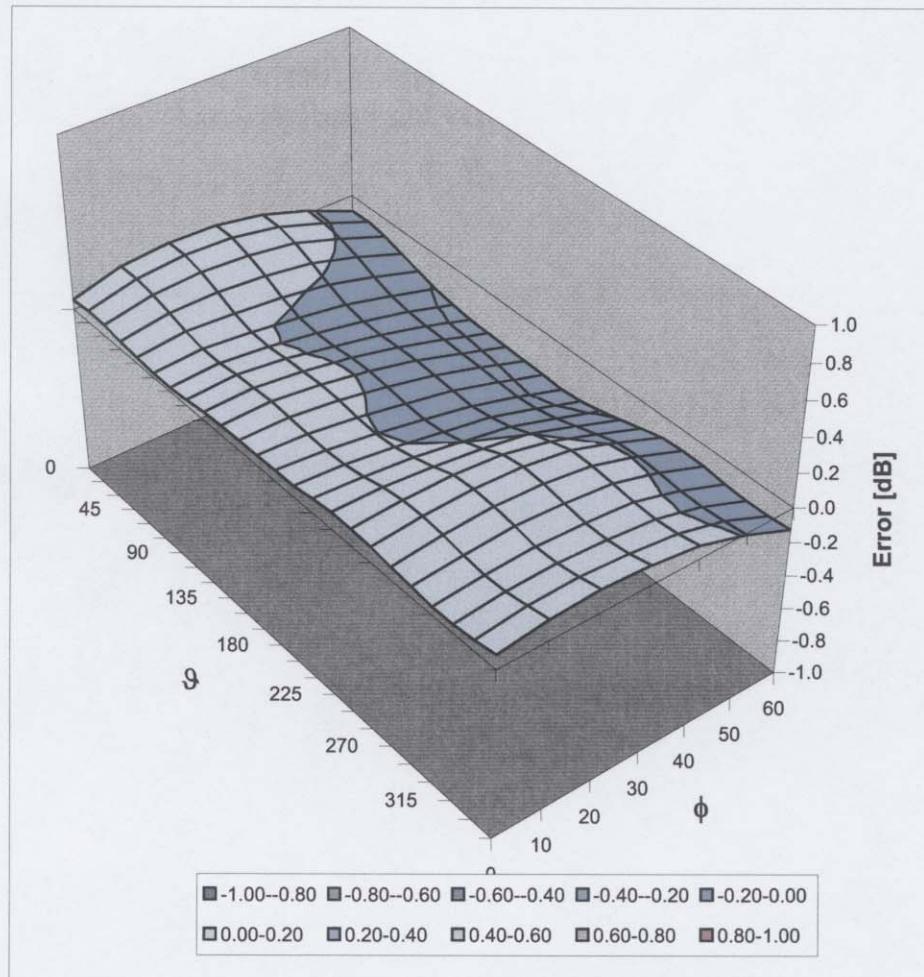
Receiving Pattern (ϕ), $\vartheta = 0^\circ$



Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ ($k=2$)

Dynamic Range $f(\text{SAR}_{\text{head}})$ (Waveguide R22, $f = 1800$ MHz)

Conversion Factor Assessment



f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF	Uncertainty
835	± 50 / ± 100	Head	41.5 ± 5%	0.90 ± 5%	0.36	2.45	6.25	± 11.0% (k=2)
835	± 50 / ± 100	Body	55.2 ± 5%	0.97 ± 5%	0.34	2.66	6.18	± 11.0% (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (ϕ, θ), $f = 900$ MHz

Uncertainty of Spherical Isotropy Assessment: $\pm 2.6\%$ ($k=2$)

Date(s) of Evaluation

March 10-11, 2008

Test Report Serial No.

031008NC3-T888-S24G

Test Report Revision No.

Rev. 1.2 (3rd Release)

Test Report Issue Date

May 16, 2008

Description of Test(s)

Specific Absorption Rate

RF Exposure Category

General Population

Test Lab Certificate No. 2470.01

This confirmation applies to Celltech Labs, Inc. probe model EX3DV4 and serial number SN3600

The following procedures may apply due to SAR probe calibration scheduling delays:

1. A system/probe validation according to the long version of IEEE 1528 system validation procedures within 30 days of the probe calibration expiration date is required for the frequency range used.
2. When probe calibration is expired, a tabulated summary of the system/probe validation results with the necessary details should be included in each filing.
3. This interim probe calibration extension is valid for up to 90 days after the current probe calibration expires and there will be no further extension.
4. A confirmation from the FCC Lab must be included in each filing to be approved by the FCC or a TCB.

12/20/2007

Final: supersedes earlier versions

KDB392062

Company:	Pro Tech Monitoring, Inc.	FCC ID:	NC3WMTD3000	824.2-848.8 / 1850.2-1909.8 MHz	
Model(s):	WMTD3000	DUT Type:	Dual-Band PCS/Cellular GSM/GPRS Ankle-worn Tracking Device		
2008 Celltech Labs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.			Page 55 of 64	

 Testing and Engineering Services Ltd.	<u>Date(s) of Evaluation</u> March 10-11, 2008	<u>Test Report Serial No.</u> 031008NC3-T888-S24G	<u>Test Report Revision No.</u> Rev. 1.2 (3rd Release)	 Test Lab Certificate No. 2470.01
	<u>Test Report Issue Date</u> May 16, 2008	<u>Description of Test(s)</u> Specific Absorption Rate	<u>RF Exposure Category</u> General Population	

System/Probe Validation (per IEEE 1528-2003 Section 8.3.6)

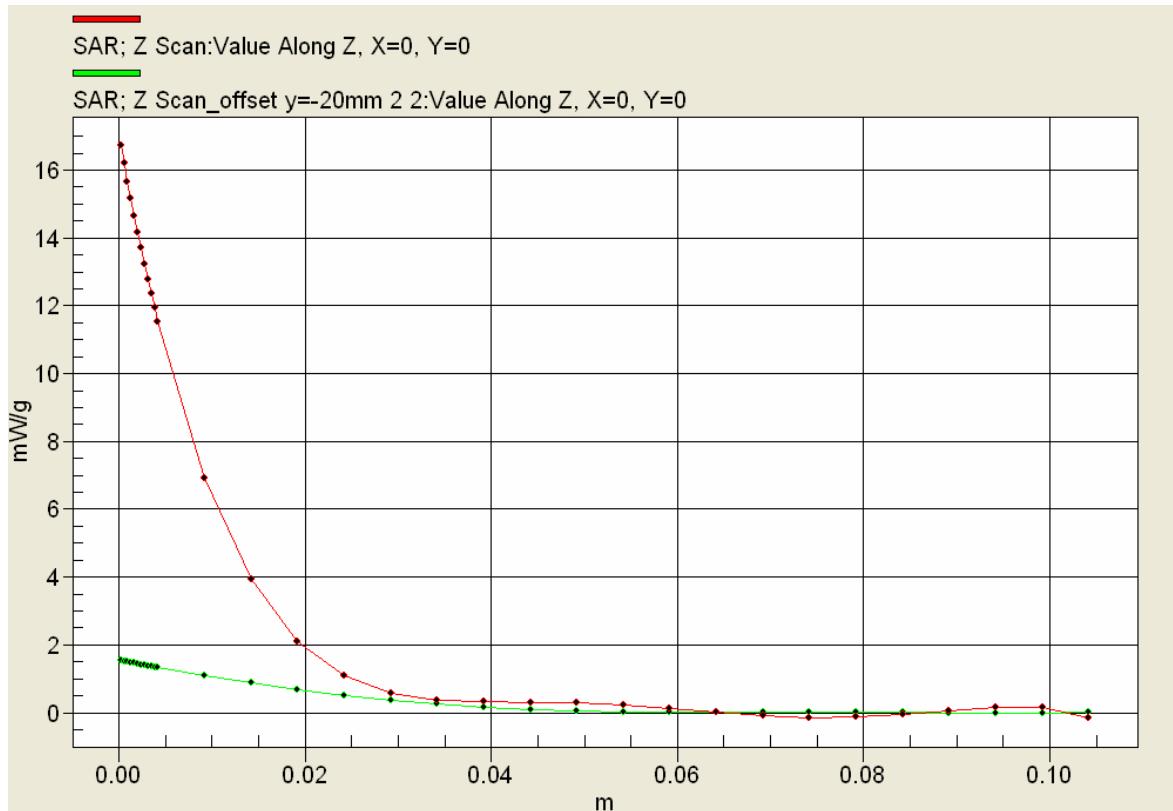
1900 MHz System/Probe Validation Date - January 15, 2008

a) 1900 MHz SAR Evaluation:

SAR @ 0.25W Input averaged over 1g (W/kg)			SAR @ 1W Input averaged over 1g (W/kg)				
SPEAG Target		Measured	Deviation	SPEAG Target		Measured	Deviation
9.95	+/- 10%	10.5	+5.5%	39.8	+/- 10%	42.0	+5.5%
SAR @ 0.25W Input averaged over 10g (W/kg)			SAR @ 1W Input averaged over 10g (W/kg)				
SPEAG Target		Measured	Deviation	SPEAG Target		Measured	Deviation
5.20	+/- 10%	5.43	+4.5%	20.8	+/- 10%	21.7	+4.5%

Dipole Type	Distance [mm]	Frequency [MHz]	SAR (1g) [W/kg]	SAR (10g) [W/kg]	SAR (peak) [W/kg]
D300V2	15	300	3.02	2.06	4.36
D450V2	15	450	5.01	3.36	7.22
D835V2	15	835	9.71	6.38	14.1
D900V2	15	900	11.1	7.17	16.3
D1450V2	10	1450	29.6	16.6	49.8
D1500V2	10	1500	30.8	17.1	52.1
D1640V2	10	1640	34.4	18.7	59.4
D1800V2	10	1800	38.5	20.3	67.5
D1900V2	10	1900	39.8	20.8	69.6
D2000V2	10	2000	40.9	21.2	71.5
D2450V2	10	2450	51.2	23.7	97.6
D3000V2	10	3000	61.9	24.8	136.7

Table 32.1: Numerical reference SAR values for SPEAG dipoles and flat phantom filled with body-tissue simulating liquid. Note: All SAR values normalized to 1 W forward power.


Celltech Labs Inc. Test Result for UIM Dielectric Parameter Tue 15/Jan/2008 Frequency (GHz) FCC_eH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma FCC_eB FCC Limits for Body Epsilon FCC_sB FCC Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM				

Freq	FCC_eB	FCC_sB	Test_e	Test_s
1.8000	53.30	1.52	51.01	1.38
1.8100	53.30	1.52	50.96	1.39
1.8200	53.30	1.52	50.96	1.41
1.8300	53.30	1.52	50.98	1.42
1.8400	53.30	1.52	50.92	1.43
1.8500	53.30	1.52	50.86	1.44
1.8600	53.30	1.52	50.85	1.45
1.8700	53.30	1.52	50.78	1.46
1.8800	53.30	1.52	50.76	1.47
1.8900	53.30	1.52	50.78	1.48
1.9000	53.30	1.52	50.70	1.49
1.9100	53.30	1.52	50.70	1.49
1.9200	53.30	1.52	50.62	1.50
1.9300	53.30	1.52	50.55	1.51
1.9400	53.30	1.52	50.50	1.53
1.9500	53.30	1.52	50.47	1.54
1.9600	53.30	1.52	50.44	1.56
1.9700	53.30	1.52	50.36	1.57
1.9800	53.30	1.52	50.36	1.58
1.9900	53.30	1.52	50.32	1.60
2.0000	53.30	1.52	50.35	1.61

Company:	Pro Tech Monitoring, Inc.	FCC ID:	NC3WMTD3000	824.2-848.8 / 1850.2-1909.8 MHz	
Model(s):	WMTD3000	DUT Type:	Dual-Band PCS/Cellular GSM/GPRS Ankle-worn Tracking Device		
2008 Celltech Labs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.				Page 56 of 64

 Testing and Engineering Services Ltd.	<u>Date(s) of Evaluation</u> March 10-11, 2008	<u>Test Report Serial No.</u> 031008NC3-T888-S24G	<u>Test Report Revision No.</u> Rev. 1.2 (3rd Release)	 IACMRA ACCREDITED
	<u>Test Report Issue Date</u> May 16, 2008	<u>Description of Test(s)</u> Specific Absorption Rate	<u>RF Exposure Category</u> General Population	

Test Lab Certificate No. 2470.01

b) Extrapolation Routine:

SAR; Z Scan:Value Along Z, X=0, Y=0 16.7312
 SAR; Z Scan_offset y=-20mm 2 2:Value Along Z, X=0, Y=0 1.53276

Measurement Location	Measured SAR mW/g	SAR 1W Normalized	Peak Target mW/g	Deviation	System Validation Uncertainty +-%
Feed Point	16.7	66.8	69.6	-4.0%	19.11
2 cm Offset	1.53	6.12	6.6	-7.3%	19.11

Company:	Pro Tech Monitoring, Inc.		FCC ID:	NC3WMTD3000	824.2-848.8 / 1850.2-1909.8 MHz	
Model(s):	WMTD3000		DUT Type:	Dual-Band PCS/Cellular GSM/GPRS Ankle-worn Tracking Device		
2008 Celltech Labs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.				Page 57 of 64	

 Testing and Engineering Services Ltd.	<u>Date(s) of Evaluation</u> March 10-11, 2008	<u>Test Report Serial No.</u> 031008NC3-T888-S24G	<u>Test Report Revision No.</u> Rev. 1.2 (3rd Release)	 IAC-MRA ACCREDITED
	<u>Test Report Issue Date</u> May 16, 2008	<u>Description of Test(s)</u> Specific Absorption Rate	<u>RF Exposure Category</u> General Population	

Test Lab Certificate No. 2470.01

c) Probe Linearity:

Target 42 mW/g

Measured SAR mW/g	Forward Power	SAR 1W Normalized	Deviation	System Validation Uncertainty +-%
10.5	250 mW	42	0.0%	4.7
2.05	50 mW	41	-2.4%	4.7
0.406	10 mW	40.6	-3.3%	4.7

Test Date: January 15, 2008

System/Probe Validation - 1900 MHz Dipole - EX3DV4 Probe

Ambient Temp: 24.5°C; Fluid Temp: 23.3°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW

Forward Conducted Power: **250 mW**

Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: M1900 Medium parameters used: $f = 1900$ MHz; $\sigma = 1.49$ mho/m; $\epsilon_r = 50.7$; $\rho = 1000$ kg/m³

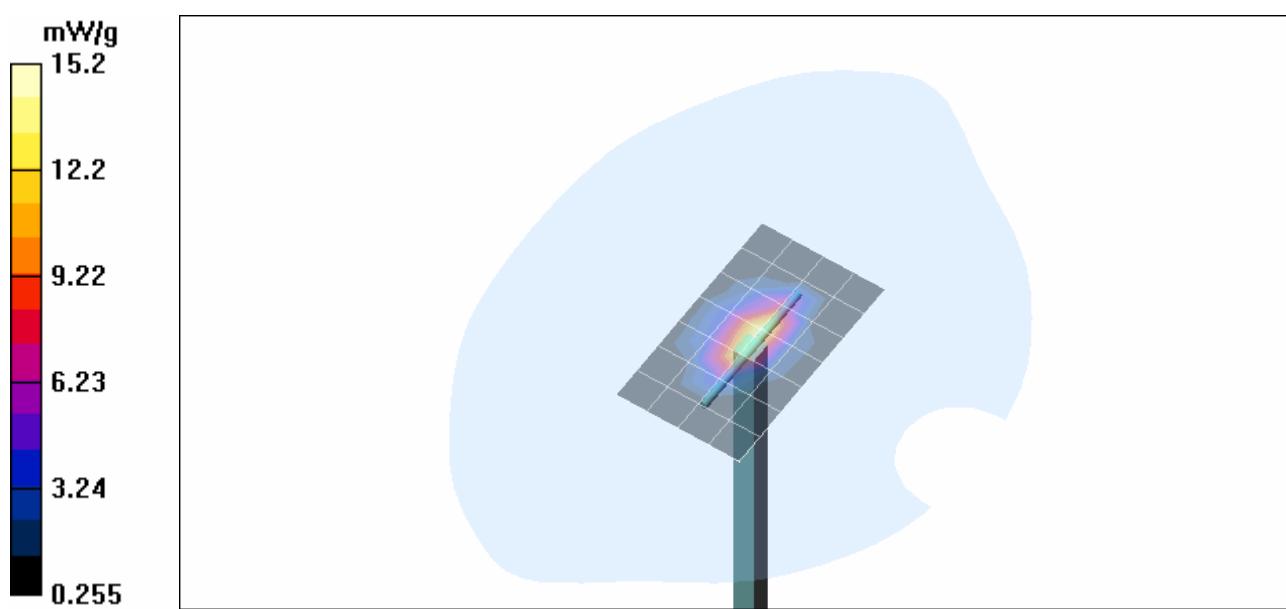
- Probe: EX3DV4 - SN3600; ConvF(6.54, 6.54, 6.54); Calibrated: 24/01/2007
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn370; Calibrated: 13/03/2007
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

1900 MHz System/Probe Validation/Area Scan (5x8x1):

Measurement grid: $dx=15$ mm, $dy=15$ mm

Maximum value of SAR (measured) = 14.3 mW/g

1900 MHz System/Probe Validation/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: $dx=5$ mm, $dy=5$ mm, $dz=5$ mm

Reference Value = 101.4 V/m; Power Drift = 0.006 dB

Peak SAR (extrapolated) = 19.4 W/kg

SAR(1 g) = 10.5 mW/g; SAR(10 g) = 5.43 mW/g

Maximum value of SAR (measured) = 15.2 mW/g

Company:	Pro Tech Monitoring, Inc.		FCC ID:	NC3WMTD3000	824.2-848.8 / 1850.2-1909.8 MHz	 PRO TECH
Model(s):	WMTD3000		DUT Type:	Dual-Band PCS/Cellular GSM/GPRS Ankle-worn Tracking Device		
2008 Celltech Labs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.				Page 58 of 64	

 Testing and Engineering Services Ltd	<u>Date(s) of Evaluation</u> March 10-11, 2008	<u>Test Report Serial No.</u> 031008NC3-T888-S24G	<u>Test Report Revision No.</u> Rev. 1.2 (3rd Release)	 IACMRA ACCREDITED
	<u>Test Report Issue Date</u> May 16, 2008	<u>Description of Test(s)</u> Specific Absorption Rate	<u>RF Exposure Category</u> General Population	

Test Lab Certificate No. 2470.01

Test Date: January 15, 2008

System/Probe Validation - 1900 MHz Dipole - EX3DV4 Probe

Ambient Temp: 24.5°C; Fluid Temp: 23.3°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW

Forward Conducted Power: **50 mW**

Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: M1900 Medium parameters used: $f = 1900$ MHz; $\sigma = 1.49$ mho/m; $\epsilon_r = 50.7$; $\rho = 1000$ kg/m³

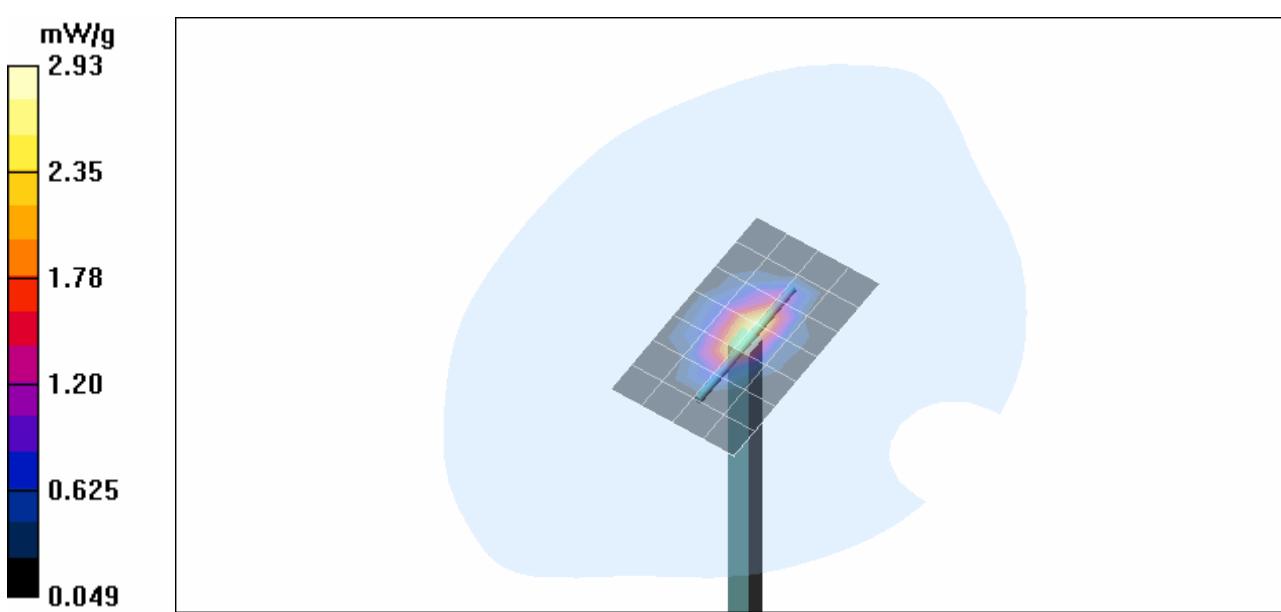
- Probe: EX3DV4 - SN3600; ConvF(6.54, 6.54, 6.54); Calibrated: 24/01/2007
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn370; Calibrated: 13/03/2007
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

1900 MHz System/Probe Validation/Area Scan (5x8x1):

Measurement grid: $dx=15$ mm, $dy=15$ mm

Maximum value of SAR (measured) = 2.77 mW/g

1900 MHz System/Probe Validation/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: $dx=5$ mm, $dy=5$ mm, $dz=5$ mm

Reference Value = 44.9 V/m; Power Drift = -0.001 dB

Peak SAR (extrapolated) = 3.77 W/kg

SAR(1 g) = 2.05 mW/g; SAR(10 g) = 1.05 mW/g

Maximum value of SAR (measured) = 2.93 mW/g

Company:	Pro Tech Monitoring, Inc.		FCC ID:	NC3WMTD3000	824.2-848.8 / 1850.2-1909.8 MHz	 PRO TECH
Model(s):	WMTD3000	DUT Type:	Dual-Band PCS/Cellular GSM/GPRS Ankle-worn Tracking Device			
2008 Celltech Labs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.				Page 59 of 64	

 Testing and Engineering Services Ltd.	<u>Date(s) of Evaluation</u> March 10-11, 2008	<u>Test Report Serial No.</u> 031008NC3-T888-S24G	<u>Test Report Revision No.</u> Rev. 1.2 (3rd Release)	 IACMRA ACCREDITED
	<u>Test Report Issue Date</u> May 16, 2008	<u>Description of Test(s)</u> Specific Absorption Rate	<u>RF Exposure Category</u> General Population	

Test Lab Certificate No. 2470.01

Test Date: January 15, 2008

System/Probe Validation - 1900 MHz Dipole - EX3DV4 Probe

Ambient Temp: 24.5°C; Fluid Temp: 23.3°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW

Forward Conducted Power: **10 mW**

Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: M1900 Medium parameters used: $f = 1900$ MHz; $\sigma = 1.49$ mho/m; $\epsilon_r = 50.7$; $\rho = 1000$ kg/m³

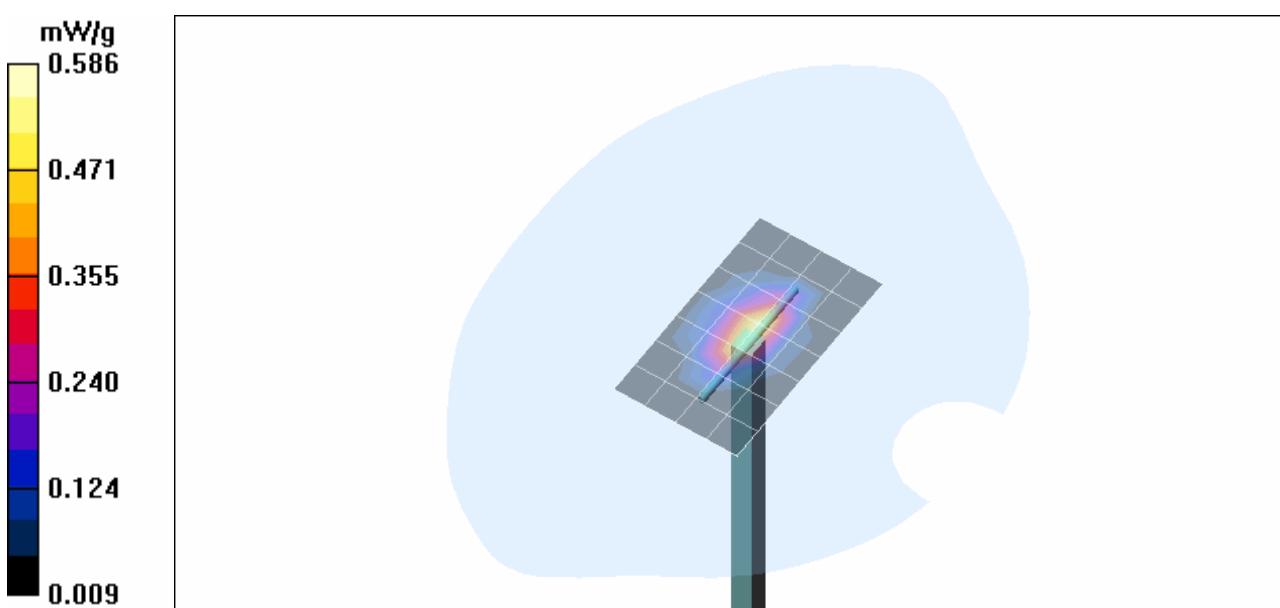
- Probe: EX3DV4 - SN3600; ConvF(6.54, 6.54, 6.54); Calibrated: 24/01/2007
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn370; Calibrated: 13/03/2007
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

1900 MHz System/Probe Validation/Area Scan (5x8x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.542 mW/g

1900 MHz System/Probe Validation/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 19.8 V/m; Power Drift = 0.024 dB

Peak SAR (extrapolated) = 0.744 W/kg

SAR(1 g) = 0.406 mW/g; SAR(10 g) = 0.209 mW/g

Maximum value of SAR (measured) = 0.586 mW/g

Company:	Pro Tech Monitoring, Inc.		FCC ID:	NC3WMTD3000	824.2-848.8 / 1850.2-1909.8 MHz	 PRO TECH
Model(s):	WMTD3000	DUT Type:	Dual-Band PCS/Cellular GSM/GPRS Ankle-worn Tracking Device			
2008 Celltech Labs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.				Page 60 of 64	

d) Modulation Response: Pulse Modulated duty factor of 0.1 @ 10 Hz

Target 42 mW/g

Measured SAR mW/g	Forward Power	SAR 1W Normalized and duty factor 1	Deviation	System Validation Uncertainty
9.19	2.16 W	42.5	+1.2%	19.11%

Test Date: January 15, 2008

System/Probe Validation - 1900 MHz Dipole - EX3DV4 Probe

Ambient Temp: 24.5°C; Fluid Temp: 23.3°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: Pulse-1900

Forward Conducted Power: **2.16 W**

Frequency: 1900 MHz; Duty Cycle: 1:10

Medium: M1900 Medium parameters used: $f = 1900$ MHz; $\sigma = 1.49$ mho/m; $\epsilon_r = 50.7$; $\rho = 1000$ kg/m³

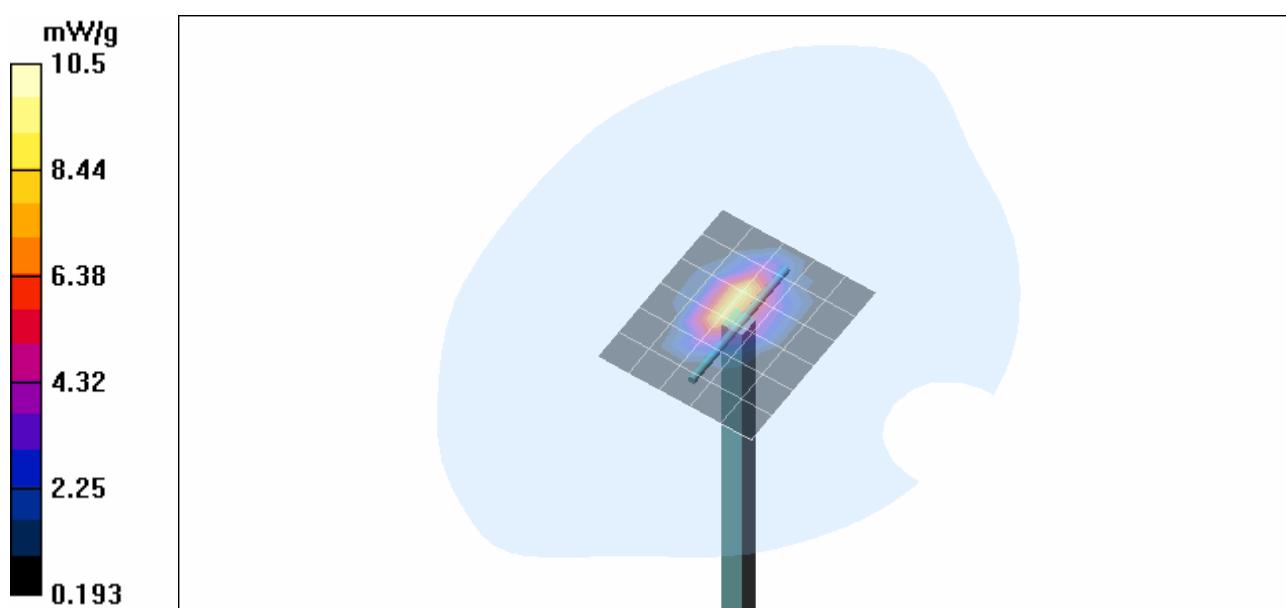
- Probe: EX3DV4 - SN3600; ConvF(6.54, 6.54, 6.54); Calibrated: 24/01/2007
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn370; Calibrated: 13/03/2007
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

1900 MHz System/Probe Validation/Area Scan (6x7x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 9.24 mW/g

1900 MHz System/Probe Validation/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 82.1 V/m; Power Drift = 0.101 dB

Peak SAR (extrapolated) = 18.9 W/kg

SAR(1 g) = 9.19 mW/g; SAR(10 g) = 4.62 mW/g

Maximum value of SAR (measured) = 10.5 mW/g

 Testing and Engineering Services Ltd.	<u>Date(s) of Evaluation</u> March 10-11, 2008	<u>Test Report Serial No.</u> 031008NC3-T888-S24G	<u>Test Report Revision No.</u> Rev. 1.2 (3rd Release)	 IACMRA ACCREDITED
	<u>Test Report Issue Date</u> May 16, 2008	<u>Description of Test(s)</u> Specific Absorption Rate	<u>RF Exposure Category</u> General Population	

Test Lab Certificate No. 2470.01

e) System Offset:

Target 42 mW/g

Measured SAR mW/g	Forward Power	SAR 1W Normalized	Deviation	System Validation Uncertainty
0.0545	1.25 mW	43.6	+3.8%	19.11%

Test Date: January 15, 2008

System/Probe Validation - 1900 MHz Dipole - EX3DV4 Probe

Ambient Temp: 24.5°C; Fluid Temp: 23.3°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW

Forward Conducted Power: **1.25 mW**

Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: M1900 Medium parameters used: $f = 1900$ MHz; $\sigma = 1.49$ mho/m; $\epsilon_r = 50.7$; $\rho = 1000$ kg/m³

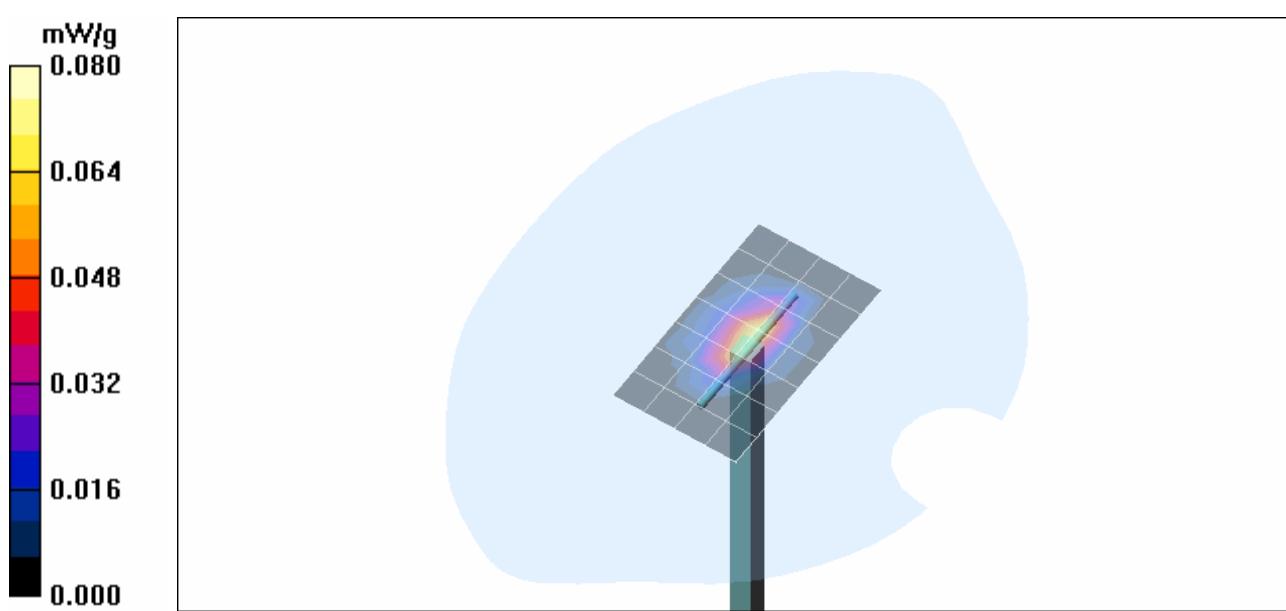
- Probe: EX3DV4 - SN3600; ConvF(6.54, 6.54, 6.54); Calibrated: 24/01/2007
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn370; Calibrated: 13/03/2007
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

1900 MHz System/Probe Validation/Area Scan (5x8x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.070 mW/g

1900 MHz System/Probe Validation/Zoom Scan (7x7x7)/Cube 0:

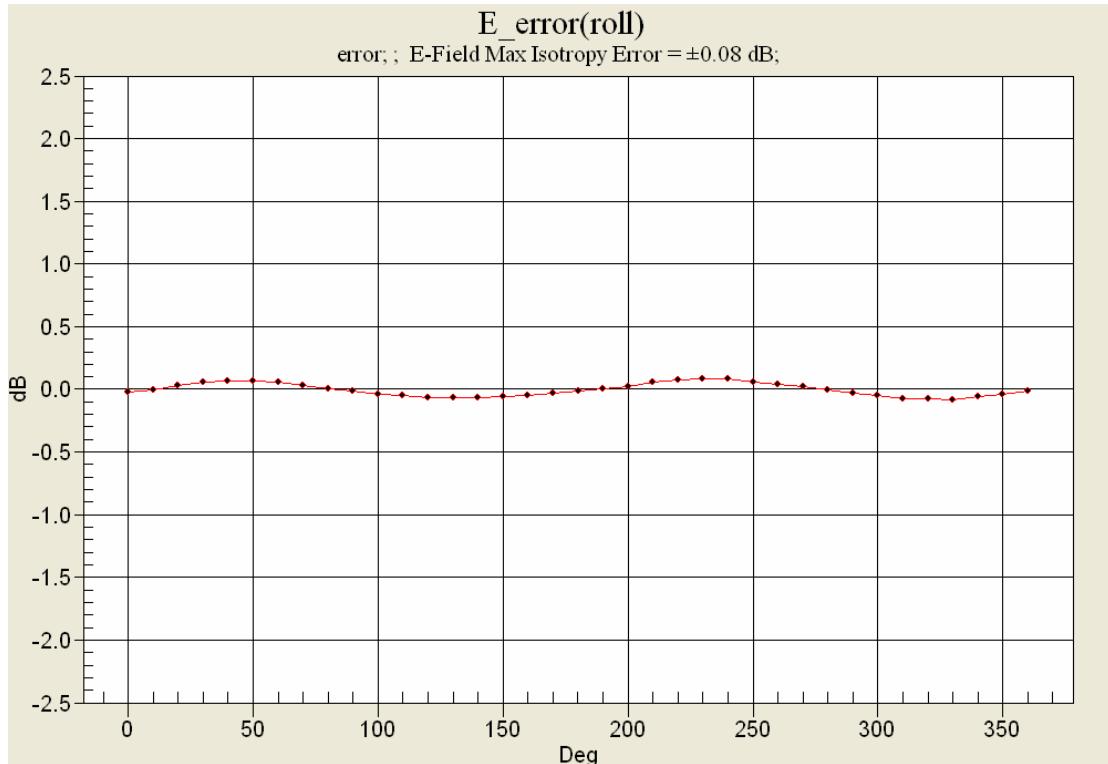

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.16 V/m; Power Drift = -0.174 dB

Peak SAR (extrapolated) = 0.101 W/kg

SAR(1 g) = 0.054 mW/g; SAR(10 g) = 0.028 mW/g

Maximum value of SAR (measured) = 0.080 mW/g



Company:	Pro Tech Monitoring, Inc.		FCC ID:	NC3WMTD3000	824.2-848.8 / 1850.2-1909.8 MHz	
Model(s):	WMTD3000		DUT Type:	Dual-Band PCS/Cellular GSM/GPRS Ankle-worn Tracking Device		
2008 Celltech Labs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.				Page 62 of 64	

 Testing and Engineering Services Ltd	<u>Date(s) of Evaluation</u> March 10-11, 2008	<u>Test Report Serial No.</u> 031008NC3-T888-S24G	<u>Test Report Revision No.</u> Rev. 1.2 (3rd Release)	 IACMRA ACCREDITED
	<u>Test Report Issue Date</u> May 16, 2008	<u>Description of Test(s)</u> Specific Absorption Rate	<u>RF Exposure Category</u> General Population	

Test Lab Certificate No. 2470.01

f) Probe Axial Isotropy:

Measured Max Deviation	System Validation Uncertainty
0.08 dB	0.21 dB

Company:	Pro Tech Monitoring, Inc.	FCC ID:	NC3WMTD3000	824.2-848.8 / 1850.2-1909.8 MHz	 PRO TECH
Model(s):	WMTD3000	DUT Type:	Dual-Band PCS/Cellular GSM/GPRS Ankle-worn Tracking Device		
2008 Celltech Labs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.				Page 63 of 64

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
C Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client **Celltech**

Certificate No: EX3-3600_Jan07

CALIBRATION CERTIFICATE

Object **EX3DV4 - SN:3600**

Calibration procedure(s) **QA CAL-01.v5 and QA CAL-14.v3**
Calibration procedure for dosimetric E-field probes

Calibration date: **January 24, 2007**

Condition of the calibrated item **In Tolerance**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	5-Apr-06 (METAS, No. 251-00557)	Apr-07
Power sensor E4412A	MY41495277	5-Apr-06 (METAS, No. 251-00557)	Apr-07
Power sensor E4412A	MY41498087	5-Apr-06 (METAS, No. 251-00557)	Apr-07
Reference 3 dB Attenuator	SN: S5054 (3c)	10-Aug-06 (METAS, No. 217-00592)	Aug-07
Reference 20 dB Attenuator	SN: S5086 (20b)	4-Apr-06 (METAS, No. 251-00558)	Apr-07
Reference 30 dB Attenuator	SN: S5129 (30b)	10-Aug-06 (METAS, No. 217-00593)	Aug-07
Reference Probe ES3DV2	SN: 3013	4-Jan-07 (SPEAG, No. ES3-3013_Jan07)	Jan-08
DAE4	SN: 654	21-Jun-06 (SPEAG, No. DAE4-654_Jun06)	Jun-07
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (SPEAG, in house check Nov-05)	In house check: Nov-07
Network Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check Oct-06)	In house check: Oct-07

Calibrated by: **Katja Pokovic** **Technical Manager**

Approved by: **Niels Kuster** **Quality Manager**

Issued: January 24, 2007

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Accredited by the Swiss Federal Office of Metrology and Accreditation
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

TSL	tissue simulating liquid
NORM x,y,z	sensitivity in free space
ConF	sensitivity in TSL / NORM x,y,z
DCP	diode compression point
Polarization ϕ	ϕ rotation around probe axis
Polarization ϑ	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz)", July 2001

Methods Applied and Interpretation of Parameters:

- NORM x,y,z** : Assessed for E-field polarization $\vartheta = 0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). NORM x,y,z are only intermediate values, i.e., the uncertainties of NORM x,y,z does not effect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f) x,y,z = NORM x,y,z * frequency_response** (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- DCPx,y,z**: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters**: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORM x,y,z * *ConvF* whereby the uncertainty corresponds to that given for *ConvF*. A frequency dependent *ConvF* is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy)**: in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset**: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe EX3DV4

SN:3600

Manufactured: January 10, 2007
Calibrated: January 24, 2007

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: EX3DV4 SN:3600

Sensitivity in Free Space^A

NormX	0.460 \pm 10.1%	$\mu\text{V}/(\text{V}/\text{m})^2$
NormY	0.470 \pm 10.1%	$\mu\text{V}/(\text{V}/\text{m})^2$
NormZ	0.380 \pm 10.1%	$\mu\text{V}/(\text{V}/\text{m})^2$

Diode Compression^B

DCP X	90 mV
DCP Y	88 mV
DCP Z	89 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL **1810 MHz** **Typical SAR gradient: 10 % per mm**

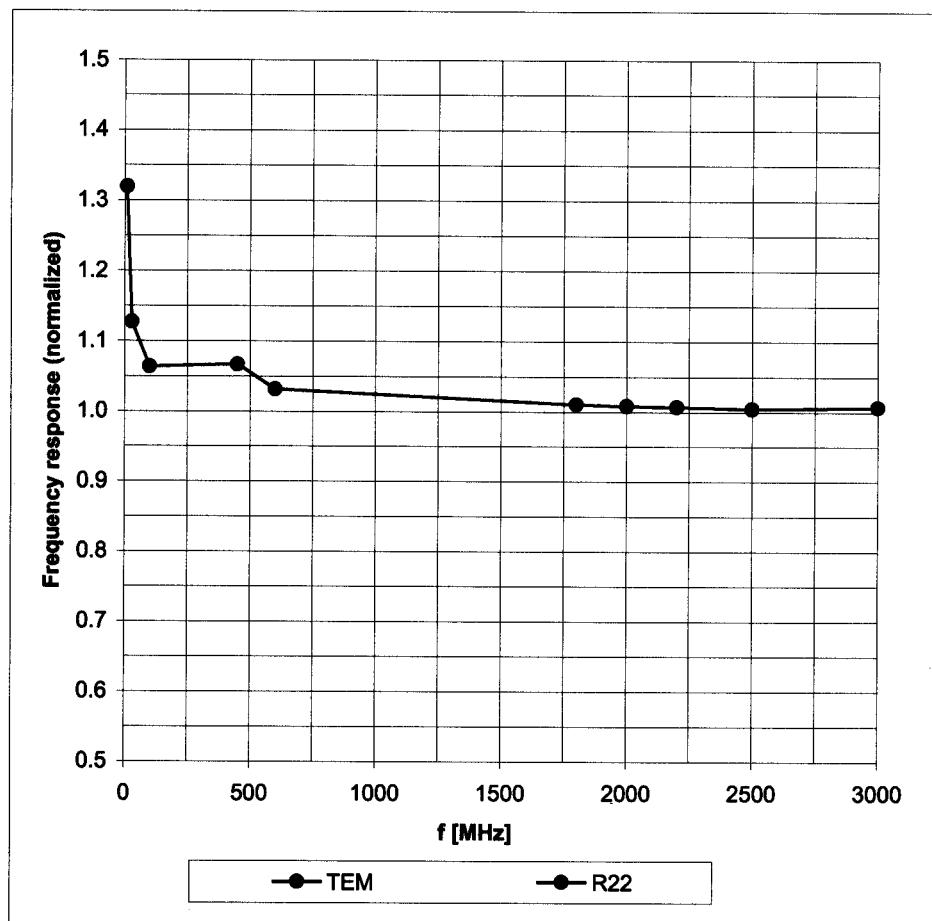
Sensor Center to Phantom Surface Distance	2.0 mm	3.0 mm
SAR _{be} [%] Without Correction Algorithm	4.5	3.5
SAR _{be} [%] With Correction Algorithm	0.2	0.4

TSL **5800 MHz** **Typical SAR gradient: 30 % per mm**

Sensor Center to Phantom Surface Distance	2.0 mm	3.0 mm
SAR _{be} [%] Without Correction Algorithm	3.5	2.0
SAR _{be} [%] With Correction Algorithm	0.1	0.3

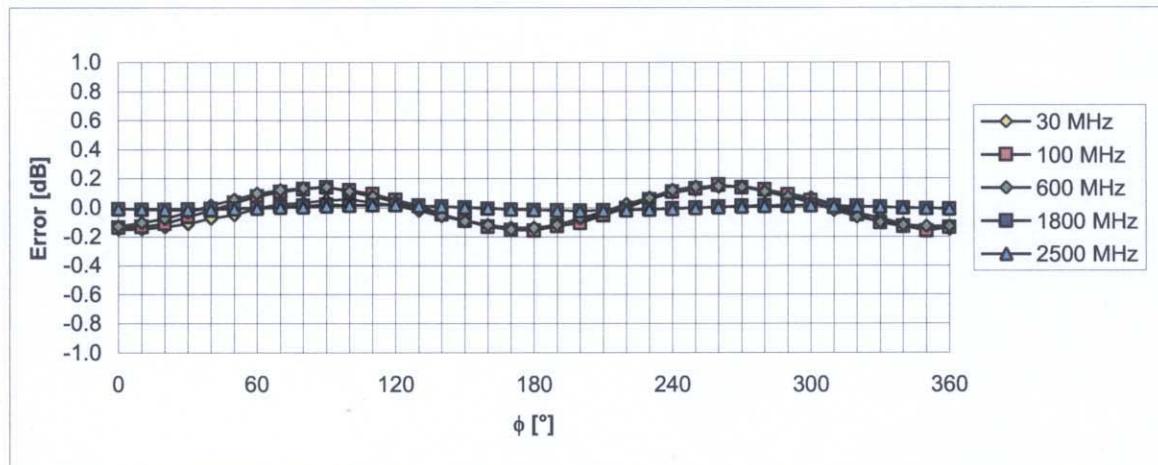
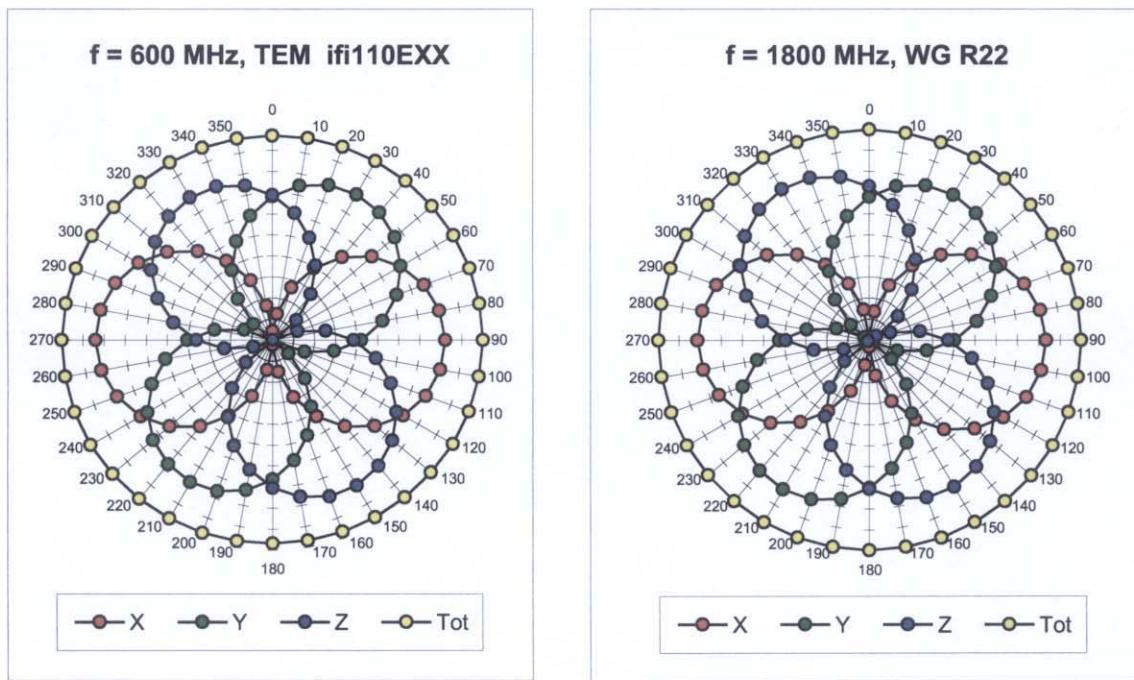
Sensor Offset

Probe Tip to Sensor Center **1.0 mm**

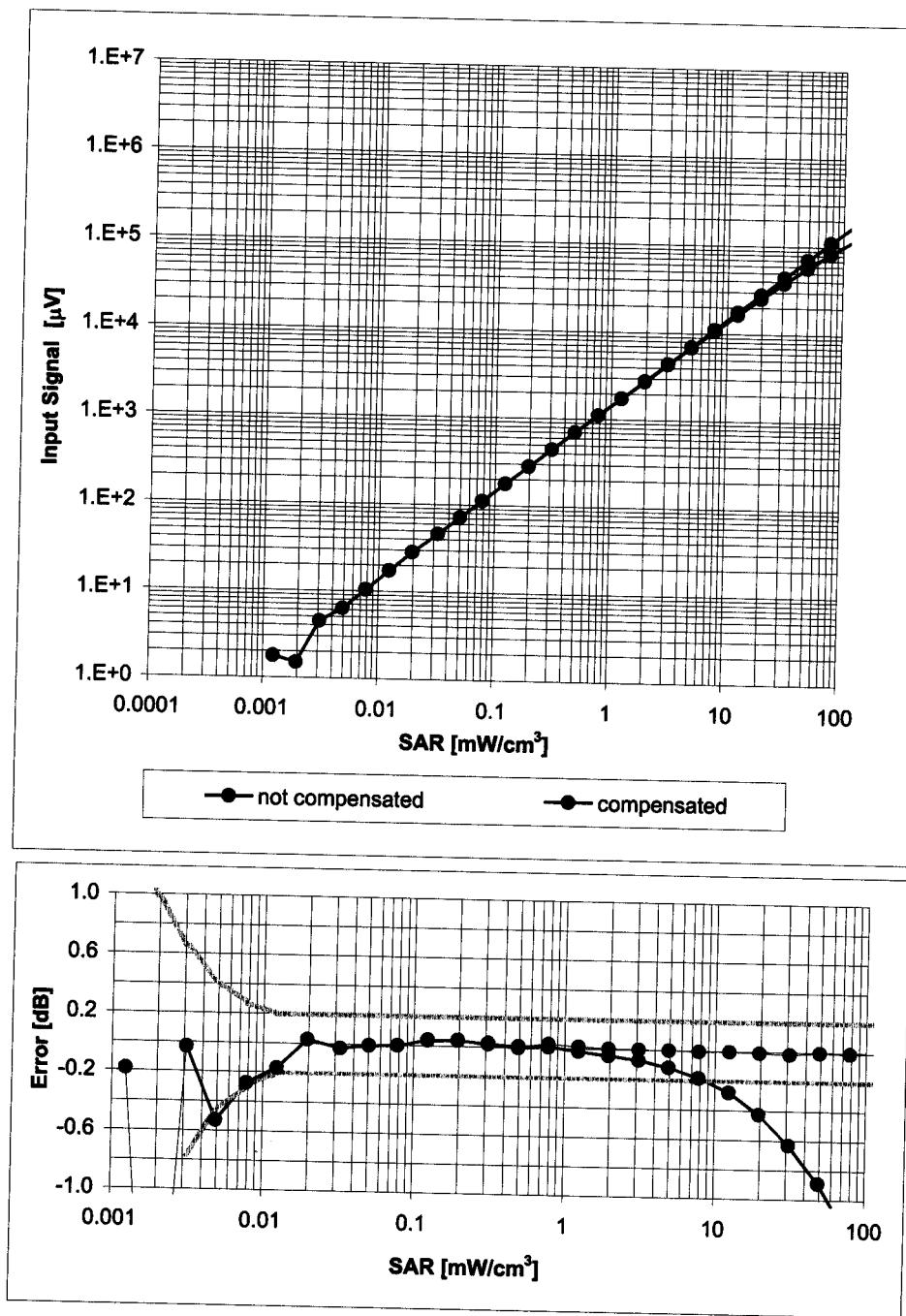

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E^2 -field uncertainty inside TSL (see Page 8).

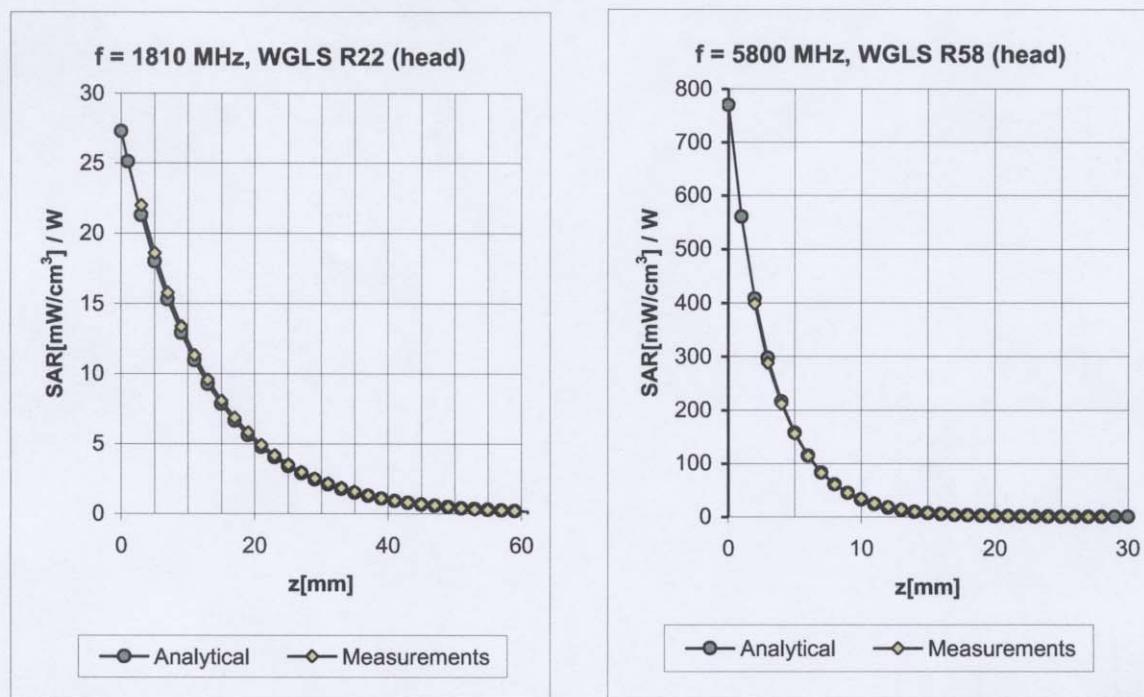
^B Numerical linearization parameter: uncertainty not required.



Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ (k=2)

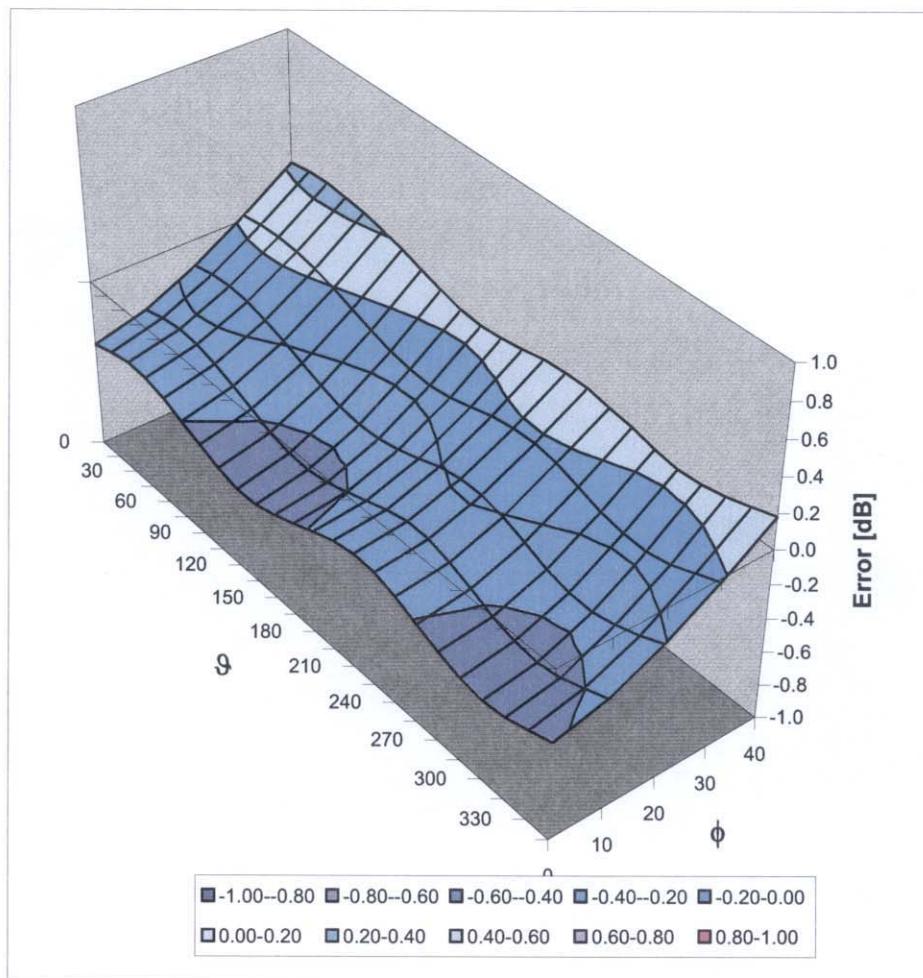
Receiving Pattern (ϕ), $\theta = 0^\circ$


Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ ($k=2$)

Dynamic Range $f(\text{SAR}_{\text{head}})$
(Waveguide R22, $f = 1800$ MHz)

Uncertainty of Linearity Assessment: $\pm 0.6\%$ ($k=2$)

Conversion Factor Assessment


f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF	Uncertainty
1810	$\pm 50 / \pm 100$	Head	$40.0 \pm 5\%$	$1.40 \pm 5\%$	0.20	1.01	7.02	$\pm 11.0\% \text{ (k=2)}$
1950	$\pm 50 / \pm 100$	Head	$40.0 \pm 5\%$	$1.40 \pm 5\%$	0.26	1.05	6.59	$\pm 11.0\% \text{ (k=2)}$
2450	$\pm 50 / \pm 100$	Head	$39.2 \pm 5\%$	$1.80 \pm 5\%$	0.44	1.00	6.37	$\pm 11.8\% \text{ (k=2)}$
5800	$\pm 50 / \pm 100$	Head	$35.3 \pm 5\%$	$5.27 \pm 5\%$	0.37	1.65	4.34	$\pm 13.1\% \text{ (k=2)}$

1810	$\pm 50 / \pm 100$	Body	$53.3 \pm 5\%$	$1.52 \pm 5\%$	0.24	1.06	6.85	$\pm 11.0\% \text{ (k=2)}$
1950	$\pm 50 / \pm 100$	Body	$53.3 \pm 5\%$	$1.52 \pm 5\%$	0.16	1.35	6.54	$\pm 11.0\% \text{ (k=2)}$
2450	$\pm 50 / \pm 100$	Body	$52.7 \pm 5\%$	$1.95 \pm 5\%$	0.42	1.00	6.31	$\pm 11.8\% \text{ (k=2)}$
5200	$\pm 50 / \pm 100$	Body	$49.0 \pm 5\%$	$5.30 \pm 5\%$	0.35	1.70	4.10	$\pm 13.1\% \text{ (k=2)}$
5500	$\pm 50 / \pm 100$	Body	$48.6 \pm 5\%$	$5.65 \pm 5\%$	0.32	1.70	3.95	$\pm 13.1\% \text{ (k=2)}$
5800	$\pm 50 / \pm 100$	Body	$48.2 \pm 5\%$	$6.00 \pm 5\%$	0.33	1.70	4.14	$\pm 13.1\% \text{ (k=2)}$

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (ϕ, θ), $f = 900$ MHz

Uncertainty of Spherical Isotropy Assessment: $\pm 2.6\%$ ($k=2$)