

InterLab®

FCC Measurement/Technical Report on

Identification device for automotive passive entry / passive start system

FS1270M

FCC ID: NBGFS1271M
IC: 2694A-FS1271M

Report Reference: MDE_HELLA_1709_FCCa_REV01

Test Laboratory:

7layers GmbH
Borsigstrasse 11
40880 Ratingen
Germany

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7layers GmbH

Borsigstraße 11
40880 Ratingen, Germany
T +49 (0) 2102 749 0
F +49 (0) 2102 749 350

Geschäftsführer/

Managing Directors:
Frank Spiller
Bernhard Retka
Alexandre Norré-Oudard

Registergericht/registered:
Düsseldorf HRB 75554
USt-Id.-Nr./VAT-No. DE203159652
Steuer-Nr./TAX-No. 147/5869/0385

*a Bureau Veritas
Group Company*
www.7layers.com

Table of Contents

1 Applied Standards and Test Summary	3
1.1 Applied Standards	3
1.2 FCC-IC Correlation table	4
1.3 Measurement Summary /Signatures	5
2 Administrative Data	6
2.1 Testing Laboratory	6
2.2 Project Data	6
2.3 Applicant Data	6
2.4 Manufacturer Data	6
3 Test object Data	7
3.1 General EUT Description	7
3.2 EUT Main components	8
3.3 Operating Modes	9
3.4 Product labelling	9
4 Test Results	10
4.1 Duty cycle measurement (based on dwell time measurement)	10
4.2 Spurious radiated emissions	14
4.3 Maximum radiated field strength at fundamental frequency	21
4.4 Occupied bandwidth	23
5 Test Equipment	25
6 Antenna Factors, Cable Loss and Sample Calculations	27
○ ANTENNA R&S HFH2-Z2 (9 KHZ – 30 MHZ)	27
○ ANTENNA R&S HL562 (30 MHZ – 1 GHZ)	28
○ ANTENNA R&S HF907 (1 GHZ – 18 GHZ)	29
7 Photo Report	30
8 Setup Drawings	30

1 APPLIED STANDARDS AND TEST SUMMARY

1.1 APPLIED STANDARDS

Type of Authorization

Certification for an Intentional Radiator (Periodic operation in the band above 70 MHz)

Applicable FCC Rules

Edition of FCC Rules: October 1, 2015

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15. The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

Part 15, Subpart C – Intentional Radiators

§ 15.201 Equipment authorization requirement

§ 15.207 Conducted limits

§ 15.209 Radiated emission limits; general requirements

§ 15.231 Periodic operation in the band 40.66-40.70 MHz, above 70 MHz

Note:

none

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 1.3 Measurement Summary / Signatures.

1.2 FCC-IC CORRELATION TABLE

Correlation of measurement requirements for Momentarily (incl. Periodically) Operated Devices and Remote Control from FCC and IC

Radio equipment

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.207	RSS-Gen Issue 4: 8.8
Transmitter spurious radiated emissions	§ 15.231 (b) / (e)	RSS Gen Issue 4: 6.10/6.13/8.9/8.10; RSS-210 Issue 9: A1.1.2, A1.1.5
Duty cycle measurement (based on dwell time measurement)	§ 15.231 (a)	RSS-210 Issue 9: A1.1.1, A1.1.5
Maximum radiated field strength at fundamental frequency	§ 15.231 (b) / (e)	RSS-210 Issue 9: A1.1.2, A1.1.5; RSS Gen Issue 9: 6.12
Occupied bandwidth	§ 15.231 (c)	RSS-210 Issue 9: A1.1.3
Frequency Stability	§ 15.231 (d)	RSS-210 Issue 9: A1.1.4
Antenna requirement	§ 15.203 / 15.204	RSS-Gen Issue 9: 8.3
Receiver spurious emissions	-	RSS-210 Issue 9: 2.3 RSS Gen Issue 4: 5/7 *)

*) Receivers are exempted from certification besides if operating in stand-alone mode in the frequency range 30–960 MHz or if these are scanner receivers.

1.3 MEASUREMENT SUMMARY /SIGNATURES

FCC Part 15, Subpart C		§ 15.207	
Conducted emissions (AC power line)			
OP-Mode	Setup	Port	2013
		AC Port (power line)	Final Result
			N/A
FCC Part 15, Subpart C		§ 15.231	
Duty cycle measurement (based on dwell time measurement)			
The measurement was performed according to ANSI C63.10		2013	
OP-Mode	Setup	Port	Final Result
op-mode 2	Setup_01	Enclosure	passed
FCC Part 15, Subpart C		§ 15.231	
Spurious Radiated Emissions			
The measurement was performed according to ANSI C63.10		2013	
OP-Mode	Setup	Port	Final Result
op-mode 1	Setup_01	Enclosure	passed
FCC Part 15, Subpart C		§ 15.231	
Maximum radiated field strength at fundamental frequency			
The measurement was performed according to ANSI C63.10		2013	
OP-Mode	Setup	Port	Final Result
op-mode 1	Setup_01	Enclosure	passed
FCC Part 15, Subpart C		§ 15.231	
Occupied Bandwidth			
The measurement was performed according to ANSI C63.10		2013	
OP-Mode	Setup	Port	Final Result
op-mode 1	Setup_01	Enclosure	passed
N/A not applicable (the EUT is powered by internal CR2032 lithium battery)			

Revision History

Report version control			
Version	Release date	Change Description	Version validity
initial	2018-01-31	---	invalid
REV01	2018-09-04	Transmitter frequency range on page 7 corrected	valid

(responsible for accreditation scope)
Dipl.-Ing. Marco Kullik

(responsible for testing and report)
Dipl.-Ing. Dobrin Dobrinov

7 layers GmbH, Borsigstr. 11
40880 Ratingen, Germany

Test report Reference: MDE_HELLA_1709_FCC, REV01

Page 5 of 30

2 ADMINISTRATIVE DATA

2.1 TESTING LABORATORY

Company Name: 7layers GmbH

Address: Borsigstr. 11
40880 Ratingen
Germany

This facility has been fully described in a report submitted to the ISED and accepted under the registration number: Site# 3699A-1.

The test facility is also accredited by the following accreditation organisation:

Laboratory accreditation no: DAkkS D-PL-12140-01-00

FCC Designation Number: DE0015

FCC Test Firm Registration: 929146

Responsible for accreditation scope: Dipl.-Ing. Marco Kullik

Report Template Version: 2017-07-14

2.2 PROJECT DATA

Responsible for testing and report: Dipl.-Ing. Dobrin Dobrinov

Date of Report: 2018-01-31

Testing Period: 2018-01-12 to 2018-01-29

2.3 APPLICANT DATA

Company Name: HELLA GmbH & Co. KGaA

Address: Rixbecker Str. 75
59552 Lippstadt
Germany

Contact Person: Ms. Agnetta Rebello

2.4 MANUFACTURER DATA

Company Name: please see applicant data

Address:

Contact Person:

3 TEST OBJECT DATA

3.1 GENERAL EUT DESCRIPTION

Kind of Device product description	SRD Transmitter, operating in 315 MHz frequency band
Product name	Identification device for automotive passive entry / passive start system
Type	FS1270M
Declared EUT data by the supplier	
Voltage Type	DC lithium battery CR2032 Type
Normal Voltage	3.0 V
Low Voltage	2.25 V
High Voltage	3.2 V
Normal Temperature	23 °C
Low Temperature	-20 °C
High Temperature	+60 °C
Specific product description for the EUT	The EUT is an identification device, part of an automotive passive entry/passive start system. In addition, it has remote active functions as locking/unlocking the vehicles doors and trunk.
The EUT provides the following ports:	Enclosure
Special software used for testing	The applicant provided two kinds of samples. One with a modified software, which operates in continuously modulated carrier mode. The second one is a production sample with not modified software.

The main components of the EUT are listed and described in Chapter 3.2.

3.2 EUT MAIN COMPONENTS

Sample Name	Sample Code	Description
DE1232002 EUT A	ab01	conducted sample
Sample Parameter		Value
Serial No.	N/A	
HW Version	3	
SW Version	9	
Comment	used for conducted measurements, continuous modulated carrier	

Sample Name	Sample Code	Description
DE1232002 EUT B	aa01	radiated sample
Sample Parameter		Value
Serial No.	N/A	
HW Version	3	
SW Version	9	
Comment	used for radiated measurements, continuous modulated carrier	

Sample Name	Sample Code	Description
DE1232002 EUT C	ad01	radiated sample
Sample Parameter		Value
Serial No.	N/A	
HW Version	3	
SW Version	9	
Comment	sample with not modified software, used for a Duty Cycle measurement	

General description of ancillary equipment

Device	Details (Manufacturer, Type Model, OUT Code)	Reason for using
---	---	---

General description of auxiliary equipment

Device	Details (Manufacturer, HW, SW, S/N)	Description
---	---	---

EUT SETUPS

This chapter describes the combination of EUTs and ancillary equipment used for testing.

Setup No.	Combination of EUTs	Description
Setup_01	EUT A	Setup for radiated measurements
Setup_02	EUT B	Setup for conducted measurements
Setup_03	EUT C	Setup for Duty Cycle measurements

3.3 OPERATING MODES

This chapter describes the operating modes of the EUTs used for testing.

Op. Mode	Description of Operating Modes	Remarks
op-mode 1	Continuous modulated	Transmitter sends continuously modulated signal
op-mode 2	Single pulse	Transmitter sends single pulse after pressing some of the buttons

Remark: For continuous modulated mode, a special test software provided by applicant was used.

3.4 PRODUCT LABELLING

3.4.1 FCC ID label

NBGFS1271M

3.4.2 IC Label

2694A-FS1271M

3.4.3 Location of the label on the EUT

Please refer to the documentation of the applicant.

6 TEST RESULTS

6.1 DUTY CYCLE MEASUREMENT (BASED ON DWELL TIME MEASUREMENT)

Standard **FCC Part 15 Subpart C**

The test was performed according to:
ANSI C63.10

6.1.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was setup in a shielded room to perform the dwell time measurements. For analyzer settings please see measurement plots.

6.1.2 TEST REQUIREMENTS / LIMITS

Depending on the function of the EUT different paragraphs of FCC §15.231 apply:

Either

(a)(1): A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

Or

(a)(2) A transmitter activated automatically shall cease transmission within 5 seconds after activation.

And

(a)(3) Periodic transmissions at regular predetermined intervals are not permitted. However, polling or supervision transmissions, including data, to determine system integrity of transmitters used in security or safety applications are allowed if the total duration of transmissions does not exceed more than two seconds per hour for each transmitter. There is no limit on the number of individual transmissions, provided the total transmission time does not exceed two seconds per hour.

Otherwise

(e) Intentional radiators may operate at a periodic rate exceeding that specified in paragraph (a) of this section and may be employed for any type of operation [...]. In addition, [...] the duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.

This test is also performed to determine the pulse train of the transmitter and calculate the correction factor for pulse modulated transmitters according to FCC §15.35. This factor is used as a correction factor for the field strength measurements, both for Spurious radiated emissions and Maximum radiated field strength at fundamental frequency.

6.1.3 TEST PROTOCOL

Temperature: 23 °C
 Air Pressure: 1009 hPa
 Humidity: 38 %

Op. Mode	Setup	Port
op-mode 2	Setup_03	Enclosure

a) Determine the total duration of a transmission within 100 ms:

Duty cycle = $((L1*N1) + (L2*N2) + \dots + (Ln*Nn)) / 100 \text{ ms}$ or T , whichever is less
 Correction factor = $20 * \text{LOG}(\text{Duty cycle})$ [dB]

Step 1	Holdover time	Less than 5s
Step 2	Cycle to determine the on/off ratio within a cycle (period T)	100 ms
Step 3	Sweep of a data word to determine the on time within a data word (L1-LN)	$L1 = 0.30068 \text{ ms}$

Calculation of Duty Cycle / Correction Factor:

If $T > 100 \text{ ms} \Rightarrow T = 100 \text{ ms}$; $L1 = 0.300678 \text{ ms}$; $N1 = 170$;

In 100 ms $T_{on} = 170 * 0.300678 \text{ ms} = 51.115 \text{ ms}$

Duty cycle = $51.115 / 100 = 0.51$

CORRECTION FACTOR = $20 * \text{LOG}(0.51) = -5.83 \text{ dB}$

b) Determine the period of periodic re-transmission, if any, or cease (deactivation) time:

No period of retransmission found

Deactivation after **Tc = 0.569 s, Limit: ≤ 5 s**

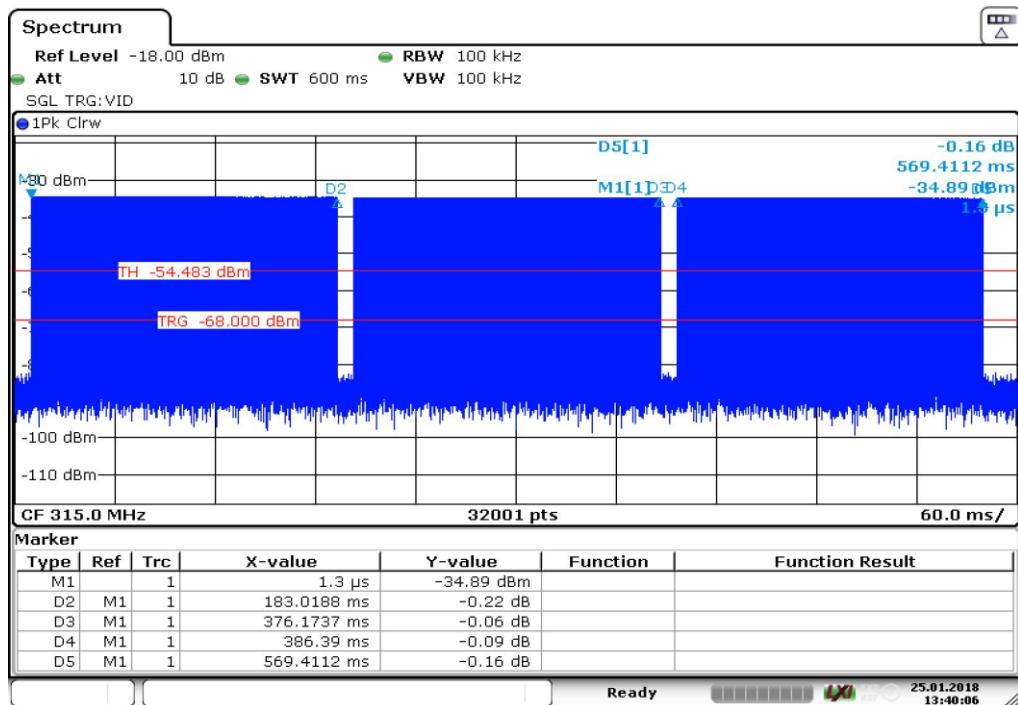
c) Determine the total duration of periodic transmissions within 1 hour, if any:

Duration t_d of all pulses/bursts during T_R ("on-time"):

t_d depends on the number of interrogation messages sent by Remote Controller.
 On each interrogation message, the **$t_d = 0.569 \text{ s}$** .

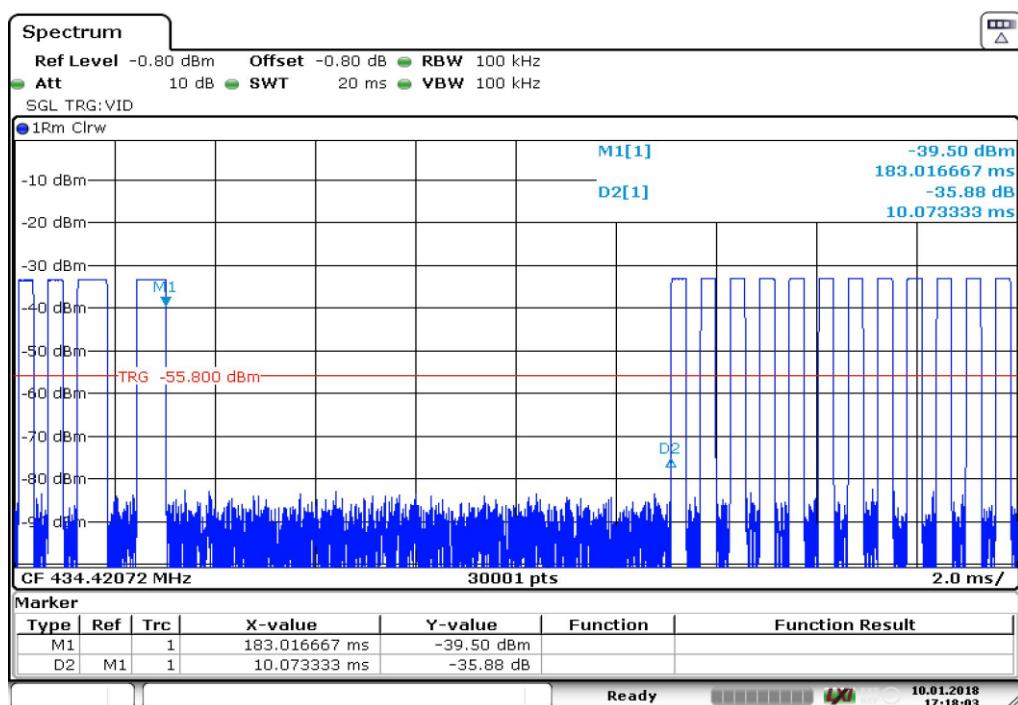
d) If the result of c) exceeds 2 seconds/hour then paragraph (e) applies:

Determine the duration of each transmission (one complete pulse train) and silent time:


Duration t_{PT} , Limit: $\leq 1 \text{ s}$ (Remark: t_{PT} is identical to t_d if $T \leq 100 \text{ ms}$)

Silent time between transmissions $t_s = \text{N/A}$, Limit: $\leq \text{Maximum (10 s and } 30 * t_{PT})$.

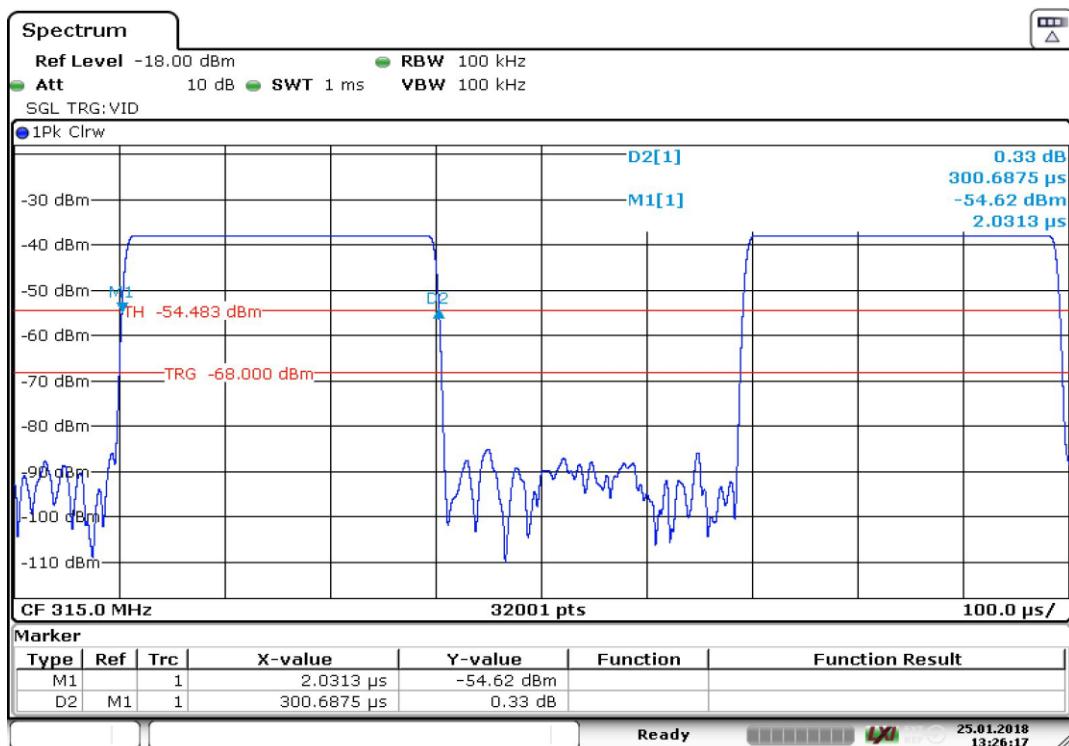
6.1.4 TEST RESULT: DUTY CYCLE / CORRECTION FACTOR


FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 2	passed

4.1.5 MEASUREMENT PLOTS DUTY CYCLE

Date: 25.JAN.2018 13:40:06

The whole transmission after a single button pressing.
Each group of pulses has length of 183 ms


Date: 10.JAN.2018 17:18:04

A gap between the groups of pulses = 10 ms

Date: 25.JAN.2018 13:07:09

All pulses in the first 100 ms of transmission are 170

Date: 25.JAN.2018 13:26:17

Single pulse length is 300.687 μs (0.300687 ms)

6.2 SPURIOUS RADIATED EMISSIONS

Standard **FCC Part 15 Subpart C**

The test was performed according to:

ANSI C63.10-2013

6.2.1 TEST DESCRIPTION

The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table 1.0 x 2.0 m² in the semi-anechoic chamber. The influence of the EUT support table that is used between 30–1000 MHz was evaluated.

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered from a DC power source.

1. Measurement up to 30 MHz

The Loop antenna HFH2-Z2 is used.

Step 1: pre-measurement

- Anechoic chamber
- Antenna distance: 3 m
- Detector: Peak-Maxhold
- Frequency range: 0.009 - 0.15 MHz and 0.15 – 30 MHz
- Frequency steps: 0.05 kHz and 2.25 kHz
- IF-Bandwidth: 0.2 kHz and 9 kHz
- Measuring time / Frequency step: 100 ms (FFT-based)

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

- Open area test side
- Antenna distance: according to the Standard
- Detector: Quasi-Peak
- Frequency range: 0.009 – 30 MHz
- Frequency steps: measurement at frequencies detected in step 1
- IF-Bandwidth: 0.2 - 10 kHz
- Measuring time / Frequency step: 1 s

2. Measurement above 30 MHz and up to 1 GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit.

Settings for step 1:

- Antenna distance: 3 m
- Detector: Peak-Maxhold / Quasipeak (FFT-based)
- Frequency range: 30 – 1000 MHz

- Frequency steps: 30 kHz
- IF-Bandwidth: 120 kHz
- Measuring time / Frequency step: 100 ms
- Turntable angle range: -180° to 90°
- Turntable step size: 90°
- Height variation range: 1 – 3 m
- Height variation step size: 2 m
- Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by $\pm 45^\circ$ around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by ± 100 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak – Maxhold
- Measured frequencies: in step 1 determined frequencies
- IF – Bandwidth: 120 kHz
- Measuring time: 100 ms
- Turntable angle range: $\pm 45^\circ$ around the determined value
- Height variation range: ± 100 cm around the determined value
- Antenna Polarisation: max. value determined in step 1

Step 3: Final measurement with QP detector

With the settings determined in step 3, the final measurement will be performed:

EMI receiver settings for step 4:

- Detector: Quasi-Peak (< 1 GHz)
- Measured frequencies: in step 1 determined frequencies
- IF – Bandwidth: 120 kHz
- Measuring time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

Step 1:

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height of the receiving antenna only.

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 °.

The turn table step size (azimuth angle) for the preliminary measurement is 45 °.

Step 2:

Due to the fact, that in this frequency range the test is performed in a fully anechoic room, the height scan of the receiving antenna instep 2 is omitted. Instead of this, a maximum search with a step size $\pm 45^\circ$ for the elevation axis is performed.

The turn table azimuth will slowly vary by $\pm 22.5^\circ$.

The elevation angle will slowly vary by $\pm 45^\circ$

EMI receiver settings (for all steps):

- Detector: Peak, Average
- IF Bandwidth = 1 MHz

Step 3:

Spectrum analyser settings for step 3:

- Detector: Peak / Average
- Measured frequencies: in step 1 determined frequencies
- IF – Bandwidth: 1 MHz
- Measuring time: 1 s

6.2.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (d)

... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (μ V/m)	Measurement distance (m)	Calculate Limit ($\text{dB}\mu$ V/m @10m)	Limit ($\text{dB}\mu$ V/m @10m)
0.009 – 0.49	2400/F (kHz)	300	(48.5 – 13.8) + 59.1 dB	107.6 – 72.9
0.49 – 1.705	24000/F (kHz)	30	(33.8 – 23.0) + 19.1 dB	52.9 – 42.1
1.705 – 30	30	30	29.5 + 19.1 dB	39.5

Frequency in MHz	Limit (μ V/m)	Measurement distance (m)	Limit ($\text{dB}\mu$ V/m)
30 – 88	100	3	40.0
88 – 216	150	3	43.5
216 – 960	200	3	46.0
above 960	500	3	54.0

§15.35(b)

..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit ($\text{dB}\mu$ V/m) = 20 log (Limit (μ V/m)/1 μ V/m)

§15.35(b) ... , there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit ...

Used conversion factor: Limit ($\text{dB}\mu$ V/m) = 20 log (Limit (μ V/m)/1 μ V/m)

§15.35(c):

[...] when the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds.

As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. The exact method of calculating the average field strength shall be submitted [...].

§15.231(b)(3)

The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator.

Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in §15.209, whichever limit permits a higher field strength.

Interpretation of the test laboratory:

The last subordinate clause of §15.231(b)(3) is overruled by §15.205/209, therefore within the restricted bands the limits defined at §15.205/209 and outside the restricted bands the limits defined at §15.231(b) resp. §15.231(e) are applied.

6.2.3 TEST PROTOCOL

6.2.3.1 MEASUREMENT UP TO 30 MHZ

Temperature: 24 °C
Air Pressure: 1009 hPa
Humidity: 35 %

Op. Mode	Setup	Port
op-mode 1	Setup_01	Enclosure

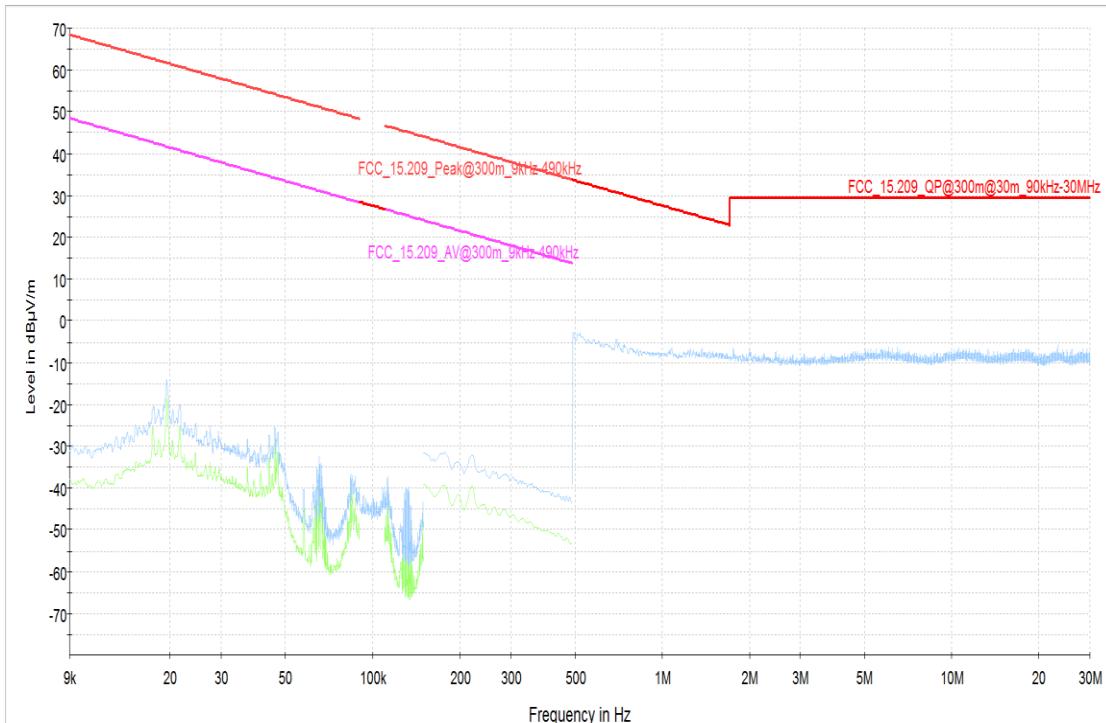
Measuring Antenna Polarisation	Spurious Emission Frequency [MHz]	Corrected value [dB μ V/m]			Limit [dB μ V/m]	Limit [dB μ V/m]	Limit [dB μ V/m]	Margin to limit [dB]	Margin to limit [dB]
		QP	Peak	AV		Peak	AV		
0°	---	---	---	---	---	---	---	---	---
90°	---	---	---	---	---	---	---	---	---

Remark: In step 1 no spurious emissions above the limit were found using a peak detector, therefore step 2 (using a QP-detector) was not performed. For this test the EUT was sending a continuously modulated signal. Please see the measurement plots.

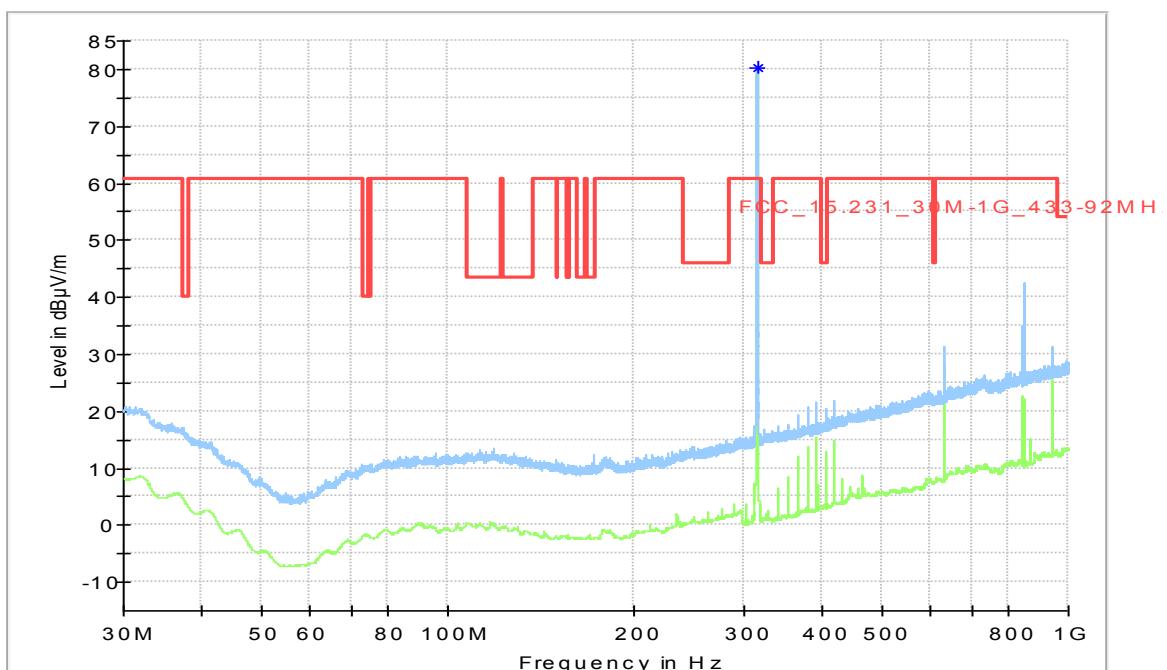
The EUT is tested in horizontal position, as it is normally pointed to the vehicle's door.

6.2.3.2 MEASUREMENT ABOVE 30 MHZ TO 6 GHZ

Temperature: 24 °C
Air Pressure: 1006 hPa
Humidity: 32 %

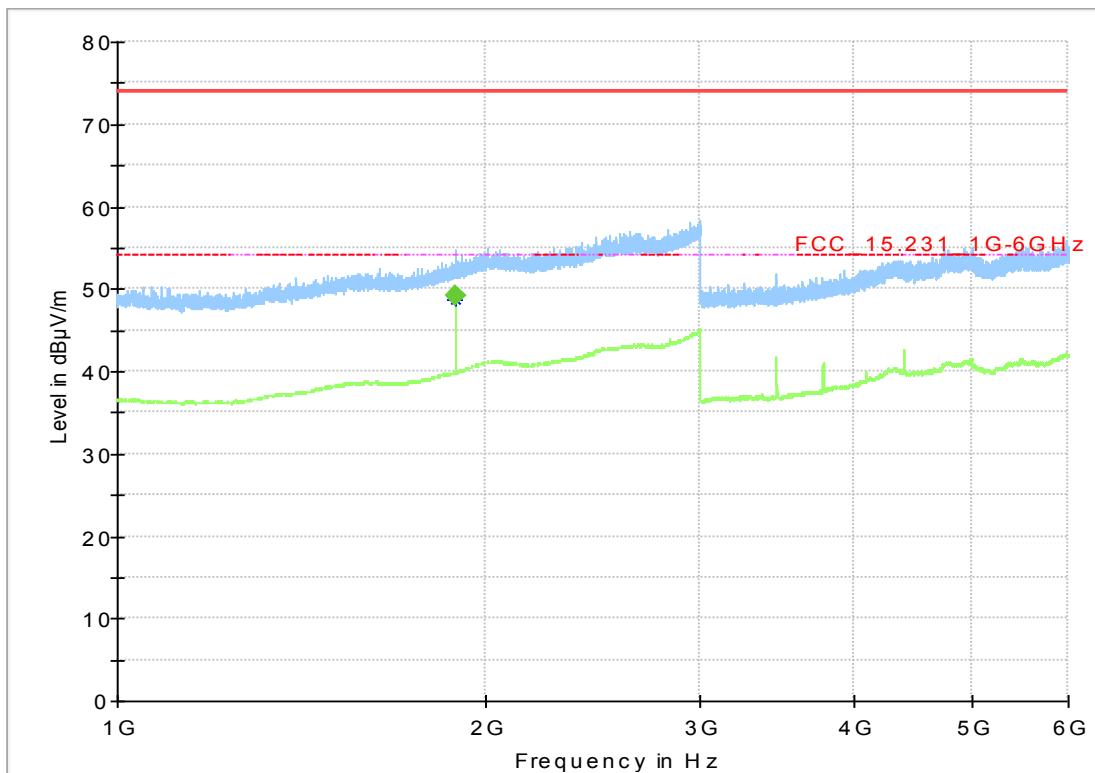

Op. Mode	Setup	Port
op-mode 1	Setup_01	Enclosure

Polarisation of the antenna and the EUT	Spurious Emission Frequency [MHz]	Corrected value [dB μ V/m]			Limit [dB μ V/m]	Limit [dB μ V/m]	Limit [dB μ V/m]	Margin to limit [dB]	Margin to limit [dB]
		QP	Peak	AV		Peak	AV		
horizontal	1890	---	---	43.27	---	---	53.98	---	10.71


Remarks: - No more spurious emissions in the range 15 dB below the limit were found.
The test was performed in the frequency range from 30 MHz to 1 GHz. For this test the EUT was sending a continuously modulated signal.
- The Duty Cycle correction factor calculated in 6.1.3 was used.
- Please see the measurement plot.
- The EUT is tested in horizontal position, as it is normally pointed to the vehicle's door.

6.2.4 MEASUREMENT PLOTS

6.2.4.1 RADIATED EMISSIONS ($f < 30$ MHz)



6.2.4.2 RADIATED EMISSIONS (30 MHz $< f < 1$ GHz)

Note: The peak value is at the modulated carrier exclusion band.

6.2.4.3 RADIATED EMISSIONS (1 GHz < f < 6GHz)

6.3 MAXIMUM RADIATED FIELD STRENGTH AT FUNDAMENTAL FREQUENCY

Standard FCC Part 15, Subpart C

The test was performed according to:

ANSI C63.10-2013

6.3.1 TEST DESCRIPTION

Please refer to sub-clause 6.1.1

6.3.2 TEST LIMITS

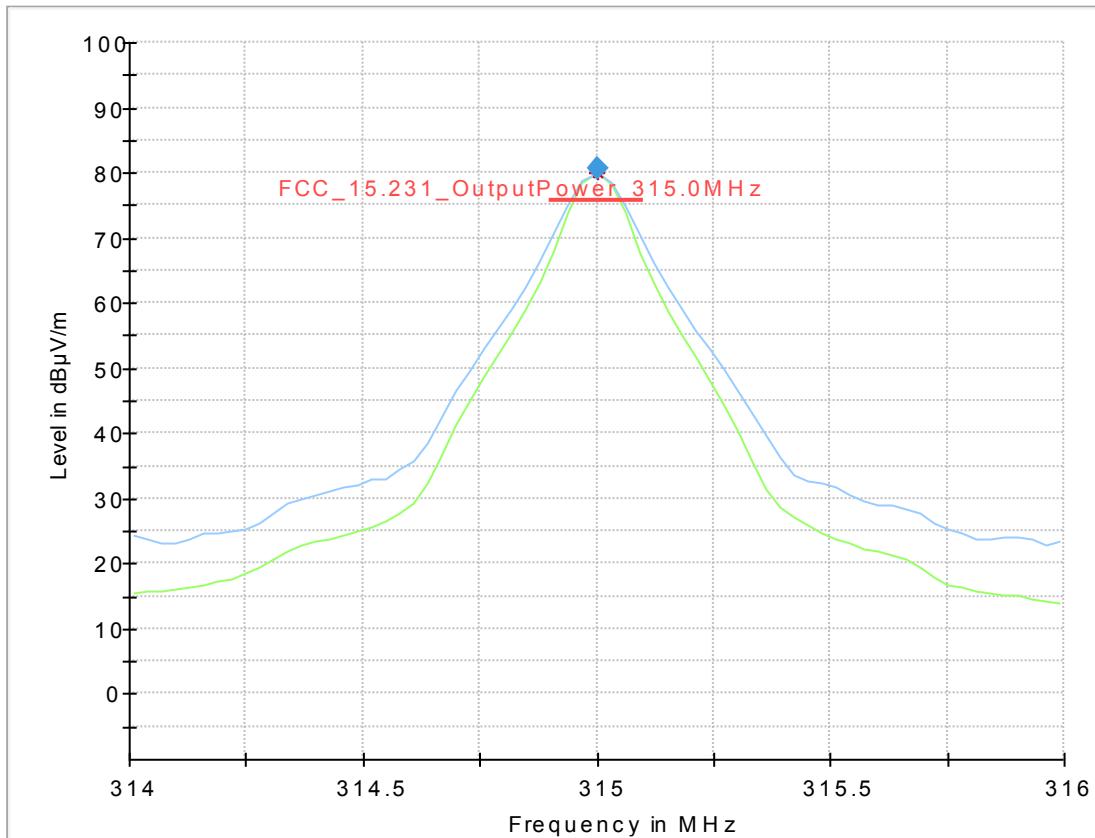
Please refer to sub-clause 6.1.2

6.3.3 TEST PROTOCOL

Temperature: 24 °C
 Air Pressure: 1009 hPa
 Humidity: 38 %

Op. Mode	Setup	Port
op-mode 1	Setup_01	Enclosure

Frequency [MHz]	Output power [dB μ V/m]	Limit [dB μ V/m]	Remarks
315.000	74.49	75.62	Maximum radiated field strength at fundamental frequency


Notes: The value shown in the table above is corrected by using the Duty Cycle Correction Factor, calculated in 6.1.3

6.3.4 TEST RESULT:

MAXIMUM RADIATED FIELD STRENGTH AT FUNDAMENTAL FREQUENCY

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1	passed

6.3.5 MEASUREMENT PLOT MAXIMUM RADIATED FIELD STRENGTH AT FUNDAMENTAL FREQUENCY

Final Result

Frequency (MHz)	QuasiPeak (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)
315.000000	80.62	75.62	-5.00	1000.0	120.000	100.0	H	-116.0

Note: Duty Cycle correction factor, calculated in 6.1.3 is -5.83 dB.
Hence, the maximum radiated field strength at fundamental frequency is 74.79 dB μ V/m

6.4 OCCUPIED BANDWIDTH

Standard **FCC Part 15 Subpart C**

The test was performed according to:

ANSI C63.10-2013

6.4.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was setup in a shielded room to perform the occupied bandwidth measurements.

For analyzer settings please see the measurement plots in annex.

6.4.2 TEST LIMITS

FCC Part 15, Subpart C, §15.231(c)

The maximum 20 dB bandwidth of a transmitter operating at a frequency range:

70 to 900 MHz is 0.25% of the centre frequency

above 900 MHz is 0.5% of the centre frequency

6.4.3 TEST PROTOCOL

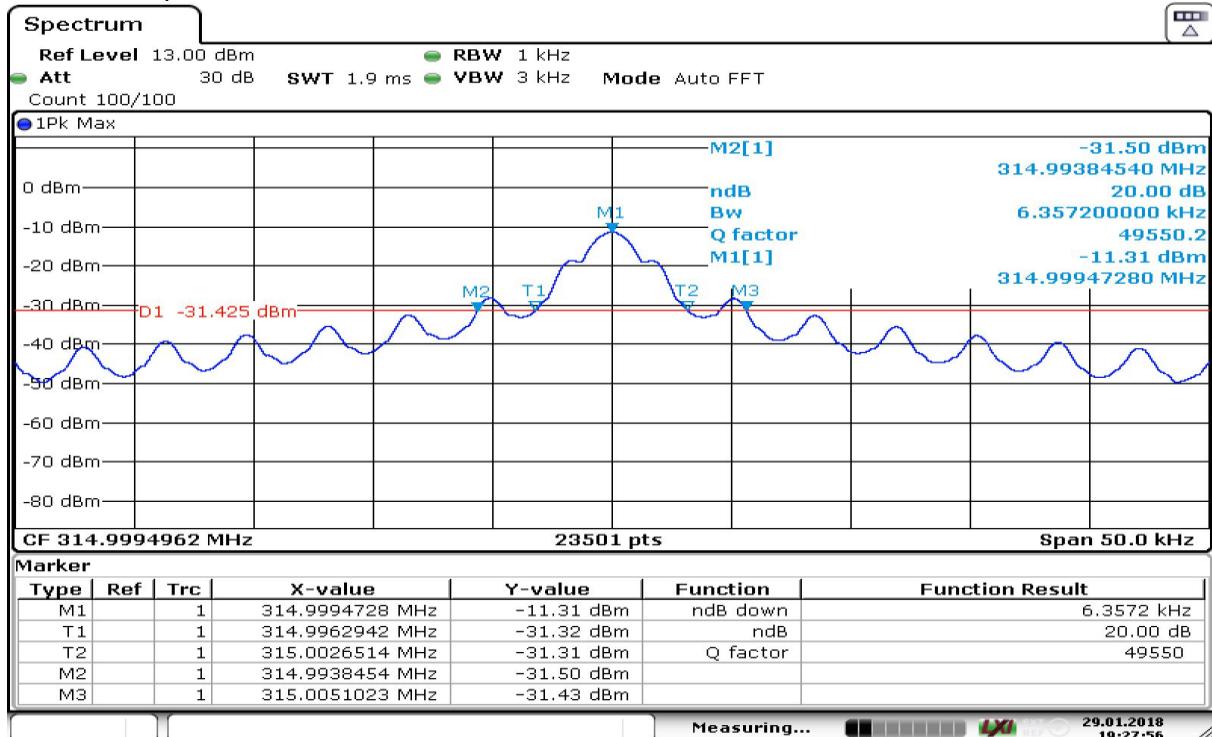
Temperature: 23 °C

Air Pressure: 1009 hPa

Humidity: 42 %

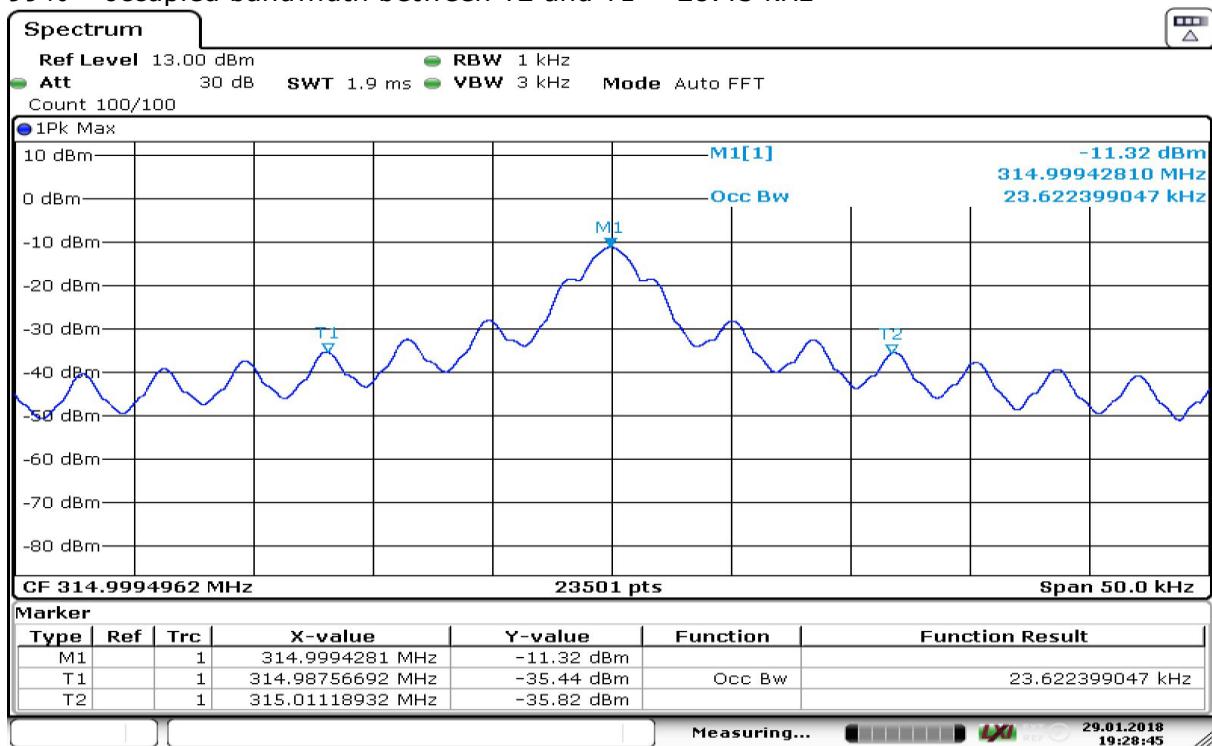
Op. Mode	Setup	Port
op-mode 2	Setup_01	Enclosure

Channel Frequency [MHz]	20 dB bandwidth [kHz]	99% bandwidth [kHz]	Limit [kHz]	Remarks
315.00	11.26	23.62	787.5	The limit is calculated as: 315.00 MHz (declared by applicant) * 0.25% = 787.5 kHz.


Remark: Please see the measurement plots.

6.4.4 TEST RESULT: OCCUPIED BANDWIDTH

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1	passed


6.4.5 MEASUREMENT PLOTS OCCUPIED BANDWIDTH

20 dB occupied bandwidth between M3 and M2 = 11.26 kHz

Date: 29.JAN.2018 19:27:56

99% occupied bandwidth between T2 and T1 = 28.45 kHz

Date: 29.JAN.2018 19:28:45

7 TEST EQUIPMENT

Radiated Emissions

Lab to perform radiated emission tests

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Calibration Due
1.1	Fully Anechoic Room	8.80m x 4.60m x 4.05m (l x w x h)	Albatross Projects	P26971-647-001-PRB	
1.2	AM 4.0	Antenna mast	Maturo GmbH	AM4.0/180/11920513	
1.3	ESR 7	EMI Receiver / Spectrum Analyzer	Rohde & Schwarz	101424	2018-11-29
1.4	Anechoic Chamber	10.58 x 6.38 x 6.00 m ³	Frankonia	none	2017-01-09
1.5	ESIB 26	Spectrum Analyzer	Rohde & Schwarz	830482/004	2017-12-08
1.6	Tilt device Maturo (Rohacell)	Antrieb TD1.5- 10kg	Maturo GmbH	TD1.5-10kg/024/3790709	
1.7	AS 620 P	Antenna mast	HD GmbH	620/37	
1.8	NRV-Z1	Sensor Head A	Rohde & Schwarz	827753/005	2016-05-11
1.9	JS4-18002600-32-5P	Broadband Amplifier 18 GHz - 26 GHz	Miteq	849785	
1.10	JS4-00101800-35-5P	Broadband Amplifier 30 MHz - 18 GHz	Miteq	896037	2012-11-24
1.11	HL 562	Ultralog new biconicals	Rohde & Schwarz GmbH & Co. KG	830547/003	2018-06-30
1.12	Opus10 THI (8152.00)	ThermoHygro Datalogger 12 (Environ)	Lufft Mess- und Regeltechnik GmbH	12482	2017-03-10
1.13	HFH2-Z2	Loop Antenna	Rohde & Schwarz GmbH & Co. KG	829324/006	2017-11-27
1.14	FSW 43	Spectrum Analyzer	Rohde & Schwarz	103779	2016-11-17
1.15	Opus10 TPR (8253.00)	ThermoAirpressure Datalogger 13 (Environ)	Lufft Mess- und Regeltechnik GmbH	13936	2017-02-27
1.16	Chroma 6404	AC Power Source	Chroma ATE INC.	64040001304	
1.17	3160-10	Standard Gain / Pyramidal Horn Antenna 40 GHz	EMCO Elektronik GmbH	00086675	
1.18	HL 562 Ultralog	Log.-per. Antenna	Rohde & Schwarz GmbH & Co. KG	100609	2015-12-18
1.19	HF 907	Double-ridged horn	Rohde & Schwarz GmbH & Co. KG	102444	2018-05-11
1.20	DE 325	Dreheinheit	HD GmbH		

Radio Lab

Conducted Radio Test Lab

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Calibration Due
1.21	A8455-4	4 Way Power Divider (SMA)		-	
1.22	SMB100A	Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz GmbH & Co. KG	107695	2017-06-06
1.23	VT 4002	Climatic Chamber	Vötsch	58566002150010	2016-03-11
1.24	SMP03	Signal Generator 2 GHz - 27 GHz 1035.5005.03	Rohde & Schwarz GmbH & Co. KG	833680/003	2016-10-29
1.25	FSV30	Signal Analyzer 10 Hz - 30 GHz	Rohde & Schwarz	103005	2016-02-10
1.26	SMBV100A	Vector Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz GmbH & Co. KG	259291	2016-08-23
1.27	Voltcraft M-3860M	Digital Multimeter 01 (Multimeter)	Voltcraft	IJ096055	
1.28	Chroma 6404	AC Power Source	Chroma ATE INC.	64040001304	
1.29	Datum, Model: MFS	Rubidium Frequency Standard	Datum-Beverly	5489/001	2016-06-25
1.30	WA1515	Broadband Power Divider SMA	Weinschel Associates	A855	
1.31	FSIQ26	Spectrum Analyzer 7layers, Ratingen OIL_RE	Rohde & Schwarz GmbH & Co. KG	840061/005	2017-04-02

R&S TS8997

EN300328/301893 Test Lab

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Calibration Due
1.32	OSP120	Switching Unit with integrated power meter	Rohde & Schwarz GmbH & Co. KG	101158	2016-08-21
1.33	A8455-4	4 Way Power Divider (SMA)		-	
1.34	Opus10 THI (8152.00)	ThermoHygro Datalogger 03 (Environ)	Lufft Mess- und Regeltechnik GmbH	7482	2017-02-27
1.35	SMB100A	Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz GmbH & Co. KG	107695	2017-06-06
1.36	VT 4002	Climatic Chamber	Vötsch	58566002150010	2016-03-11
1.37	FSV30	Signal Analyzer 10 Hz - 30 GHz	Rohde & Schwarz	103005	2016-02-10
1.38	SMBV100A	Vector Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz GmbH & Co. KG	259291	2016-08-23
1.39	Voltcraft M-3860M	Digital Multimeter 01 (Multimeter)	Voltcraft	IJ096055	
1.40	1515 / 93459	Broadband Power Divider SMA (Aux)	Weinschel Associates	LN673	
1.41	Datum, Model: MFS	Rubidium Frequency Standard	Datum-Beverly	5489/001	2016-06-25

8 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN.

○ ANTENNA R&S HFH2-Z2 (9 KHZ – 30 MHZ)

Frequency	AF HFH-Z2)	Corr.	cable loss 1 (inside chamber)	cable loss 2 (outside chamber)	cable loss 3 (switch unit)	cable loss 4 (to receiver)	distance corr. (-40 dB/ decade)	d_{limit} (meas. distance (limit))	d_{used} (meas. distance (used))
			dB	dB	dB	dB	dB	m	m
0.009	20.50	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.01	20.45	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.015	20.37	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.02	20.36	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.025	20.38	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.03	20.32	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.05	20.35	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.08	20.30	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.1	20.20	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.2	20.17	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.3	20.14	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.49	20.12	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.490001	20.12	-39.6	0.1	0.1	0.1	0.1	-40	30	3
0.5	20.11	-39.6	0.1	0.1	0.1	0.1	-40	30	3
0.8	20.10	-39.6	0.1	0.1	0.1	0.1	-40	30	3
1	20.09	-39.6	0.1	0.1	0.1	0.1	-40	30	3
2	20.08	-39.6	0.1	0.1	0.1	0.1	-40	30	3
3	20.06	-39.6	0.1	0.1	0.1	0.1	-40	30	3
4	20.05	-39.5	0.2	0.1	0.1	0.1	-40	30	3
5	20.05	-39.5	0.2	0.1	0.1	0.1	-40	30	3
6	20.02	-39.5	0.2	0.1	0.1	0.1	-40	30	3
8	19.95	-39.5	0.2	0.1	0.1	0.1	-40	30	3
10	19.83	-39.4	0.2	0.1	0.2	0.1	-40	30	3
12	19.71	-39.4	0.2	0.1	0.2	0.1	-40	30	3
14	19.54	-39.4	0.2	0.1	0.2	0.1	-40	30	3
16	19.53	-39.3	0.3	0.1	0.2	0.1	-40	30	3
18	19.50	-39.3	0.3	0.1	0.2	0.1	-40	30	3
20	19.57	-39.3	0.3	0.1	0.2	0.1	-40	30	3
22	19.61	-39.3	0.3	0.1	0.2	0.1	-40	30	3
24	19.61	-39.3	0.3	0.1	0.2	0.1	-40	30	3
26	19.54	-39.3	0.3	0.1	0.2	0.1	-40	30	3
28	19.46	-39.2	0.3	0.1	0.3	0.1	-40	30	3
30	19.73	-39.1	0.4	0.1	0.3	0.1	-40	30	3

Sample calculation

$$E (\text{dB } \mu\text{V/m}) = U (\text{dB } \mu\text{V}) + AF (\text{dB } 1/\text{m}) + \text{Corr. (dB)}$$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable)

distance correction = $-40 * \text{LOG} (d_{\text{limit}}/ d_{\text{used}})$

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values

○ ANTENNA R&S HL562 (30 MHZ – 1 GHZ)

 (d_{Limit} = 3 m)

Frequency	AF R&S HL562	Corr.
MHz	dB (1/m)	dB
30	18.6	0.6
50	6.0	0.9
100	9.7	1.2
150	7.9	1.6
200	7.6	1.9
250	9.5	2.1
300	11.0	2.3
350	12.4	2.6
400	13.6	2.9
450	14.7	3.1
500	15.6	3.2
550	16.3	3.5
600	17.2	3.5
650	18.1	3.6
700	18.5	3.6
750	19.1	4.1
800	19.6	4.1
850	20.1	4.4
900	20.8	4.7
950	21.1	4.8
1000	21.6	4.9

cable loss 1 (inside chamber)	cable loss 2 (outside chamber)	cable loss 3 (switch unit)	cable loss 4 (to receiver)	distance corr. (-20 dB/ decade)	d _{Limit} (meas. distance (limit))	d _{used} (meas. distance (used))
dB	dB	dB	dB	dB	m	m
0.29	0.04	0.23	0.02	0.0	3	3
0.39	0.09	0.32	0.08	0.0	3	3
0.56	0.14	0.47	0.08	0.0	3	3
0.73	0.20	0.59	0.12	0.0	3	3
0.84	0.21	0.70	0.11	0.0	3	3
0.98	0.24	0.80	0.13	0.0	3	3
1.04	0.26	0.89	0.15	0.0	3	3
1.18	0.31	0.96	0.13	0.0	3	3
1.28	0.35	1.03	0.19	0.0	3	3
1.39	0.38	1.11	0.22	0.0	3	3
1.44	0.39	1.20	0.19	0.0	3	3
1.55	0.46	1.24	0.23	0.0	3	3
1.59	0.43	1.29	0.23	0.0	3	3
1.67	0.34	1.35	0.22	0.0	3	3
1.67	0.42	1.41	0.15	0.0	3	3
1.87	0.54	1.46	0.25	0.0	3	3
1.90	0.46	1.51	0.25	0.0	3	3
1.99	0.60	1.56	0.27	0.0	3	3
2.14	0.60	1.63	0.29	0.0	3	3
2.22	0.60	1.66	0.33	0.0	3	3
2.23	0.61	1.71	0.30	0.0	3	3

 (d_{Limit} = 10 m)

30	18.6	-9.9
50	6.0	-9.6
100	9.7	-9.2
150	7.9	-8.8
200	7.6	-8.6
250	9.5	-8.3
300	11.0	-8.1
350	12.4	-7.9
400	13.6	-7.6
450	14.7	-7.4
500	15.6	-7.2
550	16.3	-7.0
600	17.2	-6.9
650	18.1	-6.9
700	18.5	-6.8
750	19.1	-6.3
800	19.6	-6.3
850	20.1	-6.0
900	20.8	-5.8
950	21.1	-5.6
1000	21.6	-5.6

0.29	0.04	0.23	0.02	-10.5	10	3
0.39	0.09	0.32	0.08	-10.5	10	3
0.56	0.14	0.47	0.08	-10.5	10	3
0.73	0.20	0.59	0.12	-10.5	10	3
0.84	0.21	0.70	0.11	-10.5	10	3
0.98	0.24	0.80	0.13	-10.5	10	3
1.04	0.26	0.89	0.15	-10.5	10	3
1.18	0.31	0.96	0.13	-10.5	10	3
1.28	0.35	1.03	0.19	-10.5	10	3
1.39	0.38	1.11	0.22	-10.5	10	3
1.44	0.39	1.20	0.19	-10.5	10	3
1.55	0.46	1.24	0.23	-10.5	10	3
1.59	0.43	1.29	0.23	-10.5	10	3
1.67	0.34	1.35	0.22	-10.5	10	3
1.67	0.42	1.41	0.15	-10.5	10	3
1.87	0.54	1.46	0.25	-10.5	10	3
1.90	0.46	1.51	0.25	-10.5	10	3
1.99	0.60	1.56	0.27	-10.5	10	3
2.14	0.60	1.63	0.29	-10.5	10	3
2.22	0.60	1.66	0.33	-10.5	10	3
2.23	0.61	1.71	0.30	-10.5	10	3

Sample calculation

$$E (\text{dB } \mu\text{V/m}) = U (\text{dB } \mu\text{V}) + AF (\text{dB } 1/\text{m}) + \text{Corr. (dB)}$$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable)

$$\text{distance correction} = -20 * \text{LOG} (\frac{d_{\text{Limit}}}{d_{\text{used}}})$$

Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

- ANTENNA R&S HF907 (1 GHZ – 18 GHZ)

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
1000	24.4	-19.4
2000	28.5	-17.4
3000	31.0	-16.1
4000	33.1	-14.7
5000	34.4	-13.7
6000	34.7	-12.7
7000	35.6	-11.0

cable loss 1 (relay + cable inside chamber)	cable loss 2 (outside chamber)	cable loss 3 (switch unit, atten- uator & pre-amp)	cable loss 4 (to receiver)		
dB	dB	dB	dB		
0.99	0.31	-21.51	0.79		
1.44	0.44	-20.63	1.38		
1.87	0.53	-19.85	1.33		
2.41	0.67	-19.13	1.31		
2.78	0.86	-18.71	1.40		
2.74	0.90	-17.83	1.47		
2.82	0.86	-16.19	1.46		

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
3000	31.0	-23.4
4000	33.1	-23.3
5000	34.4	-21.7
6000	34.7	-21.2
7000	35.6	-19.8

cable loss 1 (relay inside chamber)	cable loss 2 (inside chamber)	cable loss 3 (outside chamber)	cable loss 4 (switch unit, atten- uator & pre-amp)	cable loss 5 (to receiver)	used for FCC 15.247
dB	dB	dB	dB	dB	
0.47	1.87	0.53	-27.58	1.33	
0.56	2.41	0.67	-28.23	1.31	
0.61	2.78	0.86	-27.35	1.40	
0.58	2.74	0.90	-26.89	1.47	
0.66	2.82	0.86	-25.58	1.46	

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
7000	35.6	-57.3
8000	36.3	-56.3
9000	37.1	-55.3
10000	37.5	-56.2
11000	37.5	-55.3
12000	37.6	-53.7
13000	38.2	-53.5
14000	39.9	-56.3
15000	40.9	-54.1
16000	41.3	-54.1
17000	42.8	-54.4
18000	44.2	-54.7

cable loss 1 (relay inside chamber)	cable loss 2 (High Pass)	cable loss 3 (pre- amp)	cable loss 4 (inside chamber)	cable loss 5 (outside chamber)	cable loss 6 (to receiver)
dB	dB	dB	dB	dB	dB
0.56	1.28	-62.72	2.66	0.94	1.46
0.69	0.71	-61.49	2.84	1.00	1.53
0.68	0.65	-60.80	3.06	1.09	1.60
0.70	0.54	-61.91	3.28	1.20	1.67
0.80	0.61	-61.40	3.43	1.27	1.70
0.84	0.42	-59.70	3.53	1.26	1.73
0.83	0.44	-59.81	3.75	1.32	1.83
0.91	0.53	-63.03	3.91	1.40	1.77
0.98	0.54	-61.05	4.02	1.44	1.83
1.23	0.49	-61.51	4.17	1.51	1.85
1.36	0.76	-62.36	4.34	1.53	2.00
1.70	0.53	-62.88	4.41	1.55	1.91

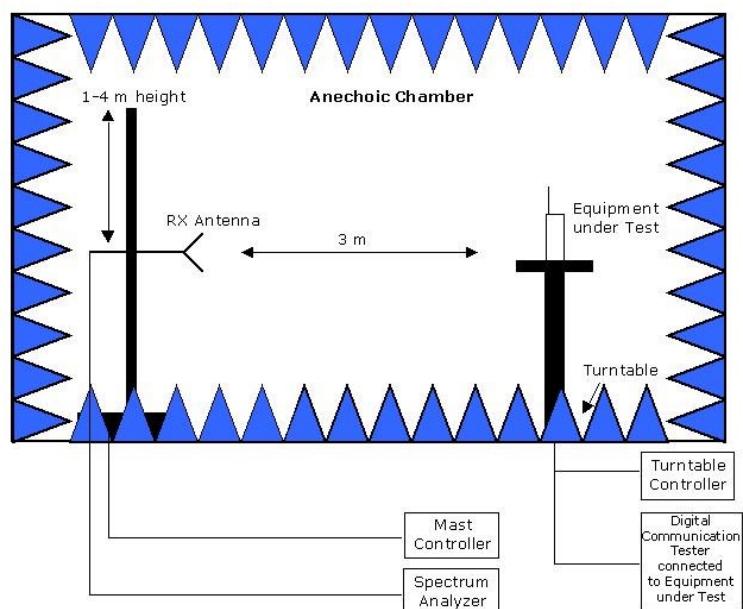
Sample calculation

$$E (\text{dB } \mu\text{V/m}) = U (\text{dB } \mu\text{V}) + AF (\text{dB } 1/\text{m}) + \text{Corr. (dB)}$$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable)


Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

9 PHOTO REPORT

Photos are included in an external report.

10 SETUP DRAWINGS

Remark: Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used.

Drawing 1: Setup in the Anechoic chamber. For measurements below 1 GHz the ground was replaced by a conducting ground plane.