

TEST REPORT FROM RFI GLOBAL SERVICES LTD

Test of: Pro Tech Monitoring Inc.
Smart Active Tracker

To: OET Bulletin 65 Supplement C: (2001-01)

Test Report Serial No:
RFI/SARE3/RP72155JD04A

Supersedes Test Report Serial No:
RFI/SARE2/RP72155JD04A

**This Test Report Is Issued Under The Authority
Of Andrew Brown, Operations Manager:**

pp.

Tested By: Richelieu Quoi

Checked By: Joe Lomako

pp.

Report Copy No: PDF01

Issue Date: 15 March 2007

Test Dates: 31 August 2006

It should be noted that the standard, OET Bulletin 65 Supplement C: (2001-01) is not listed on RFI's current UKAS schedule and is therefore "not UKAS accredited".

This report is issued in Adobe Acrobat portable document format (PDF). It is only a valid copy of the report if it is being viewed in PDF format with the following security options not allowed: Changing the document, Selecting text and graphics, Adding or changing notes and form fields.

This report may be copied in full. The results in this report apply only to the sample(s) tested.

RFI Global Services Ltd

Pavilion A, Ashwood Park, Ashwood Way, Basingstoke, Hampshire RG23 8BG

Telephone: +44 (0)1256 312000 Facsimile: +44 (0)1256 312001

Email: info@rfi-global.com Website: www.rfi-global.com

Test Of: **Pro Tech Monitoring Inc.**
Smart Active Tracker
To: **OET Bulletin 65 Supplement C: (2001-01)**

This page has been left intentionally blank.

Test Of: Pro Tech Monitoring Inc.
Smart Active Tracker
To: OET Bulletin 65 Supplement C: (2001-01)

Table of Contents

1. Client Information	4
2. Equipment Under Test (EUT)	5
3. Test Specification, Methods and Procedures	8
4. Deviations from the Test Specification	9
5. Operation of the EUT During Testing	10
6. Summary of Test Results	11
7. Measurements, Examinations and Derived Results	12
8. SAR Measurement System	16
9. SAR Safety Limits	17
10. Details of SAR Evaluation	18
11. Evaluation Procedures	19
12. System Validation	20
13. Simulated Tissues	21
14. Tissue Parameters	22
15. DASY4 Systems Specifications	23
16. Validation Results – 900 MHz Band (Body)	24
17. Validation Results – 1900 MHz Band (Body)	25
18. Measurement Uncertainty	26
Appendix 1. Test Equipment Used	29
Appendix 2. SAR Distribution Scans	31
Appendix 3. Test Configuration Photograph	32
Appendix 4. Calibration Data	34
Appendix 5. Photographs of EUT	36

Test Of: Pro Tech Monitoring Inc.
Smart Active Tracker
To: OET Bulletin 65 Supplement C: (2001-01)

1. Client Information

Company Name:	Pro Tech Monitoring Inc.
Address:	2549 Success Drive Odessa FL 33556
Contact Name:	Mr D Segal

Test Laboratory

Company Name:	RFI Global Services Ltd
Address:	Ewhurst Park Ramsdell Basingstoke Hampshire RG26 5RQ.
Contact Name:	Mr A Brown

Test Of: Pro Tech Monitoring Inc.
Smart Active Tracker
To: OET Bulletin 65 Supplement C: (2001-01)

2. Equipment Under Test (EUT)

The following information (with the exception of the date of receipt) has been supplied by the client:

2.1. Identification of Equipment Under Test (EUT)

Description:	Smart Active Tracker
Brand Name:	Pro Tech
Model Name or Number:	None Stated By Client
Unique Type Identification:	MTD2000
Serial Number:	33582027
IMEI Number:	357647000459700
Hardware Revision Number:	1C (Stated by the client)
Software Revision Number:	3.1.34.0 (Stated by the client)
FCC Identification:	NC3MTD2000
Country of Manufacture:	USA
Date of Receipt:	31 August 2006

2.2. Description of EUT

The equipment under test is a GPS Active Tracker with GPRS class 10 capabilities. The EUT operates at GSM850, PCS1900, GPRS850 and GPRS1900 bands.

2.3. Modifications Incorporated in the EUT

During the course of testing the EUT was not modified.

Test Of: Pro Tech Monitoring Inc.
 Smart Active Tracker
To: OET Bulletin 65 Supplement C: (2001-01)

2.4. Additional Information Related to the EUT

Equipment Class:	GSM850, PCS1900, GPRS850 and GPRS1900				
FCC Rule Part(s):	OET Bulletin 65 Supplement C: 2001-01				
Device Category:	Portable (Standalone battery powered device)				
Application Type:	Certification				
Maximum Power Output:	GSM850	33 dBm			
	PCS1900	30 dBm			
Transmitter Frequency Range:	GSM/GPRS850	824.0 MHz to 849.0 MHz			
Transmitter:	PCS/GPRS1900	1850.0 MHz to 1910.0 MHz			
Transmit Frequency Allocation of EUT when under test:	Channel Number	Channel Description	Frequency (MHz)		
GSM/GPRS850	128	Low	824.2		
	189	Middle	836.4		
	251	High	848.8		
PCS/GPRS1900	512	Low	1850.2		
	660	Middle	1879.8		
	810	High	1909.8		
Modulation(s):	GSM/GPRS	217 Hz			
Modulation Scheme (Crest Factor):	GSM	8.3			
	GPRS	4			
Battery Type(s):	Li-ion Rechargeable				
Antenna Length and Type:	Length: Unknown and Type: Internal				
Number Of Antenna Positions:	1 Fixed				
Intended Operating Environment:	Within GSM and GPS coverage				
Power Supply Requirement:					
Internal Battery Supply:	3.8 V Li-ion				

Test Of: Pro Tech Monitoring Inc.
Smart Active Tracker
To: OET Bulletin 65 Supplement C: (2001-01)

2.5. Support Equipment

The following support equipment was used to exercise the EUT during testing:

Description:	Radio Communication Test Set
Brand Name:	Anritsu
Model Name or Number:	MT8820A
Serial Number:	6K00000647
Cable Length and Type:	1.5m Utiflex
Connected to Port:	RF (Input/Output) Air link to Antenna

Test Of: Pro Tech Monitoring Inc.
Smart Active Tracker
To: OET Bulletin 65 Supplement C: (2001-01)

3. Test Specification, Methods and Procedures

3.1. Test Specification

Reference:	OET Bulletin 65 Supplement C: (2001-01)
Title:	Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields.

3.2. Methods and Procedures

The methods and procedures used were as detailed in:

EN 50361: 2001

Title: Basic standard for the measurement of specific absorption rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz).

ANSI/IEEE C95.1: 1999

IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz.

Federal Communications Commission, "Evaluating compliance with FCC Guidelines for human exposure to radio frequency electromagnetic fields", OET Bulletin 65 Supplement C, FCC, Washington, D.C, 20554, 2001.

Thomas Schmid, Oliver Egger and Neils Kuster, "Automated E-field scanning system for dosimetric assessments", IEEE Transaction on microwave theory and techniques, Vol. 44, pp. 105-113, January 1996.

Neils Kuster, Ralph Kastle and Thomas Schmid, "Dosimetric evaluation of mobile communications equipment with known precision", IEICE Transactions of communications, Vol. E80-B, No.5, pp. 645-652, May 1997.

3.3. Definition Of Measurement Equipment

The measurement equipment used complied with the requirements as detailed in OET Bulletin 65 Supplement C, Appendix D.

Test Of: Pro Tech Monitoring Inc.
Smart Active Tracker
To: OET Bulletin 65 Supplement C: (2001-01)

4. Deviations from the Test Specification

At the clients request the EUT was tested at GSM850, GPRS850, PCS1900 and GPRS1900 in the body worn configuration only. The EUT was configured with the belt clip attached for all test cases.

Test Of: Pro Tech Monitoring Inc.
Smart Active Tracker
To: OET Bulletin 65 Supplement C: (2001-01)

5. Operation of the EUT During Testing

5.1. Operating Modes

At the client's request the EUT was tested in the following operating mode(s):

GSM850 Call allocated

PCS1900 Call allocated

GPRS850

GPRS1900

The reason for choosing these modes was that they have been defined by the customer as being typical of normal use and likely to be a worst case.

5.2. Configuration and Peripherals

The EUT was tested in the following configuration(s):

Standalone Mobile GPS active Tracker without personal hands free kit in the body-worn configuration at 0mm separation in 850/1900 MHz band and 15mm separation in 1900 MHz bands from the SAM phantom flat section.

Test Of: Pro Tech Monitoring Inc.
Smart Active Tracker
To: OET Bulletin 65 Supplement C: (2001-01)

6. Summary of Test Results

Test Name	Specification Reference	Compliance Status
Specific Absorption Rate (SAR) GSM850	FCC OET Bulletin 65 Supplement C: 2001-01	Complied
Specific Absorption Rate (SAR) GPRS850	FCC OET Bulletin 65 Supplement C: 2001-01	Complied
Specific Absorption Rate (SAR) PCS1900	FCC OET Bulletin 65 Supplement C: 2001-01	Complied
Specific Absorption Rate (SAR) GPRS1900	FCC OET Bulletin 65 Supplement C: 2001-01	Complied

6.1. Location of Tests

All the measurements described in this report were performed at the premises of RFI Global Services Ltd, Ewhurst Park, Ramsdell, Basingstoke, Hampshire, RG26 5RQ.

Test Of: Pro Tech Monitoring Inc.
Smart Active Tracker
To: OET Bulletin 65 Supplement C: (2001-01)

7. Measurements, Examinations and Derived Results

7.1. General Comments

This section contains test results only.

Measurement uncertainties are evaluated in accordance with current best practice. Our reported expanded uncertainties are based on standard uncertainties, which are multiplied by an appropriate coverage factor to provide a statistical confidence level of approximately 95%. Please refer to section 18 for details of measurement uncertainties.

Test Of: Pro Tech Monitoring Inc.
 Smart Active Tracker
To: OET Bulletin 65 Supplement C: (2001-01)

7.2. Test Results

7.2.1. Test Results for Specific Absorption Rate 850 MHz Body

Test Summary:

Maximum Level 1g (W/kg):	0.055
--------------------------	-------

Environmental Conditions:

Temperature Variation in Lab (°C):	23.0 to 23.0
Temperature Variation in Liquid (°C):	23.6 to 23.6

ERP before Test:	Refer to section 7.2.3
------------------	------------------------

Results:

Position	Section	Channel Number	Level 1g (W/kg)	Limit 1g (W/kg)	Margin (W/kg)	Note(s)	Result
Display of EUT Facing Phantom	Flat	189	0.026	1.600	1.574	1, 2	Complied
Rear of EUT Facing Phantom	Flat	189	0.007	1.600	1.593	1, 2	Complied
Display of EUT Facing Phantom	Flat	189	0.055	1.600	1.545	1, 3	Complied
Rear of EUT Facing Phantom	Flat	189	0.015	1.600	1.585	1, 3	Complied

Note(s):

1. SAR measurements were performed with the EUT at a separation distance of 0mm from the SAM phantom flat section.
2. GPRS850 SAR measurement.
3. GSM850 SAR measurement.

Test Of: Pro Tech Monitoring Inc.
 Smart Active Tracker
 To: OET Bulletin 65 Supplement C: (2001-01)

7.2.2. Test Results for Specific Absorption Rate 1900 MHz

Test Summary:

Maximum Level 1g (W/kg):	0.777
--------------------------	-------

Environmental Conditions:

Temperature Variation in Lab (°C):	23.0 to 23.0
Temperature Variation in Liquid (°C):	23.6 to 23.6

EIRP before Test:	Refer to section 7.2.3
-------------------	------------------------

Results:

Position	Section	Channel Number	Level 1g (W/kg)	Limit 1g (W/kg)	Margin (W/kg)	Note(s)	Result
Display of EUT Facing Phantom	Flat	660	0.777	1.600	0.823	1, 2	Complied
Rear of EUT Facing Phantom	Flat	660	0.058	1.600	1.542	1, 2	Complied
Display of EUT Facing Phantom	Flat	660	0.147	1.600	1.453	3, 4	Complied
Rear of EUT Facing Phantom	Flat	660	0.044	1.600	1.556	3, 4	Complied

Note(s):

1. SAR measurements were performed with the EUT at a separation distance of 0mm from the SAM phantom flat section.
2. GPRS1900 SAR measurement.
3. PCS1900 SAR measurement.
4. SAR measurements were performed with the EUT at a separation distance of 15mm from the SAM phantom flat section.

Test Of: Pro Tech Monitoring Inc.
Smart Active Tracker
To: OET Bulletin 65 Supplement C: (2001-01)

7.2.3. ERP Measurement

Channel	Frequency (MHz)	TX Power before Test (dBm)
128	824.2	23.1
189	836.4	23.1
251	848.8	22.3

7.2.4. EIRP Measurement

Channel	Frequency (MHz)	TX Power before Test (dBm)
512	1850.2	29.3
660	1879.8	27.4
810	1909.8	27.5

Note(s):

1. EIRP/ERP measurements are performed before testing only.

Test Of: **Pro Tech Monitoring Inc.**
Smart Active Tracker
To: **OET Bulletin 65 Supplement C: (2001-01)**

8. SAR Measurement System

RFI Global Services Ltd, SAR measurement facility utilises the Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY4 system is comprised of the robot controller, computer, near-field probe, probe alignment sensor, and the SAM phantom containing brain or muscle equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller; teach pendant (Joystick), and remote control. This is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. The data acquisition electronics (DAE) performs signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection etc. The DAE is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card. The DAE3 utilises a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

Test Of: Pro Tech Monitoring Inc.
Smart Active Tracker
To: OET Bulletin 65 Supplement C: (2001-01)

9. SAR Safety Limits

Exposure Limits (General Populations/Uncontrolled Exposure Environment)	SAR (W/Kg)
Spatial Peak (averaged over any 1g of tissue)	1.6

Note(s):

1. *OET Bulletin 65 Supplement C SAR safety limits specified in the table above applies to devices operated in the general population / uncontrolled exposure environment.*
2. *Uncontrolled environments are defined as locations where there is exposure of individuals who have no knowledge or control of their exposure.*

Test Of: Pro Tech Monitoring Inc.
Smart Active Tracker
To: OET Bulletin 65 Supplement C: (2001-01)

10. Details of SAR Evaluation

The equipment under test was found to be compliant for localised Specific Absorption Rate (SAR) based on the following provisions and conditions:

- a) The handset was placed in a normal operating position with the centre of the ear-piece aligned with the ear canal on the phantom.
- b) With the ear-piece touching the phantom the centre line of the handset was aligned with an imaginary plane (X and Y axis) consisting of three lines connecting both ears and the mouth.
- c) For the cheek position the handset was gradually moved towards the cheek until any point of the mouth-piece or keypad touched the cheek.
- d) For the tilted position the EUT was positioned as for the cheek position, and then the horizontal angle was increased by fifteen degrees (the phone keypad was moved away from the cheek by fifteen degrees).
- e) SAR measurements were evaluated at maximum power and the unit was operated for an appropriate period prior to the evaluation in order to minimise the drift.
- f) The device was keyed to operate continuously in the transmit mode for the duration of the test.
- g) The location of the maximum spatial SAR distribution (hot spot) was determined relative to the handset and its antenna.
- h) The EUT was tested with a fully charged battery.

Test Of: Pro Tech Monitoring Inc.
Smart Active Tracker
To: OET Bulletin 65 Supplement C: (2001-01)

11. Evaluation Procedures

The Specific Absorption Rate (SAR) evaluation was performed in the following manner:

- a) (i) The evaluation was performed in an applicable area of the phantom depending on the type of device being tested. For devices worn about the ear during normal operation, both the left and right ear positions were evaluated at the centre frequency of the band at maximum power. The side, which produced the greatest SAR, determined which side of the phantom would be used for the entire evaluation. The positioning of the head worn device relative to the phantom was dictated by FCC OET Bulletin 65 Supplement C.

(ii) For body worn devices or devices which can be operated within 20 cm of the body, the flat section of the phantom was used. The type of device being evaluated dictated the distance of the EUT to the outer surface of the phantom flat section.
- b) The SAR was determined by a pre-defined procedure within the DASY4 software. The exposed region of the phantom was scanned near the inner surface with a grid spacing of 20mm x 20mm or appropriate resolution.
- c) A 7x7x7 matrix was performed around the greatest spatial SAR distribution found during the area scan of the applicable exposed region. SAR values were then calculated using a 3-D spline interpolation algorithm and averaged over spatial volumes of 1 and 10 grams.
- d) If the EUT had any appreciable drift over the course of the evaluation, then the EUT was re-evaluated. Any unusual anomalies over the course of the test also warranted a re-evaluation.

Test Of: **Pro Tech Monitoring Inc.**
Smart Active Tracker
To: **OET Bulletin 65 Supplement C: (2001-01)**

12. System Validation

Prior to the assessment, the system was verified in the flat region of the phantom. 900 MHz and 1900 MHz dipoles were used. A forward power of 250 mW was applied to the dipoles and the system was verified to a tolerance of $\pm 5\%$ for the 900 MHz and 1900 MHz dipole. The applicable verification (normalised to 1 Watt) is as follows:

Dipole Validation Kit	Target SAR 1g (W/kg)	Measured SAR 1g (W/kg)
D900V2 / SN:124	10.50	10.64
D1900V2 / SN: 540	39.10	39.92

Test Of: **Pro Tech Monitoring Inc.**
Smart Active Tracker
To: **OET Bulletin 65 Supplement C: (2001-01)**

13. Simulated Tissues

The body mixture consists of water and glycol. Visual inspection is made to ensure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the tissue.

Ingredient	Frequency
	900 MHz Body
De-Ionised Water	50.75%
Sugar	48.21%
Salt	0.94%
Kathon LXE	0.10%

Ingredient	Frequency
	1900 MHz Body
De-Ionised Water	69.79%
DGMBE	30.00%
Salt	0.20%

Test Of: Pro Tech Monitoring Inc.
Smart Active Tracker
To: OET Bulletin 65 Supplement C: (2001-01)

14. Tissue Parameters

The dielectric parameters of the fluids were verified prior to the SAR evaluation using a 85070C Dielectric Probe Kit and an 8753E network analyser. The dielectric parameters of the fluid are as follows:

Frequency (MHz)	Equivalent Tissue	Dielectric Constant ϵ_r	Conductivity σ (mho/m)
900	Body	53.39	1.00
1900	Body	52.05	1.59

Test Of: Pro Tech Monitoring Inc.
Smart Active Tracker
To: OET Bulletin 65 Supplement C: (2001-01)

15. DASY4 Systems Specifications

Robot System

Positioner:	Stäubli Unimation Corp. Robot Model: RX90L
Repeatability:	0.025 mm
No. of Axis:	6
Serial Number:	F00/SD89A1/A/01
Reach:	1185 mm
Payload:	3.5 kg
Control Unit:	CS7
Programming Language:	V+

Data Acquisition Electronic (DAE) System

Cell Controller

PC:	Dell Precision 340
Operating System:	Windows NT
Data Card:	DASY4 Measurement Server
Serial Number:	1080

Data Converter

Features:	Signal Amplifier, multiplexer, A/D converter and control logic.
Software:	DASY4 Software
Connecting Lines:	Optical downlink for data and status info. Optical uplink for commands and clock.

PC Interface Card

Function:	24 bit (64 MHz) DSP for real time processing Link to DAE3 16 bit A/D converter for surface detection system serial link to robot direct emergency stop output for robot.
------------------	--

E-Field Probe

Model:	ET3DV6
Serial No:	1528
Construction:	Triangular core fibre optic detection system
Frequency:	10 MHz to 3 GHz
Linearity:	±0.2 dB (30 MHz to 3 GHz)
Probe Length (mm):	337
Probe Diameter (mm):	12
Tip Length (mm):	10
Tip Diameter (mm):	6.8
Sensor X Offset (mm):	2.7
Sensor Y Offset (mm):	2.7
Sensor Z Offset (mm):	2.7

Phantom

Phantom:	SAM Phantom
Shell Material:	Fibreglass
Thickness:	2.0 ±0.1 mm

Test Of: Pro Tech Monitoring Inc.
 Smart Active Tracker
To: OET Bulletin 65 Supplement C: (2001-01)

16. Validation Results – 900 MHz Band (Body)

Date: 31 August 2006

16.1. System Validation

Validation of the system test configuration was carried out prior to testing.

Validation Dipole Type and Serial No.	Calibrated Value of SAR in 1g volume (W/kg) at 900 MHz	Measured Value of SAR in 1g volume (W/kg) at 900 MHz	Percentage Difference ($\pm 5\%$)
D900V2 / SN: 124	10.50	10.64	1.33 %

16.2. Liquid Properties

Properties of the tissue simulating liquid were measured prior to testing.

Property	Target Value (900 MHz)	Measured/Calculated Value (900 MHz)	Percentage Difference ($\pm 5\%$)
Relative Permittivity	55.00	53.39	-2.92 %
Conductivity	1.05	1.00	-4.35 %

16.3. Temperature Variation

The temperature of the laboratory and within the tissue simulating liquid for this test shall not exceed the range +15.0 °C to +30.0 °C.

The actual temperature measured at the beginning and end of each test was recorded and the maximum range is shown below:

Measurement	Maximum Temperature (°C)	Minimum Temperature (°C)
Laboratory	23.0	23.0
Tissue Simulating Liquid	23.6	23.6

Test Of: Pro Tech Monitoring Inc.
 Smart Active Tracker
To: OET Bulletin 65 Supplement C: (2001-01)

17. Validation Results – 1900 MHz Band (Body)

Date: 31 August 2006

17.1. System Validation

Validation of the system test configuration was carried out prior to testing.

Validation Dipole Type and Serial No.	Calibrated Value of SAR in 1g volume (W/kg) at 1900 MHz	Measured Value of SAR in 1g volume (W/kg) at 1900 MHz	Percentage Difference ($\pm 5\%$)
D1900V2 /SN: 540	39.10	39.92	2.10 %

17.2. Liquid Properties

Properties of the tissue simulating liquid were measured prior to testing.

Property	Target Value (1900 MHz)	Measured/Calculated Value (1900 MHz)	Percentage Difference ($\pm 5\%$)
Relative Permittivity	53.30	52.05	-2.34 %
Conductivity	1.52	1.59	4.83 %

17.3. Temperature Variation

The temperature of the laboratory and within the tissue simulating liquid for this test shall not exceed the range +15.0 °C to +30.0 °C.

The actual temperature measured at the beginning and end of each test was recorded and the maximum range is shown below:

Measurement	Maximum Temperature (°C)	Minimum Temperature (°C)
Laboratory	23.0	23.0
Tissue Simulating Liquid	23.6	23.6

Test Of: **Pro Tech Monitoring Inc.**
Smart Active Tracker
To: **OET Bulletin 65 Supplement C: (2001-01)**

18. Measurement Uncertainty

No measurement or test can ever be perfect and the imperfections give rise to error of measurement in the results. Consequently, the result of a measurement is only an approximation to the value of the measurand (the specific quantity subject to measurement) and is only complete when accompanied by a statement of the uncertainty of the approximation.

The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards.

The uncertainty of the result may need to be taken into account when interpreting the measurement results.

The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor, such that a confidence level of approximately 95% is maintained. For the purposes of this document “approximately” is interpreted as meaning “effectively” or “for most practical purposes”.

Measurement Type	Range	Confidence Level	Calculated Uncertainty
Specific Absorption Rate	850 MHz	95%	±17.12%
Specific Absorption Rate	1900 MHz	95%	±17.12%

The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty, the published guidance of the appropriate accreditation body is followed.

Measurement uncertainties in SAR measurements are difficult to quantify due to several variables including biological, physiological, and environment. However, the estimated measurement uncertainties in SAR are less than 30%.

According to ANSI/IEEE C95.3, the overall uncertainties are difficult to assess and will vary with the type of meter and usage situation. However, accuracy's of ±1 to 3 dB can be expected in practice, with greater uncertainties in near-field situations and at higher frequencies (shorter wavelengths), or areas where large reflecting objects are present. Under optimum measurement conditions, SAR measurement uncertainties of at least ±2 dB can be expected.

According to CENELEC, typical worst-case uncertainty of field measurements is ±5 dB. For well-defined modulation characteristics the uncertainty can be reduced to ±3 dB.

Test Of: Pro Tech Monitoring Inc.
 Smart Active Tracker
To: OET Bulletin 65 Supplement C: (2001-01)

Measurement Uncertainty (Continued)

Specific Absorption Rate Uncertainty at 850 MHz, GSM Modulation Scheme calculated in accordance with IEEE 1528-200X

Type	Source of uncertainty	+ Value	- Value	Probability Distribution	Divisor	c _i	Standard Uncertainty		u _i or u _{eff}	Note
							+ u (dB μ V)	- u (dB μ V)		
B	Probe calibration	8.900	8.900	normal (k=2)	2.0000	1.0000	4.450	4.450	∞	
B	Axial Isotropy	0.100	0.100	normal (k=2)	2.0000	1.0000	0.050	0.050	∞	
B	Hemispherical Isotropy	0.100	0.100	normal (k=2)	2.0000	1.0000	0.050	0.050	∞	
B	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	∞	
B	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	∞	
B	Linearity	2.330	2.330	Rectangular	1.7321	1.0000	1.345	1.345	∞	
B	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	∞	
B	Readout Electronics	0.650	0.650	normal (k=2)	2.0000	1.0000	0.325	0.325	∞	
B	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	∞	
B	Integration Time	0.005	0.005	Rectangular	1.7321	1.0000	0.003	0.003	∞	
B	RF Ambinet conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	∞	
B	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞	
B	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	∞	
B	Extrapolation and integration/ Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	∞	
A	Test Sample Positioning	0.584	0.584	normal (k=1)	1.0000	1.0000	0.584	0.584	10	
A	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10	
B	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞	
B	Drit of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞	
B	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞	
B	Liquid Conductivity (measured value)	2.440	2.440	Rectangular	1.7321	1.0000	1.409	1.409	∞	
B	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞	
B	Liquid Permittivity (measured value)	2.440	2.440	Rectangular	1.7321	1.0000	1.409	1.409	∞	
	Combined standard uncertainty			t-distribution			8.74	8.74	>500	
	Expanded uncertainty			k = 1.96			17.12	17.12	>500	

Test Of: **Pro Tech Monitoring Inc.**
Smart Active Tracker
To: **OET Bulletin 65 Supplement C: (2001-01)**

Measurement Uncertainty (Continued)

Specific Absorption Rate Uncertainty at 1900 MHz, PCS Modulation Scheme calculated in accordance with IEEE 1528-200X

Type	Source of uncertainty	+ Value	- Value	Probability Distribution	Divisor	c _i	Standard Uncertainty		v _i or v _{eff}	Note
							+ u (dB μ V)	- u (dB μ V)		
B	Probe calibration	8.900	8.900	normal (k=2)	2.0000	1.0000	4.450	4.450	∞	
B	Axial Isotropy	0.100	0.100	normal (k=2)	2.0000	1.0000	0.050	0.050	∞	
B	Hemispherical Isotropy	0.100	0.100	normal (k=2)	2.0000	1.0000	0.050	0.050	∞	
B	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	∞	
B	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	∞	
B	Linearity	2.330	2.330	Rectangular	1.7321	1.0000	1.345	1.345	∞	
B	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	∞	
B	Readout Electronics	0.650	0.650	normal (k=2)	2.0000	1.0000	0.325	0.325	∞	
B	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	∞	
B	Integration Time	0.005	0.005	Rectangular	1.7321	1.0000	0.003	0.003	∞	
B	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	∞	
B	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞	
B	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	∞	
B	Extrapolation and integration/ Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	∞	
A	Test Sample Positioning	0.584	0.584	normal (k=1)	1.0000	1.0000	0.584	0.584	10	
A	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10	
B	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞	
B	Dirt of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞	
B	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞	
B	Liquid Conductivity (measured value)	2.440	2.440	Rectangular	1.7321	1.0000	1.409	1.409	∞	
B	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞	
B	Liquid Permittivity (measured value)	2.440	2.440	Rectangular	1.7321	1.0000	1.409	1.409	∞	
	Combined standard uncertainty			t-distribution			8.74	8.74	>500	
	Expanded uncertainty			k = 1.96			17.12	17.12	>500	

Test Of: **Pro Tech Monitoring Inc.**
Smart Active Tracker
To: **OET Bulletin 65 Supplement C: (2001-01)**

Appendix 1. Test Equipment Used

RFI No.	Instrument	Manufacturer	Type No.	Serial No.
A034	Narda 20W Termination	Narda	374BNM	8706
A1094	Sony MVC FD-81	Sony	MVC - FD81	125805
A1097	SMA Directional Coupler	MiDISCO	MDC6223-30	None
A1137	3dB Attenuator	Narda	779	04690
A1174	Dielectric Probe Kit	Agilent Technologies	85070C	Us99360072
A1184	Data Acquisition Electronics	Schmid & Partner	DAE3	394
A1185	E-Field Probe	Schmid & Partners	ET3 DV6	1528
A1237	1900MHz Validation dipole	Schmid & Partners	D1900V2	540
A1235	900MHz Validation dipole	Schmid & Partner	D900V2	124
A1238	SAM Phantom	Schmid & Partners	001	001
A1410	Omni Spectra	Omni Spectra	FSC 16179	20510-3
A1497	Amplifier	Mini-Circuits	zhl-42w (sma)	e020105
A1531	Hyper LOG 7025	AARONIA AG	7025	02458
A1566	SAM Phantom	SPEAG	002	002
A215	20 dB Attenuator	Narda	766-20	9402
C1092	RS	RS	293-334	1087200-3 3402
C1144	Cable	MICRO-COAX	FA147AF001503030	41842-1
C1145	Cable	MICRO-COAX	FA147AF003003030	41843-1
C1146	Cable	MICRO-COAX	FA147AF030003030	41752-1
G051	Signal Generator	Gigatronics	7100/01-20	749472
G0528	Robot Power Supply	Schmid & Partner	DASY	None
G087	PSU	Thurlby Thandar	CPX200	100701
M010	NRV Power Meter	Rohde & Schwarz	NRV	882 317/065

Test Of: **Pro Tech Monitoring Inc.**
Smart Active Tracker
To: **OET Bulletin 65 Supplement C: (2001-01)**

Test Equipment Used (Continued)

RFI No.	Instrument	Manufacturer	Type No.	Serial No.
M1015	Network Analyser	Agilent Technologies	8753ES	US39172406
M1047	Robot Arm	Staubli	RX908 L	F00/SD89A1/A/01
M1069	Diode Power Sensor	Rohde & Schwarz	NRV-Z2	838824/010
M1129	Rohde & Schwarz	Rohde & Schwarz	URY-Z2	890242/16
M1150	Testo	Testo	175-T2	37503417 / 301
M136	Temperature/Humidity/Pressure Meter	RS Components	None	None
M509	Thermometer	Testo	110	40378800433
S256	Test Site 56	RFI	N/A	N/A

NB In accordance with UKAS requirements, all the measurement equipment is on a calibration schedule.