

FCC/IC Test Report

FCC Part 95 and Industry Canada RSS-210

FOR: Spectrum Management LLC

Model Name: TracPac-GT GSM

Cellular Asset Recovery Device

FCC ID: NBI-MTAG216G IC ID: 8207A-MTAG216G

47 CFR Part 95G for Low Power Radio Service (LPRS)

TEST REPORT #: EMC_SPECT_006_09001_FCC95G_rev1 DATE: 2009-12-04

(BQTF)

FCC listed
A2LA Accredited

IC recognized # 3462B

CETECOM Inc.

411 Dixon Landing Road • Milpitas, CA 95035 • U.S.A.

Phone: +1 (408) 586 6200 • Fax: +1 (408) 586 6299 • E-mail: info@cetecomusa.com • http://www.cetecom.com CETECOM Inc. is a Delaware Corporation with Corporation number: 2113686

Board of Directors: Dr. Harald Ansorge, Dr. Klaus Matkey, Hans Peter May

Test Report #:

EMC_SPECT_006_09001_FCC95G_rev1

Date of Report : 2009-12-04

Page 2 of 38

TABLE OF CONTENTS

1	Asse	essment	3
2	Adn	ninistrative Data	4
	2.1	Identification of the Testing Laboratory Issuing the EMC Test Report	4
	2.2	Identification of the Client	4
	2.3	Identification of the Manufacturer	4
3	Equ	ipment under Test (EUT)	5
	3.1	Specification of the Equipment under Test	5
	3.2	Identification of the Equipment Under Test (EUT)	6
4	Sub	ject Of Investigation	7
5	Mea	isurements	8
	5.1	Radiated Measurement Procedure	8
	5.2	Conducted Measurement Procedure	9
	5.3 5.3.1 5.3.2		10
	5.4 5.4.1	Occupied Bandwidth and Unwanted Radiation Test Result:	
	5.5 5.5.1	Spurious Emissions Conducted Conducted Measurement Procedure	20 21
	5.6	Transmitter Spurious Emissions Radiated	26
	5.7	Receiver Spurious Emissions- Radiated	31
	5.8	Frequency Stability	34
6	Test	t Equipment and Ancillaries used for tests	35
7	BLC	OCK DIAGRAMS	36
8	Revi	ision History	38

Test Report #:

EMC_SPECT_006_09001_FCC95G_rev1

Date of Report: 2009-12-04

Page 3 of 38

1 Assessment

The following is in compliance with the applicable criteria specified in FCC rules Parts 95G of Title 47 of the Code of Federal Regulations and Industry Canada Standards RSS 210 Issue 7 June 2007.

Company	Description	Model #
Spectrum Management LLC	Cellular Asset Recovery Device	TracPac-GT GSM

Responsible for Testing Laboratory:

responsible for	Lesting Labore	wory.	
		Marc Douat	
2009-12-04	Compliance	(Test Lab Manager)	
Date	Section	Name	Signature

Responsible for the Report:

2009-12-04	Compliance	Satya Radhakrishna (EMC Project Engineer)	
Date	Section	Name	Signature

The test results of this test report relate exclusively to the test item specified in Section3. CETECOM Inc. USA does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of the CETECOM Inc USA.

Date of Report: 2009-12-04 Page 4 of 38

2 Administrative Data

Test Report #:

2.1 Identification of the Testing Laboratory Issuing the EMC Test Report

Company Name:	CETECOM Inc.
Department:	EMC
Address:	411 Dixon Landing Road Milpitas, CA 95035 U.S.A.
Telephone:	+1 (408) 586 6200
Fax:	+1 (408) 586 6299
Responsible Test Lab Manager:	Heiko Strehlow
Responsible Project Leader:	Satya Radhakrishna

2.2 Identification of the Client

Applicant's Name:	Spectrum Management LLC
Address Line 1:	2545 Tarpley Road
City/ Zip Code	Carrollton, TX/ 75006
Country:	USA
Contact Person:	Jim VanCleave
Phone No.:	469-574-2011
Fax:	469-574-2001
e-mail:	jvancleave@sm-ets.com

2.3 Identification of the Manufacturer

Applicant (Firm Name):	Spectrum Design Solutions Inc
Contact Person:	Chad Chryst
Telephone:	612-435-5531
Fax:	612-435-0736
Address Line 1:	110 North 5th Street
Address Line 2:	Floor 3
City:	Minneapolis
State:	MN
Postal Code:	55403
Country:	United States
e-mail:	chad.chryst@spectrumdsi.com

Test Report #: 2009-12-04 Page 5 of 38 Date of Report:

3 **Equipment under Test (EUT)**

Specification of the Equipment under Test 3.1

Marketing Name:	TracPac-GT
Model No:	TracPac-GT GSM
Product Type:	Cellular Asset Recovery Device
Hardware Revision :	Module: 2.0.1 Unit:1.0
Software Revision:	Module: R71A0GG Unit:1.0
FCC-ID:	NBI-MTAG216G
IC-ID:	8207A-MTAG216G
Frequency:	216.0125MHz to 216.9875MHz (LPRS band channels 1 through 40 (25 KHz spacing))
Type(s) of Modulation:	ASK, 50%
Output Power	10.42 dBm(conducted); -6.124 dBm(ERP)
Number of channels:	40
Antenna Type/Gain:	Dipole/ -14.4 dBi Gain
Equipment Classification:	□Fixed □Vehicular □Portable ■Mobile
Power Supply:	3.7V Li Ion Battery
Temperature Range:	Tested from -30 to 50°C

Date of Report: 2009-12-04 Page 6 of 38

3.2 Identification of the Equipment Under Test (EUT)

EUT#	ТҮРЕ	MANF.	MODEL
1	Cellular Asset Recovery	Spectrum Design	TracPac-GT
	Device	Solutions Inc.	GSM

Date of Report: 2009-12-04 Page 7 of 38

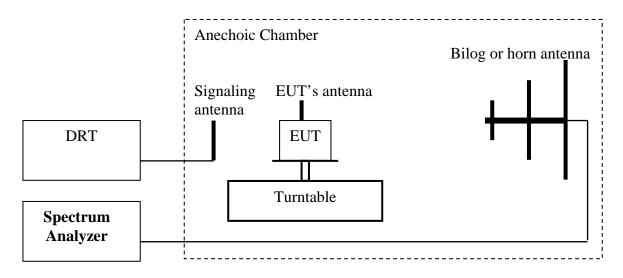
4 Subject Of Investigation

The objective of the measurements done by Cetecom Inc. was to measure the performance of the EUT as specified by requirements listed in FCC rules Part 95G for Low Power Radio Service (LPRS) of Title 47 of the Code of Federal Regulations and Industry Canada rules RSS-210 Issue 7.

This test report is to support a request for new equipment authorization under the FCC ID: NBI-MTAG216G and IC ID: 8207A-MTAG216G.

All testing was performed on the product referred to in Section 3 as EUT. This test report contains full radiated and conducted testing results as per FCC95G and tests according to RSS-210.

Date of Report: 2009-12-04 Page 8 of 38



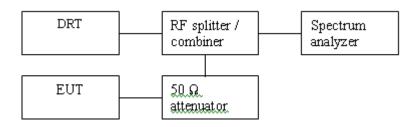
5 Measurements

Test Report #:

5.1 Radiated Measurement Procedure

Ref: TIA-603C 2004 -2.2.17.2 Effective Radiated Power (ERP) or Effective Isotropic Radiated Power (EIRP)

- 1. Connect the equipment as shown in the above diagram with the EUT's antenna in a vertical orientation.
- 2. Adjust the settings of the Digital RadioCommunication Tester (DRT) to set the EUT to its maximum power at the required channel.
- 3. Set the spectrum analyzer to the channel frequency. Set the analyzer to measure peak hold with the required settings.
- 4. Rotate the EUT 360°. Record the peak level in dBm (LVL).
- 5. Replace the EUT with a vertically polarized half wave dipole or known gain antenna. The center of the antenna should be at the same location as the center of the EUT's antenna.
- 6. Connect the antenna to a signal generator with known output power and record the path loss in dB (**LOSS**). **LOSS** = Generator Output Power (dBm) Analyzer reading (dBm).
- 7. Determine the ERP using the following equation:
 - ERP (dBm) = LVL (dBm) + LOSS (dB)
- 8. Determine the EIRP using the following equation: EIRP (dBm) = ERP (dBm) + 2.14 (dB)
- 9. Measurements are to be performed with the EUT set to the low, middle and high channels.


Spectrum analyzer settings: RBW=VBW=3MHz

Date of Report: 2009-12-04 Page 9 of 38

5.2 Conducted Measurement Procedure

Test Report #:

- 1. Connect the equipment as shown in the above diagram.
- 2. Adjust the settings of the Digital RadioCommunication Tester (DRT) to set the EUT to its maximum power at the required channel.
- 3. Measurements are to be performed with the EUT set to the low, middle and high channels.

Date of Report: 2009-12-04 Page 10 of 38

5.3 Maximum transmitter power

FCC CFR 4795.639(e) – The maximum transmitter output power authorized for LPRS stations is 100 mW. Note: Conducted measurements were performed. The ERP is calculated from the conducted value and antenna gain.

§ Industry Canada RSS 210

Test Report #:

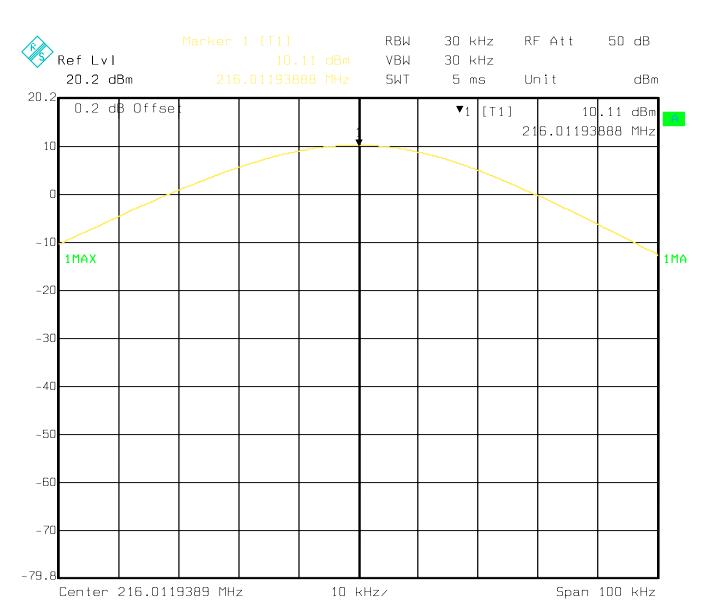
Annex 4 - Medical Telemetry, Wireless Microphones, Auditory Assistance, Goods Tracking and Law Enforcement: A4.3 216-217 MHz (Auditory Assistance, Medical Telemetry, Goods Tracking and Law Enforcement)

This band is channelized and available for one-way voice and two-way data transmission, for the usages mentioned in the sub-title. The peak output power will not exceed 100 mW or 160 mW e.i.r.p.

5.3.1 Test Conditions:

T_{nom}: 23°C; V_{nom}: 3.7 V

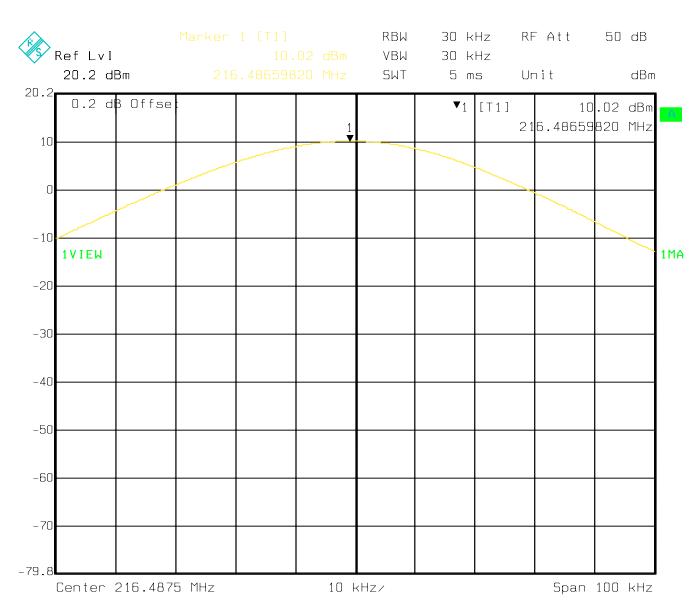
5.3.2 Test Result:


Maximum Transmitter Power- Conducted Limit: 20 dBm

Frequency (MHz)	Maximum Transmitter Power- Conducted (dBm)
216.0125	10.11
216.4875	10.02
216.9875	10.42

Date of Report: 2009-12-04 Page 11 of 38

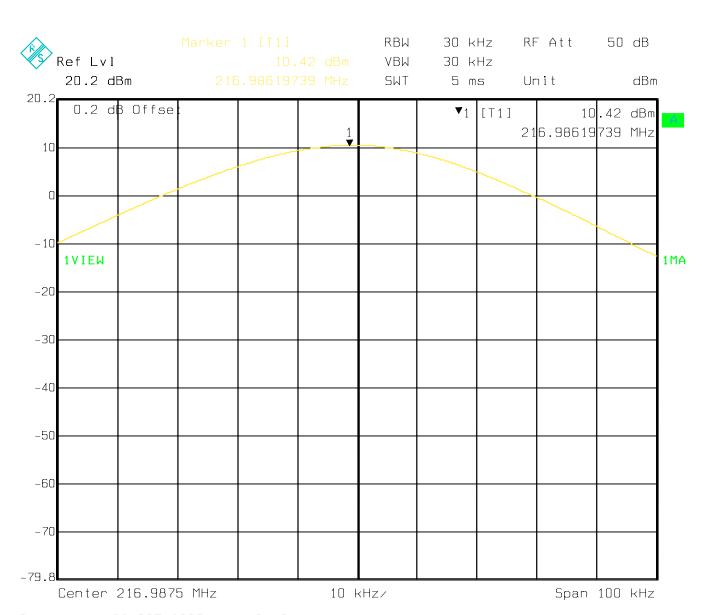
PLOT 5.3 A Channel 1: 216.0125 MHz Conducted Output Power


Date: 22.0CT.2009 11:16:23

Date of Report : 2009-12-04 Page 12 of 38

PLOT 5.3B

Channel 20: 216.4875 MHz Conducted Output Power


Date: 22.0CT.2009 11:20:40

Date of Report: 2009-12-04 Page 13 of 38

Test Report #:

PLOT 5.3C Channel 40: 216.9875 MHz Conducted Output Power

Date: 22.0CT.2009 11:19:16

Date of Report : 2009-12-04 Page 14 of 38

Effective radiated power

*Antenna Gain=-14.4 dBi

ERP= conducted power+ Gain – 2.14 E.I.R.P limit: 22.04 dBm

Frequency (MHz)	EIRP (dBm)	ERP (dBm)
216.0125	-4.294	-6.434
216.4875	-4.384	-6.524
216.9875	-3.984	-6.124

^{*}Note: The TracPac GT-GSM is a tracking device placed in a stack of currency notes. Antenna efficiency compromise was made in order to physically fit the VHF antenna within the confines of the currency package.

EMC SPECT 006 09001 FCC95G rev1

Date of Report: 2009-12-04 Page 15 of 38

5.4 Occupied Bandwidth and Unwanted Radiation

FCC CFR 47 § 95.633 Emission bandwidth

(d) (2) The channel bandwidth for standard band frequencies is 25 kHz.

FCC CFR 47 § 95.635 Unwanted radiation

- (c) For transmitters designed to operate in the LPRS, emissions shall be attenuated in accordance with the following:
- (1) Emissions for LPRS transmitters operating on standard band channels (25 kHz) shall be attenuated below the unmodulated carrier in accordance with the following:
- (i) Emissions 12.5 kHz to 22.5 kHz away from the channel center frequency: at least 30 dB; and
- (ii) Emissions more than 22.5 kHz away from the channel center frequency: at least 43 + 10log(carrier power in watts) dB.

§ Industry Canada

Test Report #:

RSS 210

Annex 4 - Medical Telemetry, Wireless Microphones, Auditory Assistance, Goods Tracking and Law Enforcement: A4.3 216-217 MHz (Auditory Assistance, Medical Telemetry, Goods Tracking and Law Enforcement)

This band is channelized and available for one-way voice and two-way data transmission, for the usages mentioned in the sub-title. The peak output power will not exceed 100 mW or 160 mW e.i.r.p.

Law enforcement agencies have exclusive use of the sub-band 216.45-216.50 MHz. Auditory assistance, medical telemetry, goods tracking and law enforcement agencies have shared use of the rest of the band 216-217 MHz (i.e. 216-216.45 and 216.50-217 MHz). The channel plan is given in the following table.

All transmissions are subject to a no-interference, no-protection basis, especially with respect to TV channel 13 (of 210-216 MHz). It is therefore advisable to avoid the band 216-216.3 MHz where channel 13's sound carrier image frequency is located. Furthermore, the output power should be as low as possible for successful communication.

Date of Report: 2009-12-04 Page 16 of 38

Section 2.2 concerning restricted frequency bands do not apply to the above devices (medical telemetry) in health care institutions. However, Industry Canada may, if found necessary, impose more attenuation than masks A to D for some restricted bands.

The requirements for the band 216-217 MHz are summarized in the table below.

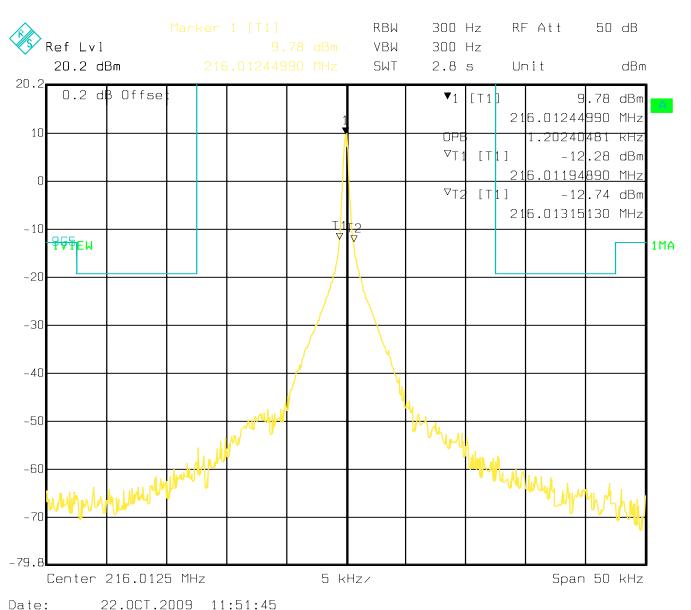
Channel Spacing (kHz)	Centre Frequencies	Frequencies Stability (ppm)	Unwanted Emissions
5	215.9975+0.005n, n = 1 to 200	±1.5	Mask A
12.5	215.99375+0.0125n, n = 1 to 80	±5.0	Mask B
25	215.9875+0.025n, n = 1 to 40	±50	Mask C
50	215.975+0.05n, n = 1 to 20	±50	Mask D

Mask C

Test Report #:

(a) At least 30 dB; for emissions 12.5 kHz to 22.5 kHz removed from the channel centre frequency; and (b) At least $55 + 10 \log_{10}(P)$ dB or to Table 2 limits, whichever is less stringent; for emissions more than 22.5 kHz removed from the channel centre frequency.

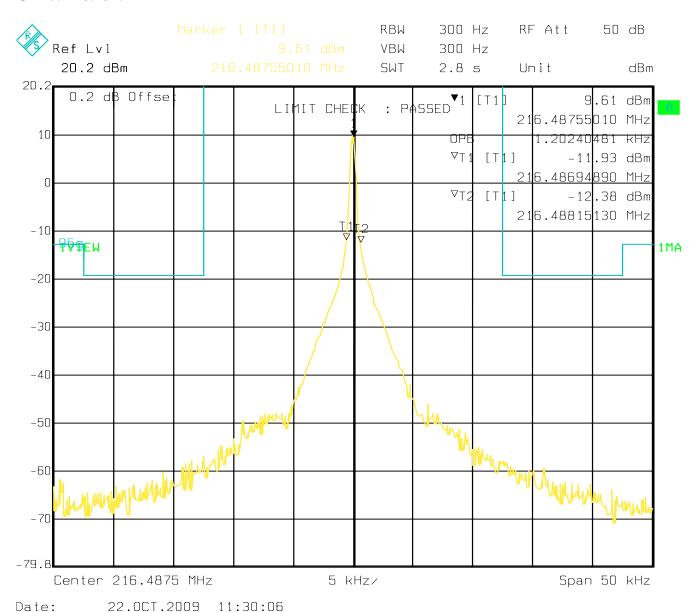
5.4.1 Test Result:


Occupied Bandwidth (kHz)							
	Frequency (MHz)						
216.0125	216.4875	216.9875					
1.2024	1.2024	1.2024					

RBW=VBW=300 Hz

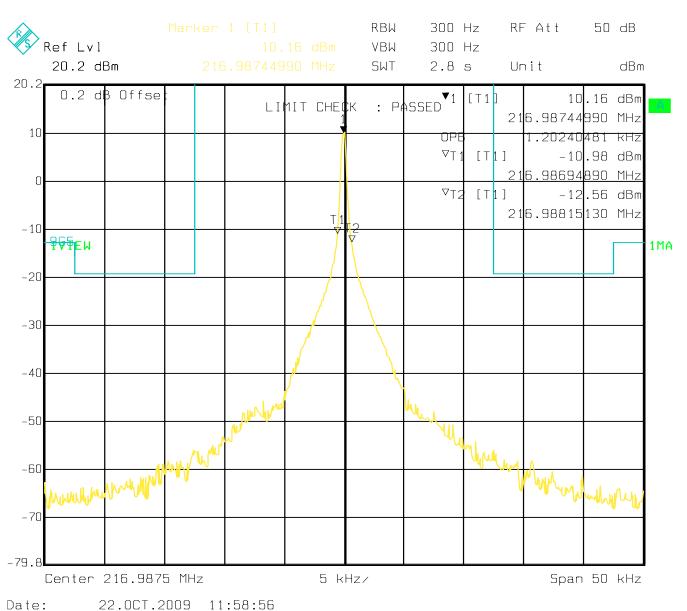
Date of Report : 2009-12-04 Page 17 of 38

<u>PLOT 5.4A</u> CH1: 216.0125 MHz



Date of Report : 2009-12-04 Page 18 of 38

PLOT 5.4B


CH20: 216.4875 MHz

Date of Report : 2009-12-04 Page 19 of 38

PLOT 5.4C CH40: 216.9875 MHz

Date of Report: 2009-12-04 Page 20 of 38

5.5 Spurious Emissions Conducted

Test Report #:

FCC CFR 47: 2.1051 Measurements required: Spurious emissions at antenna terminals.

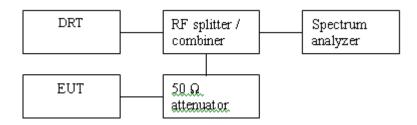
The radio frequency voltage or power generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of each harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in FCC 2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.

FCC CFR 47: 95.635 Unwanted radiation

- (c) For transmitters designed to operate in the LPRS, emissions shall be attenuated in accordance with the following:
- (1) Emissions for LPRS transmitters operating on standard band channels (25 kHz) shall be attenuated below the unmodulated carrier in accordance with the following:
- (i) Emissions 12.5 kHz to 22.5 kHz away from the channel center frequency: at least 30 dB; and
- (ii) Emissions more than 22.5 kHz away from the channel center frequency: at least 43 + 10log(carrier power in watts) dB.
- § Industry Canada RSS 210

Annex 4 -: A4.3 216-217 MHz (Auditory Assistance, Medical Telemetry, Goods Tracking and Law Enforcement)

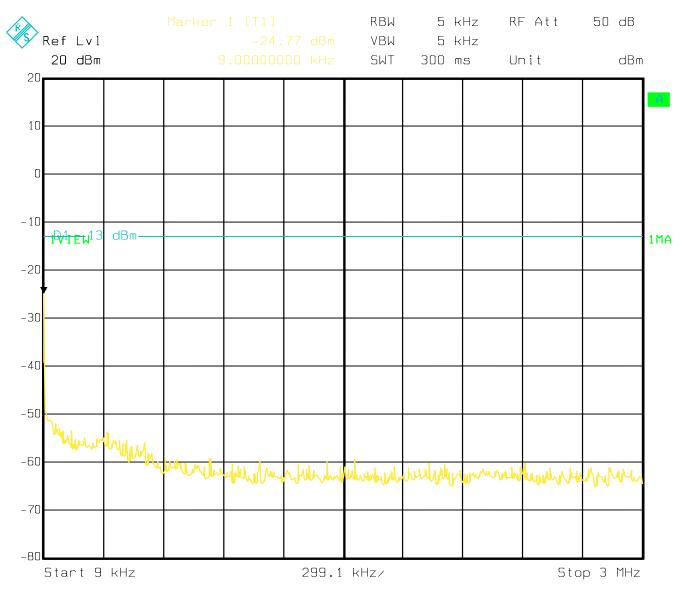
For unwanted emissions, Mask C applies to this device.


Mask C

(a) At least 30 dB; for emissions 12.5 kHz to 22.5 kHz removed from the channel centre frequency; and (b) At least 55 + 10 log₁₀(P) dB or to Table 2 limits, whichever is less stringent; for emissions more than 22.5 kHz removed from the channel centre frequency.

Date of Report: 2009-12-04 Page 21 of 38

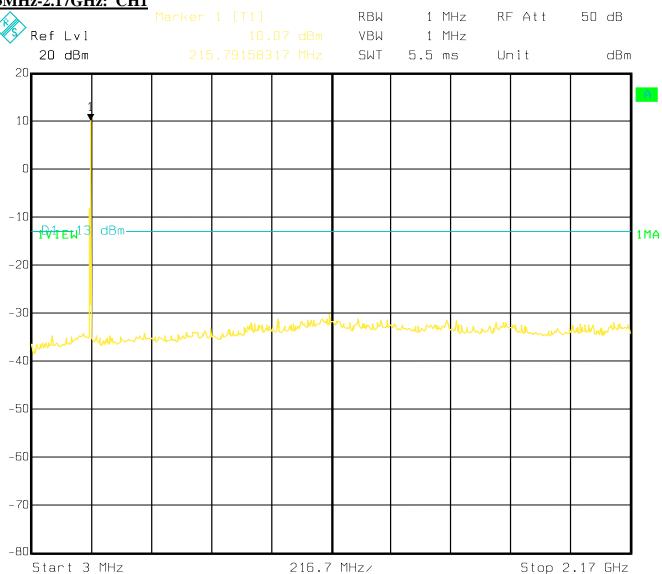
5.5.1 Conducted Measurement Procedure


- 4. Connect the equipment as shown in the above diagram.
- 5. Adjust the settings of the Digital Radio Communication Tester (DRT) to set the EUT to its maximum power at the required channel.
- 6. Measurements are to be performed with the EUT set to the low, middle and high channels.

Date of Report : 2009-12-04 Page 22 of 38

PLOT 5.5A

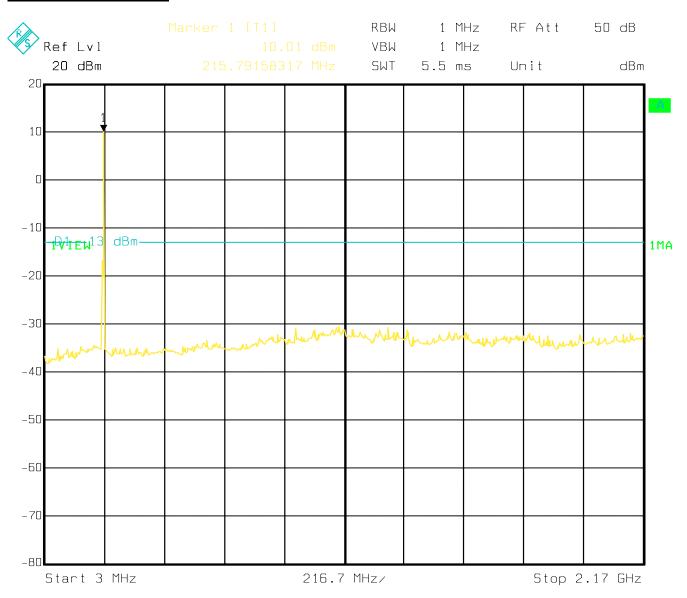
9 kHz-3 MHz


Date: 22.0CT.2009 12:11:44

Date of Report : 2009-12-04 Page 23 of 38

PLOT 5.5B

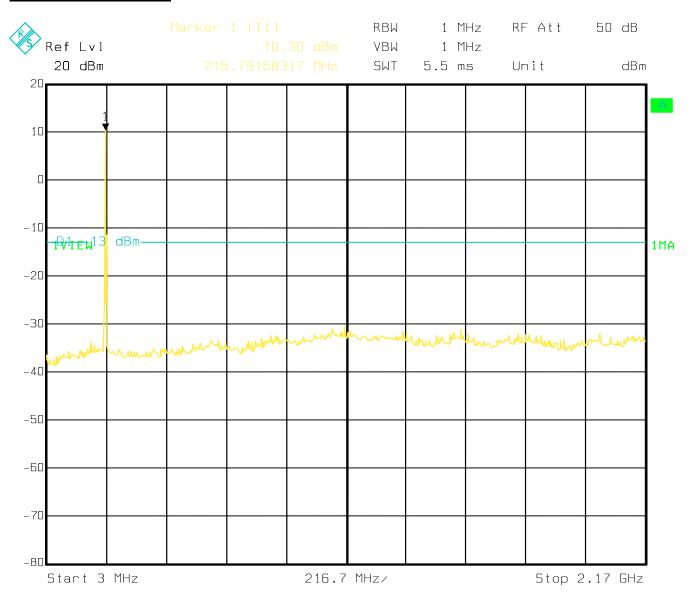
3MHz-2.17GHz: CH1


Date: 22.0CT.2009 12:09:09

Date of Report : 2009-12-04 Page 24 of 38

PLOT 5.5C

3MHz-2.17GHz: CH20


Date: 22.0CT.2009 12:07:53

Date of Report : 2009-12-04 Page 25 of 38

PLOT 5.5D

3MHz-2.17GHz: CH40

Date: 22.0CT.2009 12:06:31

Date of Report: 2009-12-04 Page 26 of 38

5.6 Transmitter Spurious Emissions Radiated

Test Report #:

FCC CFR 47: 2.1053 Measurements required: Field strength of spurious radiation.

(a) Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalent data shall be supplied showing the magnitude of each harmonic and other spurious emission.

FCC CFR 47: 95.635 Unwanted radiation

- (c) For transmitters designed to operate in the LPRS, emissions shall be attenuated in accordance with the following:
- (1) Emissions for LPRS transmitters operating on standard band channels (25 kHz) shall be attenuated below the unmodulated carrier in accordance with the following:
- (i) Emissions 12.5 kHz to 22.5 kHz away from the channel center frequency: at least 30 dB; and
- (ii) Emissions more than 22.5 kHz away from the channel center frequency: at least 43 + 10log (carrier power in watts) dB.

§ Industry Canada RSS 210

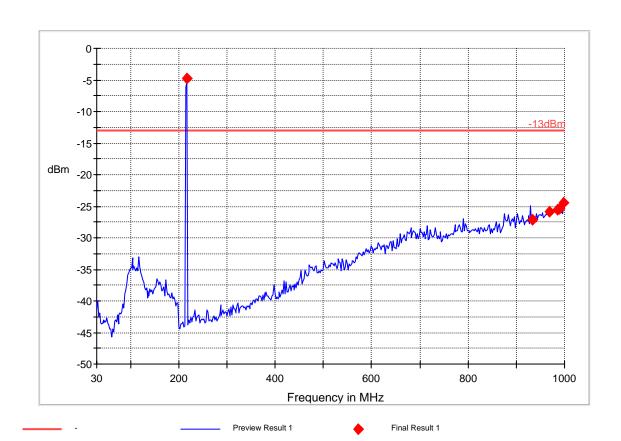
Annex 4 -: A4.3 216-217 MHz (Auditory Assistance, Medical Telemetry, Goods Tracking and Law Enforcement)

For unwanted emissions, Mask C applies to this device.

Mask C

(a) At least 30 dB; for emissions 12.5 kHz to 22.5 kHz removed from the channel centre frequency; and (b) At least 55 + 10 log₁₀(P) dB or to Table 2 limits, whichever is less stringent; for emissions more than 22.5 kHz removed from the channel centre frequency.

Date of Report : 2009-12-04 Page 27 of 38



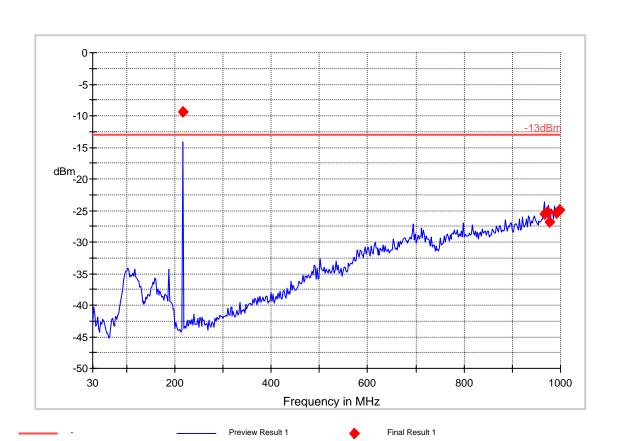
PLOT 5.6A

Note: Device transmitting at CH1, 216.0125 MHz. Marker placed on the transmit signal.

Final Result 1

Frequency (MHz)	MaxPeak (dBm)	Meas. Time (ms)	Bandwidth (kHz)	Antenna height (cm)	Polarity	Turntable position (deg)	Corr. (dB)	Margin (dB)	Limit (dBm)
216.016382	-4.7	20.000	100.000	119.0	Н	202.0	-84.3	-8.3	-13.0
933.887274	-27.2	20.000	100.000	120.0	Н	165.0	-70.0	14.2	-13.0
969.042134	-25.9	20.000	100.000	170.0	Н	1.0	-69.6	12.9	-13.0
985.208655	-25.5	20.000	100.000	120.0	V	160.0	-69.1	12.5	-13.0
989.888106	-25.3	20.000	100.000	153.0	V	87.0	-68.9	12.3	-13.0
996.983968	-24.5	20.000	100.000	120.0	V	112.0	-68.6	11.5	-13.0

Date of Report: 2009-12-04 Page 28 of 38



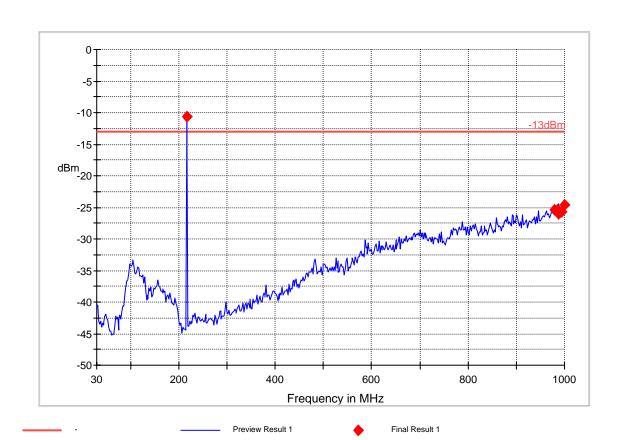
PLOT 5.6 B

Note: Device transmitting at CH20, 216.4875 MHz. Marker placed on the transmit signal.

Final Result 1

Frequency (MHz)	MaxPeak (dBm)	Meas. Time (ms)	Bandwidth (kHz)	Antenna height (cm)	Polarity	Turntable position (deg)	Corr. (dB)	Margin (dB)	Limit (dBm)
216.489517	-9.4	20.000	100.000	120.0	Н	249.0	-84.2	-3.6	-13.0
967.351173	-25.5	20.000	100.000	170.0	Н	195.0	-69.6	12.5	-13.0
972.102262	-25.3	20.000	100.000	120.0	Н	255.0	-69.5	12.3	-13.0
976.621036	-26.8	20.000	100.000	170.0	Н	279.0	-69.5	13.8	-13.0
991.614502	-25.5	20.000	100.000	170.0	V	22.0	-68.8	12.5	-13.0
997.671855	-24.9	20.000	100.000	146.0	V	292.0	-68.6	11.9	-13.0

Date of Report : 2009-12-04 Page 29 of 38

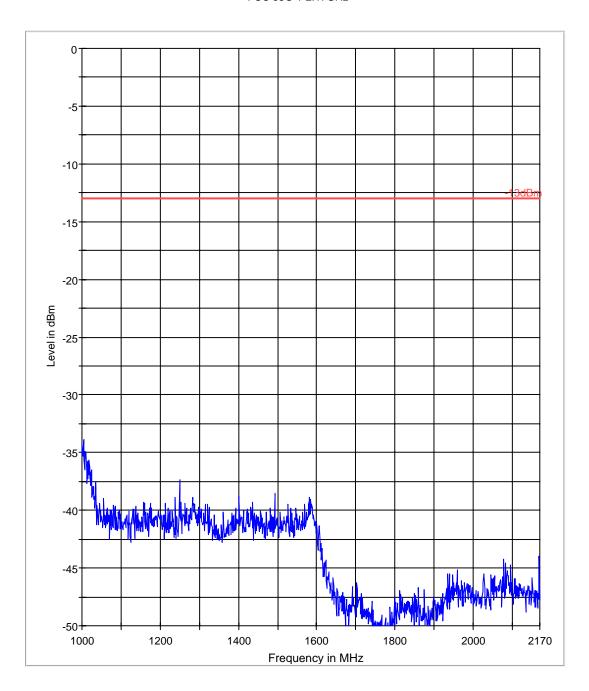


PLOT 5.6 C

Note: Device transmitting at CH40, 216.9875 MHz. Marker placed on the transmit signal.

Final Result 1

Frequency (MHz)	MaxPeak (dBm)	Meas. Time (ms)	Bandwidth (kHz)	Antenna height (cm)	Polarity	Turntable position (deg)	Corr. (dB)	Margin (dB)	Limit (dBm)
216.988695	-10.6	20.000	100.000	144.0	V	0.0	-83.1	-2.4	-13.0
978.255177	-25.5	20.000	100.000	120.0	V	93.0	-69.4	12.5	-13.0
984.717373	-25.3	20.000	100.000	120.0	V	112.0	-69.1	12.3	-13.0
987.633574	-26.0	20.000	100.000	170.0	V	7.0	-69.0	13.0	-13.0
994.081892	-25.7	20.000	100.000	170.0	V	262.0	-68.7	12.7	-13.0
999.408818	-24.6	20.000	100.000	170.0	V	261.0	-68.5	11.6	-13.0


Date of Report : 2009-12-04 Page 30 of 38

PLOT 5.6 D

Note: Device transmitting at CH20, 216.4875 MHz.

FCC 95G 1-2.17GHz

Date of Report: 2009-12-04 Page 31 of 38

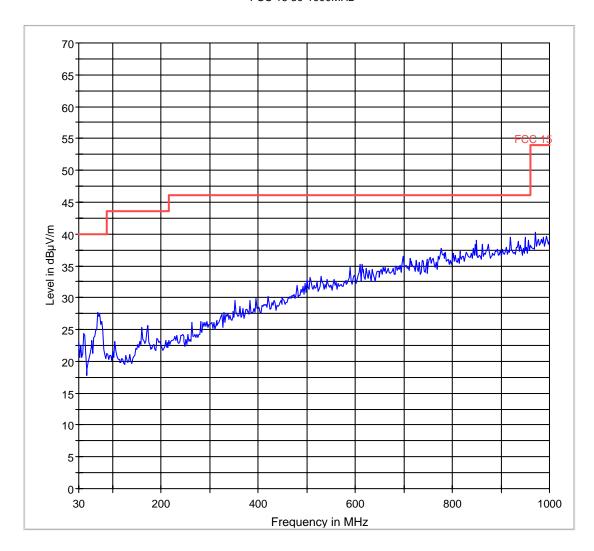
5.7 Receiver Spurious Emissions- Radiated

Table 2: General Field Strength Limits for Transmitters and Receivers at Frequencies Above 30 MHz $^{(Note)}$

Frequency	Field Strength microvolts/m at 3 metres (watts, e.i.r.p.)					
(MHz)	Transmitters	Receivers				
30-88	100 (3 nW)	100 (3 nW)				
88-216	150 (6.8 nW)	150 (6.8 nW)				
216-960	200 (12 nW)	200 (12 nW)				
Above 960	500 (75 nW)	500 (75 nW)				

Note: Transmitting devices are not permitted in Table 1 bands or in TV bands (54-72 MHz, 76-88 MHz, 174-216 MHz, 470-608 MHz, and 614-806 MHz). Prohibition of operation in TV bands does not apply to momentary devices, or to medical telemetry devices in the band 174-216 MHz, and to perimeter protection systems in the bands 54-72 and 76-88 MHz. The perimeter protection devices are to meet Table 3 field strengths limits.

Date of Report : 2009-12-04 Page 32 of 38



PLOT 5.7 A

Note: Plot contains results of both horizontal and vertical antenna polarization.

Resolution Bandwidth: 1MHz Video Bandwidth: 1MHz

FCC 15 30-1000MHz

FCC 15.LimitLine

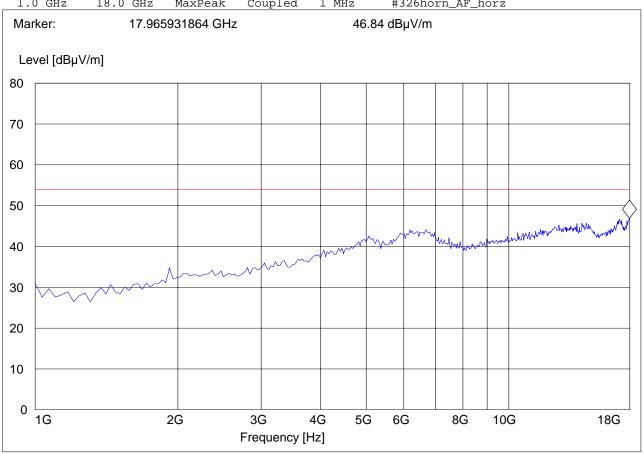
Preview Result 1

Page 33 of 38 2009-12-04 Date of Report:

PLOT 5.7 B

EUT / Description: TracPac GT-GSM Spectrum Design Customer: GSM 1900 idle Operation Mode:

ANT Orientation: : H EUT Orientation:: H Test Engineer: Chris


Voltage: Internal Battery

Comments::

SWEEP TABLE: "CANADA RE_1-18G"

Transducer Start Stop Detector Meas. ΙF Time Bandw. Frequency Frequency

1 MHz 1.0 GHz 18.0 GHz MaxPeak Coupled #326horn_AF_horz

Date of Report: 2009-12-04 Page 34 of 38

5.8 Frequency Stability

FCC CFR 47: 95.629 LPRS transmitter frequencies.

(a) LPRS transmitters may operate on any frequency listed in paragraphs (b), (c), and (d) of this section. Channels 19, 20, 50, and 151–160 are available exclusively for law enforcement tracking purposes. AMTS transmissions are limited to the 216.750–217.000 MHz band for low power point-to-point network control communications by AMTS coast stations. Other AMTS transmissions in the 216–217 MHz band are prohibited.

- (b) Standard band channels.
- (1) The following table indicates standard band frequencies. The channel bandwidth is 25 kHz.
- (2) LPRS transmitters operating on standard band channels must be maintained within a frequency stability of 50 parts per million.

§ Industry Canada RSS 210

Annex 4 -: A4.3 216-217 MHz (Auditory Assistance, Medical Telemetry, Goods Tracking and Law Enforcement)

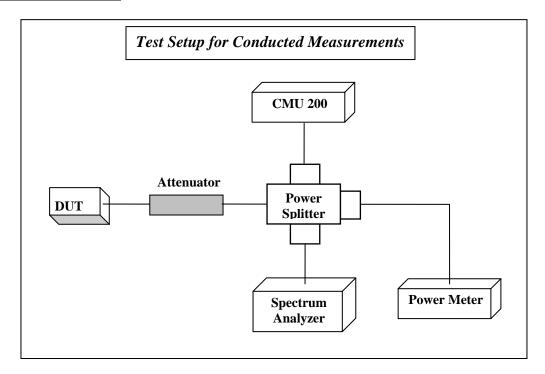
Standard Limit: 50 ppm

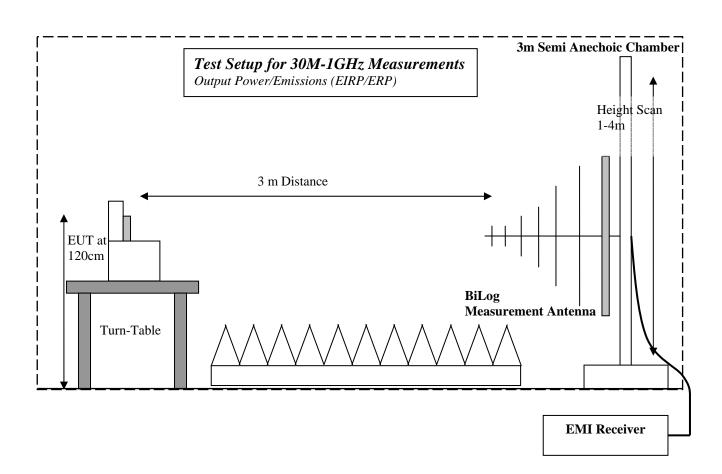
Reference Frequency: 216.4875 MHz

Temp(°C)	Measured Frequency (MHz)	Test Voltage(V)	Frequency Error(Hz)	Limit (+/-Hz)	Drift (ppm)
20	216.4873958	3.145	104.2	10824.375	0.481321092
20	216.48747395	3.7	26.05	10824.375	0.120330273
20	216.4874479	4.255	52.1	10824.375	0.240660546
50	216.4873958	3.7	104.2	10824.375	0.481321092
40	216.4873951	3.7	104.9	10824.375	0.484554536
30	216.4874614	3.7	38.6	10824.375	0.178301288
20	216.4874619	3.7	38.1	10824.375	0.175991685
10	216.4874354	3.7	64.6	10824.375	0.298400601
0	216.4873833	3.7	116.7	10824.375	0.539061147
-10	216.4873312	3.7	168.8	10824.375	0.779721693
-20	216.4873051	3.7	194.9	10824.375	0.900282926
-30	216.4873057	3.7	194.3	10824.375	0.897511404

Date of Report : 2009-12-04 Page 35 of 38

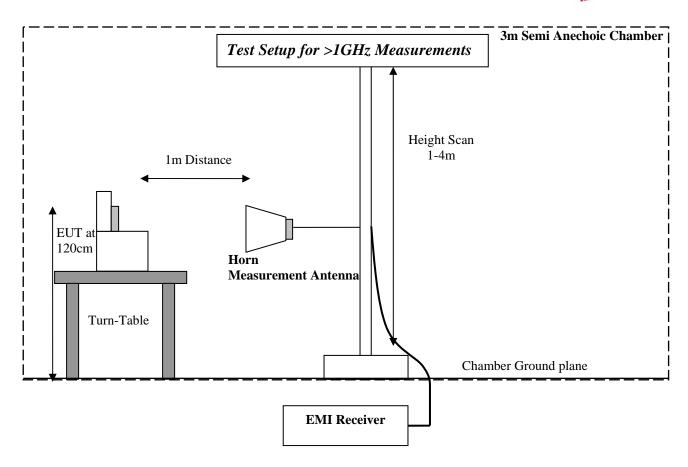
6 Test Equipment and Ancillaries used for tests


Test Report #:


No	Instrument/Ancillary	Type	Manufacturer	Serial No.	Cal Due	Interval
01	Spectrum Analyzer	ESIB 40	Rohde & Schwarz	100107	May 2010	1 year
02	Spectrum Analyzer	FSEM 30	Rohde & Schwarz	100017	May 2010	1 year
03	Signal Generator	SMY02	Rohde & Schwarz	836878/011	May 2010	1 year
04	Power-Meter	NRVD	Rohde & Schwarz	0857.8008.02	May 2010	1 year
05	Biconilog Antenna	3141	EMCO	0005-1186	June 2010	1 year
06	Horn Antenna (1- 18GHz)	SAS- 200/571	AH Systems	325	June 2010	1 year
07	Horn Antenna (18- 26.5GHz)	3160-09	EMCO	1240	June 2010	1 year
08	Power Splitter	11667B	Hewlett Packard	645348	n/a	n/a
09	Climatic Chamber	VT4004	Voltsch	G1115	May 2010	1 year
10	High Pass Filter	5HC2700	Trilithic Inc.	9926013	n/a	n/a
11	High Pass Filter	4HC1600	Trilithic Inc.	9922307	n/a	n/a
12	Pre-Amplifier	JS4- 00102600	Miteq	00616	May 2010	1 year
13	Power Sensor	URV5-Z2	Rohde & Schwarz	DE30807	May 2010	1 year
14	Digital Radio Comm. Tester	CMD-55	Rohde & Schwarz	847958/008	May 2010	1 year
15	Universal Radio Comm. Tester	CMU 200	Rohde & Schwarz	832221/06	May 2010	1 year
16	LISN	ESH3-Z5	Rohde & Schwarz	836679/003	May 2010	1 year
17	Loop Antenna	6512	EMCO	00049838	July 2010	2 years

Date of Report : 2009-12-04 Page 36 of 38

7 BLOCK DIAGRAMS



Test Report #:
Date of Report :

EMC_SPECT_006_09001_FCC95G_rev1

2009-12-04 Page 37 of 38

Date of Report: 2009-12-04 Page 38 of 38

8 Revision History

2009-11-12:

EMC_SPECT_006_09001_FCC95G: Original report

2009-12-04:

EMC_SPECT_006_09001_FCC95G _rev1: (replaces report# EMC_SPECT_006_09001_FCC95G): recalculated ERP and EIRP with measured antenna gain.