

Straubing, July 26, 2000

T E S T - R E P O R T

No. 50118-00241-2

for

WIMAN II

FHSS RF Modem

Applicant: Aidata WIMAN Systems Inc.

Purpose of testing: To show compliance with
FCC Code of Federal Regulations,
Part 15 Subpart C, Section §15.247

Note:

The test data of this report relate only to the individual item which has been tested.
This report shall not be reproduced except in full extent without the written approval of
the testing laboratory.

Table of Contents

1. Administrative Data.....	3
2. Identification of Test Laboratory	4
3. Summary of Test Results.....	5
4. Operation Mode of EUT	6
5. Configuration of EUT and Peripheral Devices.....	7
6. Measuring Methods	8
6.1. Conducted RF Measurements at RF Output of EUT.....	8
6.2. Conducted Power Line Emission 0.45 MHz - 30 MHz (§15.207)	9
6.3. Radiated Emission 30 MHz - 1 GHz (§15.209, §15.247.c, §15.205.a,b)	11
6.4. Radiated Emission 1 GHz - 25 GHz (§15.209, §15.247.c, §15.205.a,b)	13
7. Measuring Methods	15
7.1. Radiated Emission 30 MHz - 1 GHz (FCC §15.205.a,b, §15.209, §15.231.b / RSS-210 Sections 6.1.1.b, 6.3).....	15
7.2. Radiated Emission 1 GHz - 10 GHz (FCC §15.205.a,b, §15.209, §15.231.b / RSS-210 Sections 6.1.1.b, 6.3).....	17
8. Equipment List	19
9. Photographs Taken During Testing.....	21
10. List of Measurements.....	27
11. List of Measurements.....	29
12. Referenced Regulations	42
13. Test Results	43

1. Administrative Data

Equipment Under Test (EUT): WIMAN II

Serial number(s): 0001

Type of equipment: FHSS RF Modem

Parts/accessories:

FCC-ID: NB9-WIMAN II

Applicant: Airdata WIMAN Systems Inc.
(full address) 2180 Immokalee Road, Suite 201
Naples, FL 34110

Contract identification: ---

Contact person: Mr. Andreas Brauer

Manufacturer: Airdata WIMAN Systems Inc.

Receipt of EUT: April 26, 2000

Date of test: May 2000

Note: ---

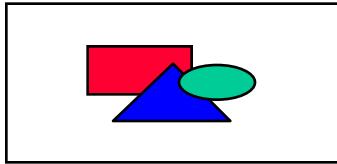
Responsible for testing: Johann Roidt

Responsible for test report: Johann Roidt

2. Identification of Test Laboratory

Test Laboratory:
(full address): Senton GmbH EMI/EMC Test Center
Aeussere Fruehlingstrasse 45
D-94315 Straubing
Germany

Contact person: Mr. Johann Roidt
Communication: Telephone (+49) 0 94 21 / 55 22-0
Fax (+49) 0 94 21 / 55 22-99
eMail: Office@senton.de


FCC file number: 31040/SIT 1300F2

Industry Canada file number: IC 3050

3. Summary of Test Results

The tested sample complies with the requirements set forth in the

**Code of Regulations Part 15 Subpart C, Section §15.247 (intentional
radiators) of the Federal Communication Commission (FCC).**

Johann Roidt
Technical Manager

4. Operation Mode of EUT

The EUT features an onboard diagnostic software which allows access to either transmit or receive mode, individual RF channels and hopping or static mode. This software is accessible via RS 232 interface and a standard terminal program.

All tests were performed on the lowest, middle and highest RF channel while in transmit mode and on middle channel while in receive mode.

5. Configuration of EUT and Peripheral Devices

Configuration of cables of EUT

Every signal port of the EUT was loaded with a shielded cable. The EUT received power from an external AC adapter

Configuration of peripheral devices connected to EUT

A Notebook PC with Windows HyperTerminal loaded was used as RS 232 terminal.

6. Measuring Methods

6.1. Conducted RF Measurements at RF Output of EUT

All measurements were performed according to and with the test instruments settings of FCC Public Notice DA 00-705.

Test equipment used (see equipment list for details):
02, 18, 57, 67, 68

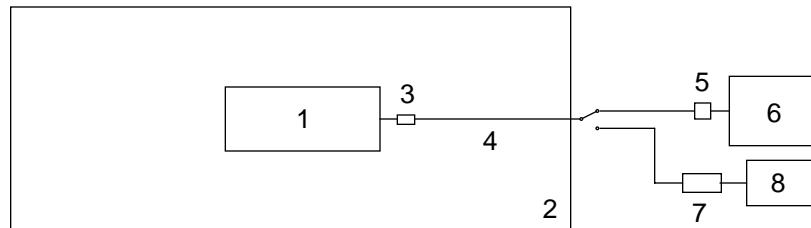


Figure 0: Measurement setup for testing on antenna connector

1 Transmitter (EUT)
2 Wooden table

3 DC-block
4 Test cable
5 Attenuator
6 Spectrum analyzer
7 Power sensor
8 Power meter

6.2. Conducted Power Line Emission 0.45 MHz - 30 MHz (§15.207)

Conducted emissions were measured in the frequency range 0.45 MHz to 30 MHz. The bandwidth of the EMI-Receiver was set to 9 kHz and the detector-function was set to CISPR quasi-peak.

The test setup was made in accordance with ANSI C63.4-1992.

Measurements were performed on phase and neutral lines of the power-cords of the tested system. Preliminary scans were taken with the detector-function of the EMI-receiver set to peak to determine the conducted EMI-profile of the EUT. At the final test the cables and equipment were placed and moved within the range of positions likely to find their maximum emissions.

See figure 1 for the measurement setup.

Test equipment used (see equipment list for details):

04, 22, 23, 60, 63

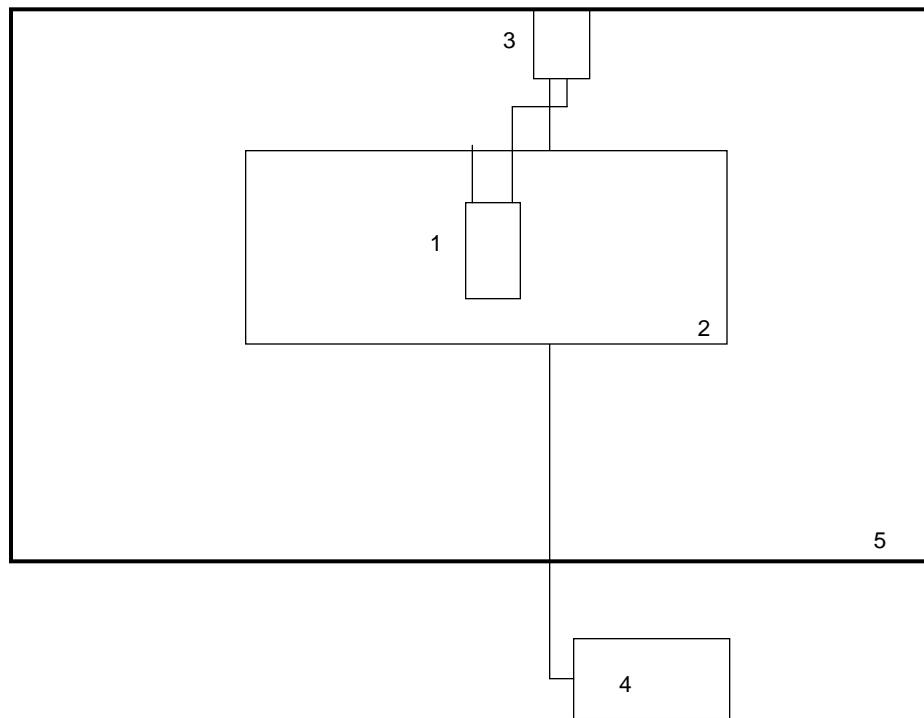


Figure 1: Measurement setup for conducted emission test

1 Computer (EUT)	14 LISN for EUT
2 RF-modem	15 LISN for monitor
3 Keyboard	16 LISN for printer
4 Mouse	17 Test receiver
5 Monitor	18 Shielded room
6 FireWire Hard Drives	
7 Printer	
8 Microphone	
9 Headphone	
10 Headphone	
11 Headphone	
12 Telephone line	
13 Wooden table	

6.3. Radiated Emission 30 MHz - 1 GHz (§15.209, §15.247.c, §15.205.a,b)

Radiated emissions were measured over the frequency range from 30 MHz to 1 GHz. The bandwidth of the EMI-receiver was set to 120 kHz and the detector-function was set to CISPR quasi-peak.

The test setup was made in accordance with ANSI C63.4-1992. Measurements were made in both the horizontal and vertical planes of polarization. Preliminary scans were taken in a semi-anechoic room using a spectrum analyzer with the detector function set to peak. All tests were performed at a test-distance of 3 meters. For final testing an open-area test-site was used. During the tests the EUT was rotated all around and the receiving-antenna was raised and lowered from 1 meter to 4 meters to find the maximum levels of emissions. The cables and equipment were placed and moved within the range of position likely to find their maximum emissions.

See figure 2 for the measurement setup.

Test equipment used (see equipment list for details):
01, 06, 12, 38, 39, 40, 41, 58, 61, 64, 66

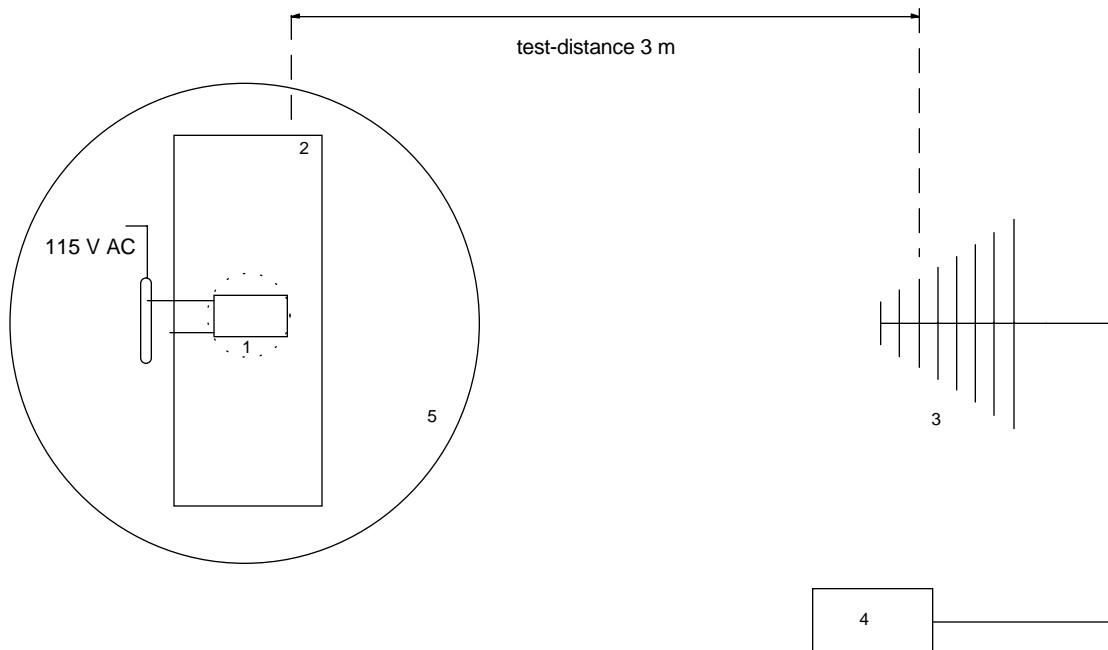


Figure 2: Measurement setup for radiated emission test below 1 GHz

1 Computer (EUT)	14 Measurement antenna
2 RF-modem	15 Test receiver
3 Keyboard	16 Turn table
4 Mouse	
5 Monitor	
6 FireWire Hard Drives	
7 Printer	
8 Microphone	
9 Headphone	
10 Headphone	
11 Headphone	
12 Telephone line	
13 Wooden table	

6.4. Radiated Emission 1 GHz - 25 GHz (§15.209, §15.247.c, §15.205.a,b)

Radiated emissions were measured in the frequency range 1 GHz to 25 GHz in transmit mode and 1 GHz to 12.5 GHz in receive mode. The resolution bandwidth of the spectrum analyzer was set to 1 MHz. Scans for the whole frequency range were taken with video bandwidth set to 1 MHz to check out the highest peak levels. In case of less margin to average limit additional prescans were made with video bandwidth reduced from 1 MHz to 100 kHz, 30 kHz or 10 kHz. Final measurements were performed at the critical frequencies with video bandwidth of the spectrum analyzer set to 100 Hz (average mode). EUT was rotated all around and receiving antenna was raised and lowered to find the maximum levels of emission. Cables and equipment were placed and moved within the range of position likely to find their maximum emissions.

All tests were performed in a semi-anechoic chamber with a test-distance of 3 meters (except for the frequency range 18 GHz - 25 GHz where test distance was reduced to 0.5 meter).

To avoid overload in transmit mode no preamplifier was used between 1 GHz and 3.95 GHz. Above 3.95 GHz tests were performed with appropriate preamplifiers (attenuation of operating frequency by horn antenna is sufficient to avoid overload of preamplifier).

For receive mode appropriate preamplifiers were used for the whole frequency range.

To eliminate variations in amplification of the preamplifiers a signal generator was used for substitution (however, during testing a correction according to the minimum amplification was added).

Substitution was performed in the following steps:

- antenna cable was disconnected from receiving antenna and connected to signal generator output
- level of signal generator was increased until the reading value of the analyzer was the same as caused by EUT
- level of signal generator was noted
- final value was calculated by converting the signal generator level to dB μ V/m and adding the antenna correction factor.

See figure 3 for the measurement setup.

Test equipment used (see equipment list for details):
02, 13, 14, 16, ,42, 43, 44, 45, 46, 47, 48, 49, 57, 64

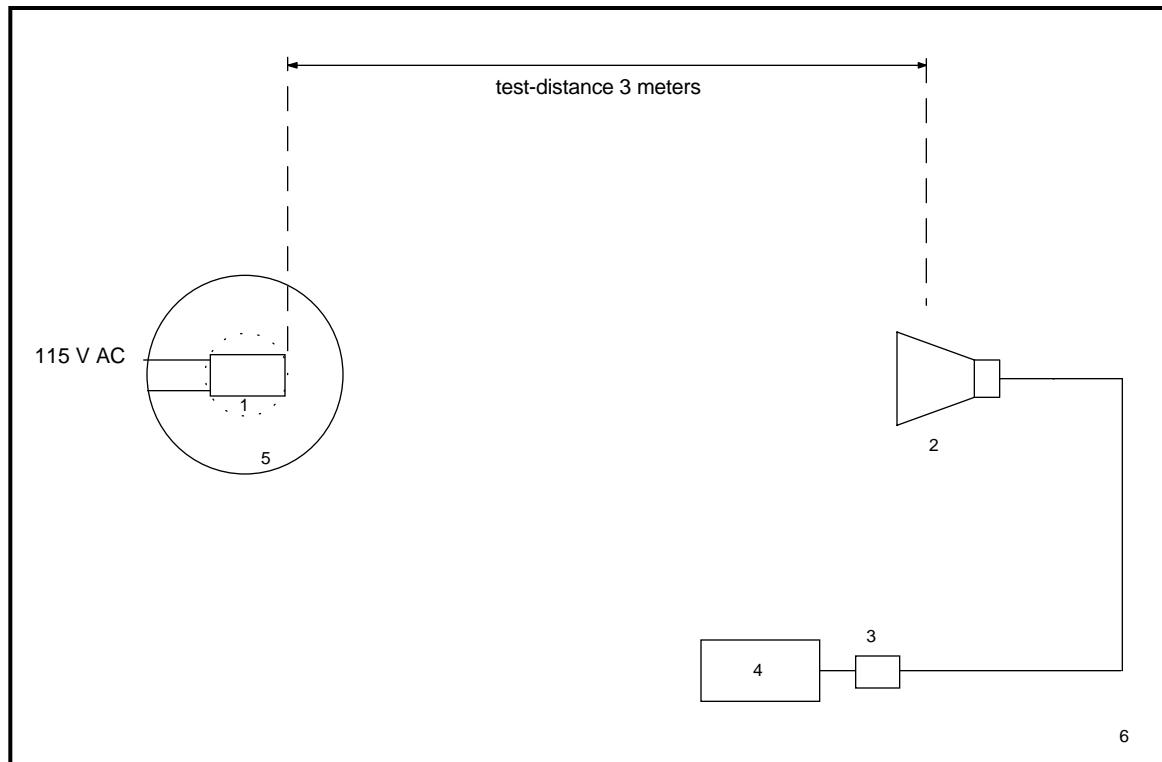


Figure 3: Measurement setup for radiated emission test above 1 GHz

- 1 Computer (EUT)
- 2 RF-modem
- 3 Keyboard
- 4 Mouse

- 5 Measurement antenna
- 6 Preamplifier (if applicable)
- 7 Spectrum analyzer
- 8 Signal generator
- 9 Turn table
- 10 Semi-anechoic room

7. Measuring Methods

7.1. Radiated Emission 30 MHz - 1 GHz (FCC §15.205.a,b, §15.209, §15.231.b / RSS-210 Sections 6.1.1.b, 6.3)

Radiated emissions are measured over the frequency range from 30 MHz to 1 GHz. The bandwidth of the EMI-receiver is set to 120 kHz and the detector-function is set to CISPR quasi-peak.

The test setup is made in accordance with ANSI C63.4-1992.

Measurements are made in both the horizontal and vertical planes of polarization. Preliminary scans are taken in a semi-anechoic room using a spectrum analyzer with the detector function set to peak. Hand-held or body-worn devices are rotated through three orthogonal axes to determine which attitude and configuration produces the highest emission relative to the limit and therefore shall be used for final testing.

All tests are performed at a test-distance of 3 meters.

For final testing an open-area test-site is used. During the tests the EUT is rotated all around and the receiving-antenna is raised and lowered from 1 meter to 4 meters to find the maximum levels of emissions. The cables and equipment is placed and moved within the range of position likely to find their maximum emissions.

See figure 2 for the measurement setup.

Test equipment used (see equipment list for details):

01, 02, 05, 12, 38, 39, 40, 41, 58, 61, 64, 66

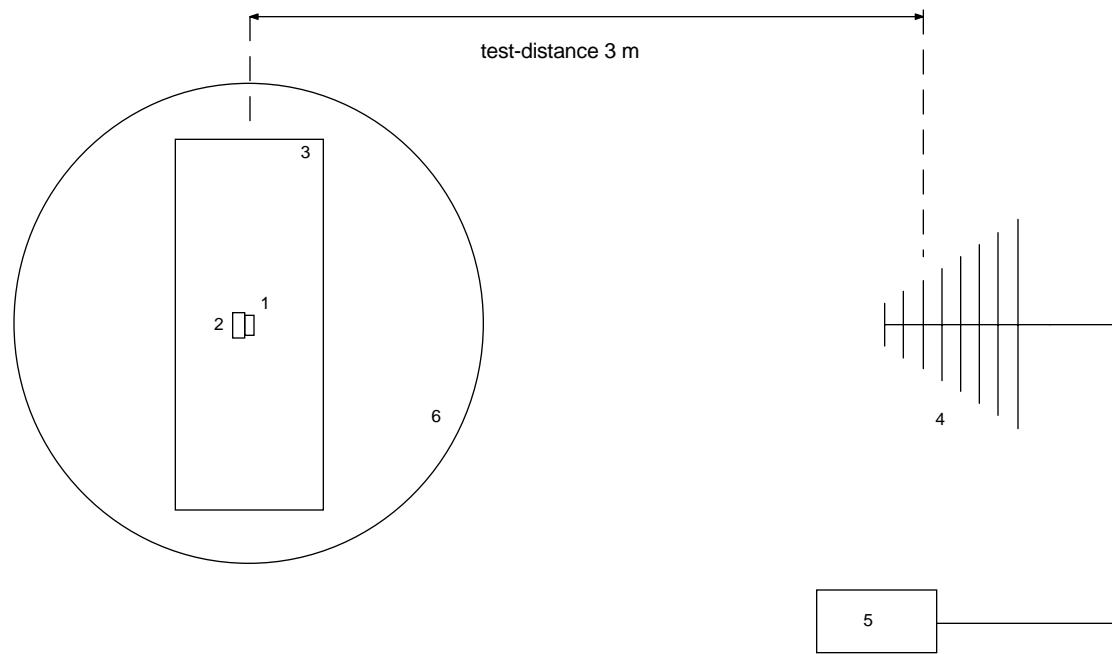


Figure 2: Measurement setup for radiated emission test below 1 GHz

- 1 Transmitter (EUT)
- 2 Wooden pedestal (if necessary)
- 3 Wooden table

- 4 Measurement antenna
- 5 Test receiver
- 6 Turn table

**7.2. Radiated Emission 1 GHz - 10 GHz (FCC §15.205.a,b, §15.209,
§15.231.b / RSS-210 Sections 6.1.1.b, 6.3)**

Radiated emissions are measured in the frequency range 1 GHz to 10 GHz. Resolution and video bandwidth of the spectrum analyzer are set to 1 MHz. Hand-held or body-worn devices are rotated through three orthogonal axes to determine which attitude and configuration produces the highest emission relative to the limit and therefore shall be used for final testing.

Additional measurements are performed at critical frequencies with reduced span. EUT is rotated all around and receiving antenna is raised and lowered to find the maximum levels of emission. The cables and equipment are placed and moved within the range of position likely to find their maximum emissions.

All tests are performed in a semi-anechoic chamber with a test-distance of 3 meters.

If possible preamplifiers are used for the whole frequency range. Special care is taken to avoid overload in transmit mode (using appropriate attenuators if necessary).

See figure 3 for the measurement setup.

Test equipment used (see equipment list for details):
02, 13, 14, 16, ,42, 44, 45, 57, 64

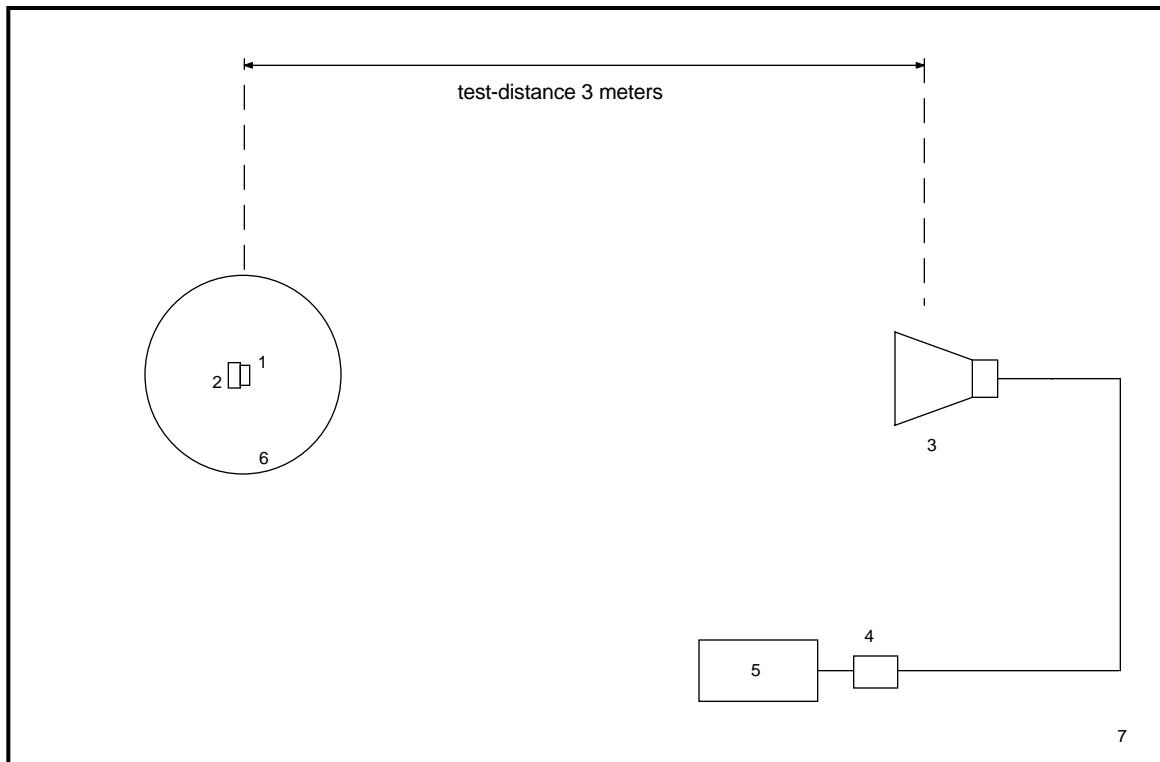
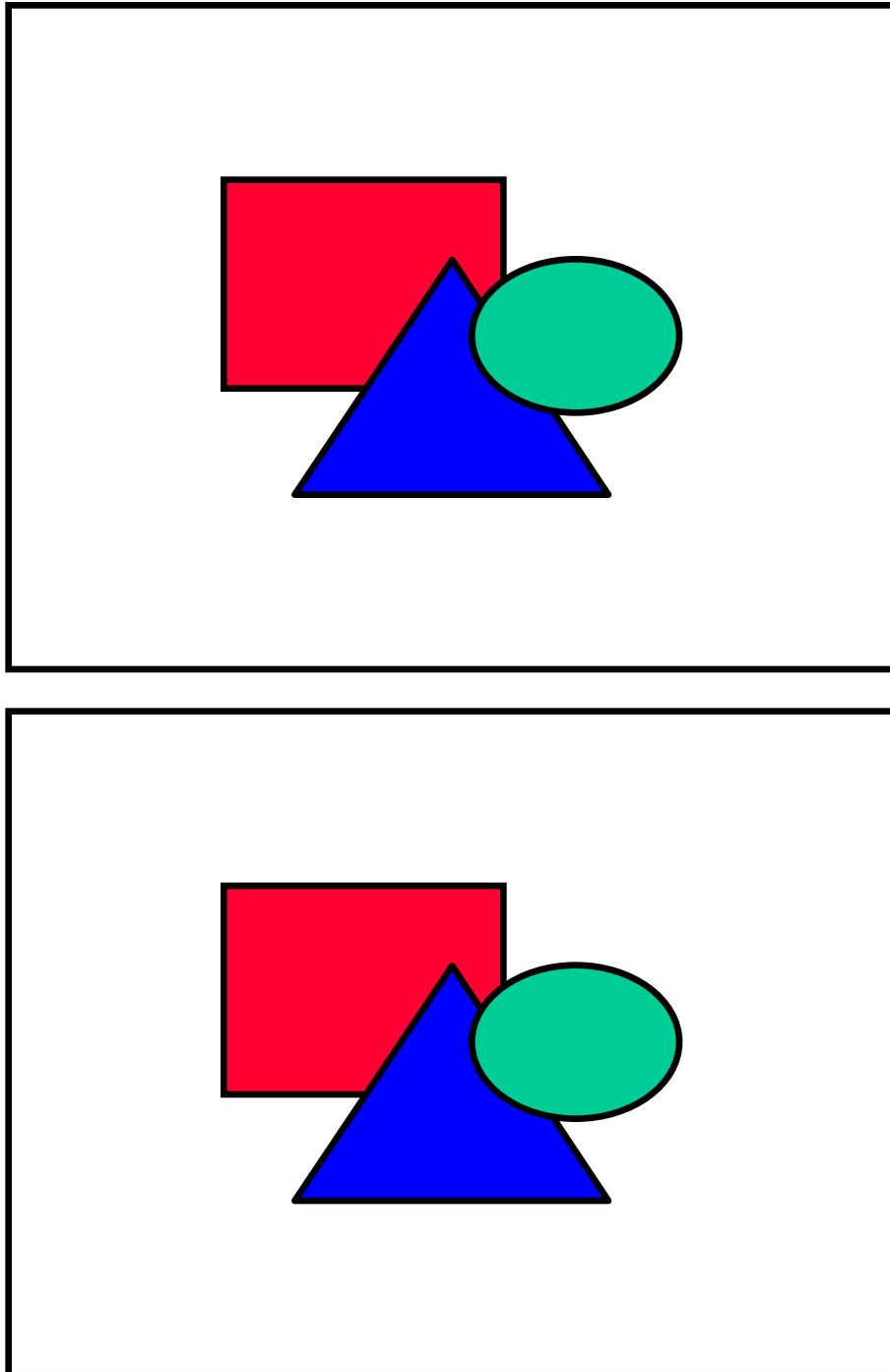


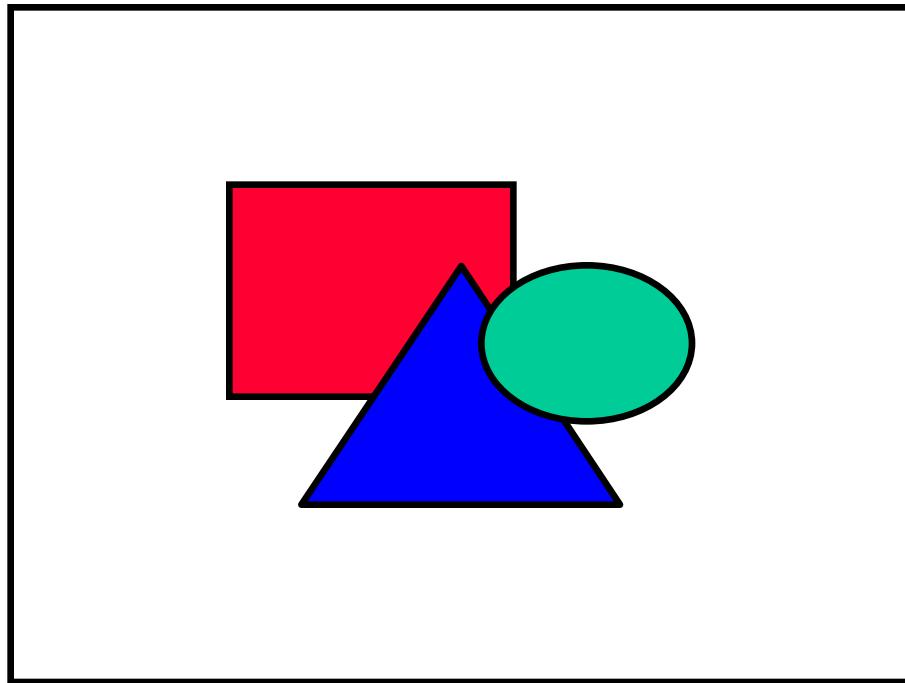
Figure 3: Measurement setup for radiated emission test above 1 GHz

1 Transmitter (EUT)	3 Measurement antenna
2 Wooden pedestal (if necessary)	4 Preamplifier (if applicable)
	5 Spectrum analyzer
	6 Turn table
	7 Semi anechoic room


8. Equipment List

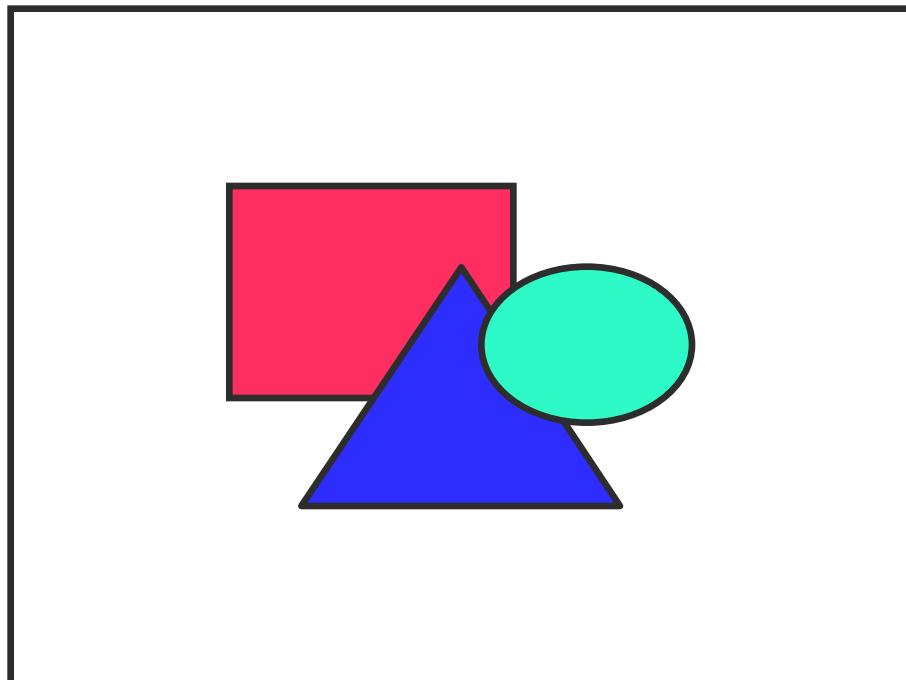
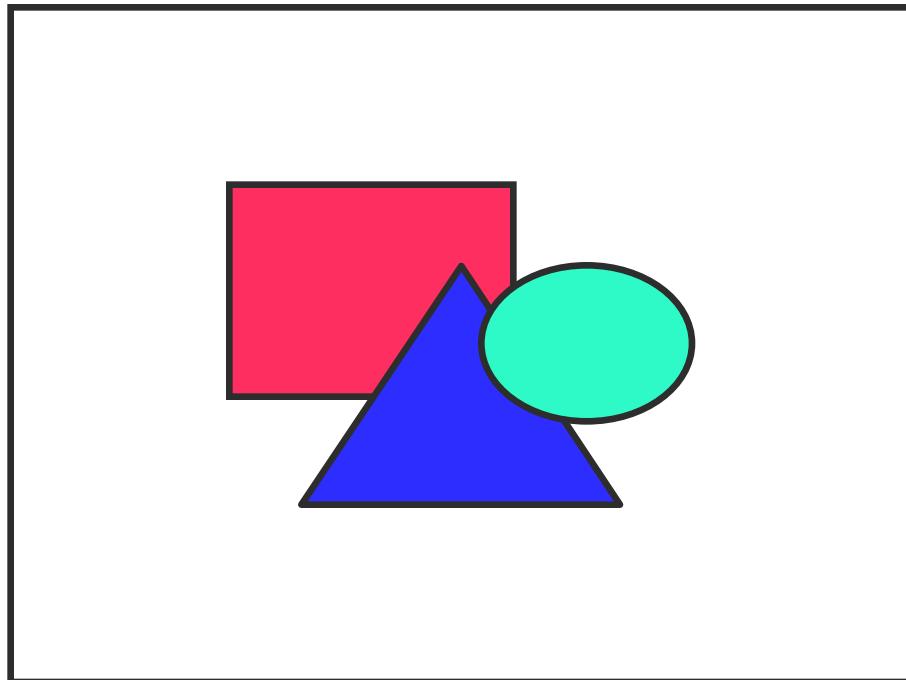
To facilitate reference to test equipment used for related tests, each item of test equipment and ancillaries such as cables are identified (numbered) by the Test Laboratory.

No.	Type	Model	Serial Number	Manufacturer
01	Spectrum Analyzer	R 3271	05050023	Advantest
02	EMI Test Receiver	ESMI	839379/013 839587/006	Rohde & Schwarz
03	Test Receiver	ESH 3	880112/032	Rohde & Schwarz
04	Test Receiver	ESHS 10	860043/016	Rohde & Schwarz
05	Test Receiver	ESV	881414/009	Rohde & Schwarz
06	Test Receiver	ESVP	881120/024	Rohde & Schwarz
07	Audio Analyzer	UPA	862954	Rohde & Schwarz
08	Power Meter	NRVS	836856/015	Rohde & Schwarz
09	Power Sensor	NRV-Z52	837901/030	Rohde & Schwarz
10	Power Sensor	NRV-Z4	863828/015	Rohde & Schwarz
11	Preamplifier	ESV-Z3	860907/004	Rohde & Schwarz
12	Preamplifier	R14601		Advantest
13	Preamplifier	ACX/080-3030	32640	CTT
14	Preamplifier	ACO/180-3530	32641	CTT
15	Signal Generator	SMS	872166/039	Rohde & Schwarz
16	Signal Generator	HP 8673 D	2930A00966	Hewlett Packard
17	Waveform Generator	HP 33120 A	US34005375	Hewlett Packard
18	Attenuator 20 dB	4776-20	9503	Narda
19	Attenuator 10 dB	4776-10	9412	Narda
20	Pulse Limiter	ESH 3-Z2	1144	Rohde & Schwarz
21	Pulse Limiter	11947 A	3107A00566	Hewlett Packard
22	V-Network	ESH 3-Z5	862770/018	Rohde & Schwarz
23	V-Network	ESH 3-Z5	894785/005	Rohde & Schwarz
24	V-Network	ESH 3-Z5	830952/025	Rohde & Schwarz
25	V-Network	ESH 3-Z6	830722/010	Rohde & Schwarz
26	V-Network	NSLK 8127	8127152	Schwarzbeck
27	V-Network	NNLA 8119	8119148	Schwarzbeck
28	V-Network	SE 01	01	Senton
29	T-Network	ESH 3-Z4	890602/011	Rohde & Schwarz
30	T-Network	ESH 3-Z4	890602/012	Rohde & Schwarz
31	High Impedance Probe	TK 9416	01	Schwarzbeck
32	High Impedance Probe	TK 9416	02	Schwarzbeck
33	Current Probe	ESH 2-Z1	863366/18	Rohde & Schwarz
34	Current Probe	ESV-Z1	862553/3	Rohde & Schwarz

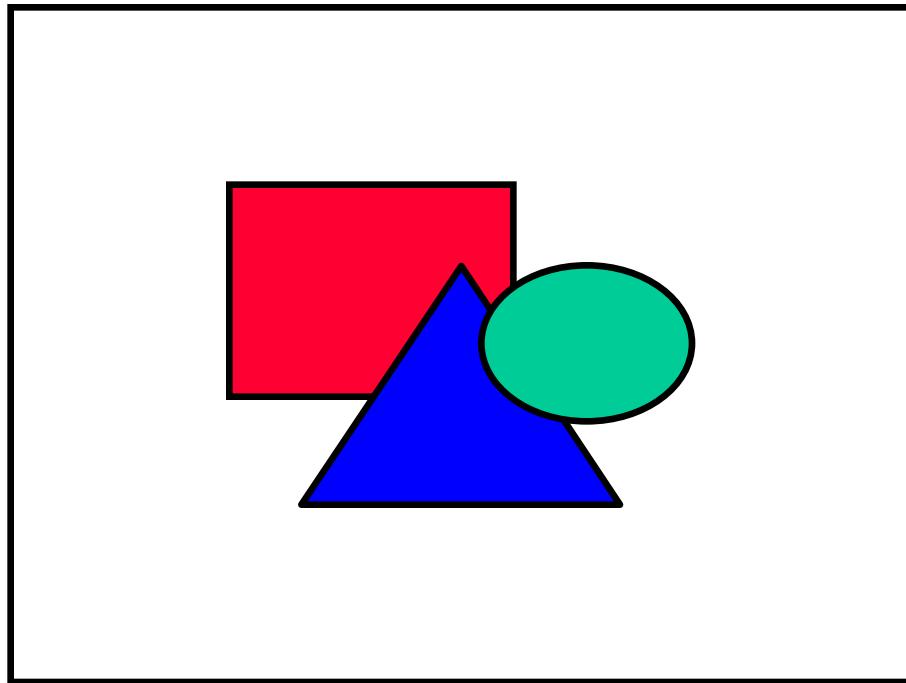

No.	Type	Model	Serial Number	Manufacturer
35	Absorbing Clamp	MDS 21	80911	Lüthi
36	Absorbing Clamp	MDS 21	79690	Lüthi
37	Loop Antenna	HFH2-Z2	882964/1	Rohde & Schwarz
38	Biconical Antenna	HK 116	842204/001	Rohde & Schwarz
39	Biconical Antenna	HK 116	836239/02	Rohde & Schwarz
40	Log. Periodic Antenna	HL 223	841516/023	Rohde & Schwarz
41	Log. Periodic Antenna	HL 223	834408/12	Rohde & Schwarz
42	Horn Antenna	3115	9508-4553	Emco
43	Horn Antenna	3160-03	9112-1003	Emco
44	Horn Antenna	3160-04	9112-1001	Emco
45	Horn Antenna	3160-05	9112-1001	Emco
46	Horn Antenna	3160-06	9112-1001	Emco
47	Horn Antenna	3160-07	9112-1008	Emco
48	Horn Antenna	3160-08	9112-1002	Emco
49	Horn Antenna	3160-09	9403-1025	Emco
50	Digital multimeter	199	463386	Keithley
51	DC Power Supply	NGSM 32/10	203	Rohde & Schwarz
52	DC Power Supply	NGB	2455	Rohde & Schwarz
53	DC Power Supply	NGA	386	Rohde & Schwarz
54	Temperature Test Chamber	HT4010	07065550	Heraeus
55	Cable	RG214	1309	Senton
56	Cable	200CM_001	1357	Rosenberger
57	Cable	150CM_001	1479	Rosenberger
58	Cable Set EG1	RG214	1189 - 1191	Senton
59	Cable Set Cabine 1	RG214		Senton
60	Cable Set Cabine 2	RG214		Senton
61	Cable Set Cabine 3	RG214		Senton
62	Shielded Room	No. 1	1451	Senton
63	Shielded Room	No. 2	1452	Senton
64	Semi-anechoic Chamber	No. 3	1453	Siemens
65	Shielded Room	No. 4	1454	Euroshield
66	Open Area Test Site	EG 1		Senton
67	Test fixture			Senton

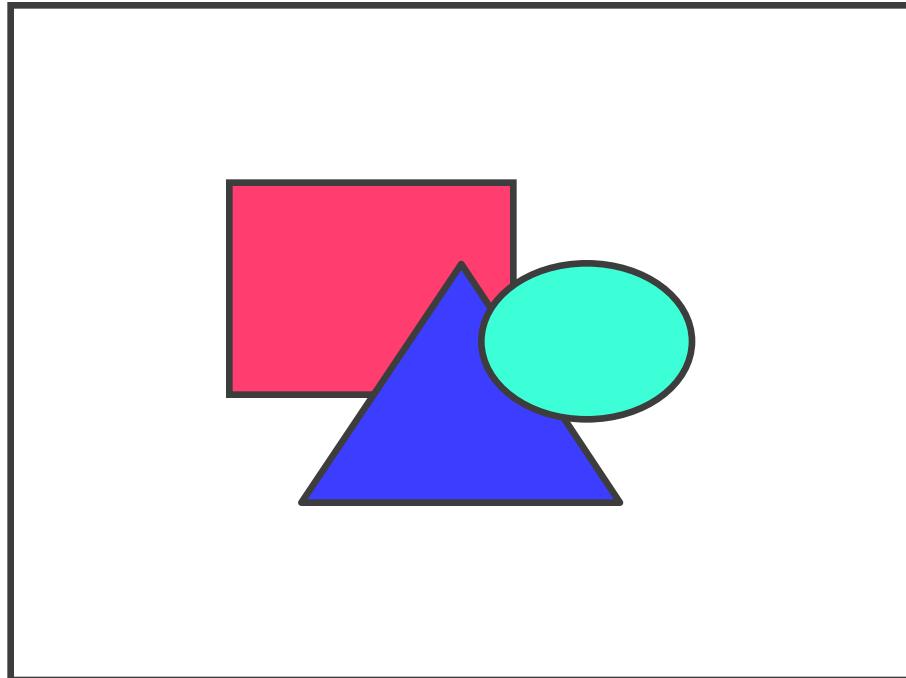
9. Photographs Taken During Testing

Photo No. 9.1 - 9.2**Test setup for conducted emission test 450 kHz - 30 MHz**



Photos No. 9.3

**Test setup for conducted emission test 450 kHz - 30 MHz
(continued)**


Photos No. 9.4 - 9.5


**Test setup for radiated emission pre-test 30 MHz - 1 GHz
(semi anechoic room)**

Photos No. 9.6

**Test setup for radiated emission final test 30 MHz - 1 GHz
(open area test site)**

Photos No. 9.7**Test setup for radiated emission test above 1 GHz**

10. List of Measurements

FCC Part 15 Subpart C			
Section(s):	Test	Page(s)	Result
15.31 (m)	Number of operating frequencies to be examined		
15.203	Requirement that antenna is permanently attached or unique antenna connector		
15.204	Information on antennae proposed for use with the EUT		
15.207	Conducted emission test 450 kHz - 30 MHz		Passed
15.247 (a)	Description how the EUT meets the definition of a frequency hopping spread spectrum system		Passed
	Carrier Frequency separation		
	Number of Hopping Frequencies		
	Time of Occupancy		
	20 dB Bandwidth		
	Pseudorandom Frequency Hopping Sequence		
	Equal Hopping Frequency Use		
	System Receiver Input Bandwidth		
	System Receiver Hopping Capability		
15.247 (b)	Maximum peak output power		Passed
	De Facto EIRP Limit		
	Point-to-Point Operation		
	RF Exposure Compliance Statement		
	Installation/Operation Manual Requirements		
§15.247 (c)	Band-edge Compliance of Conducted Emissions		Passed

	Spurious RF Conducted Emissions		
15.247 (g)	Description how the EUT complies with the requirement of this section	---	Test performed by applicant
15.247 (h)	Requirement to avoid frequency coordination of multiple FHSS systems		

	Receive mode (RX):		
§15.207	Conducted emission test 450 kHz - 30 MHz		Passed
§15.209	Radiated emission test	-	

11. List of Measurements

Section(s):	Test	Page(s)	Result

Section 15.31 (m)	Number of operating frequencies to be examined	N/A	Passed
------------------------------	---	-----	--------

All transmitter related test were performed at the lowest, middle and highest RF channel of the device under test.

Receiver related tests were performed at the center frequency of the device under test.

Section 15.203	Requirement that antenna is permanently attached or unique antenna connector	N/A	Passed
---------------------------	---	-----	--------

A reverse SMA connector was used to meet the requirement for an unique antenna connector according to section 15.203 of the rules

Section 15.204	Information on antennae proposed for use with the EUT	N/A	N/A
---------------------------	--	-----	-----

The following antennas are proposed for use with the EUT and are covered by this report:

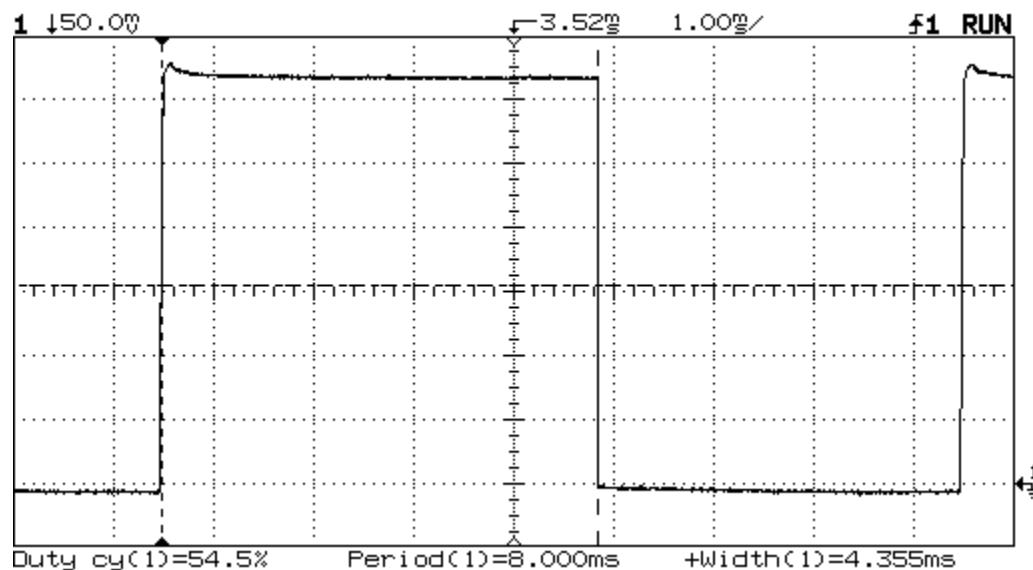
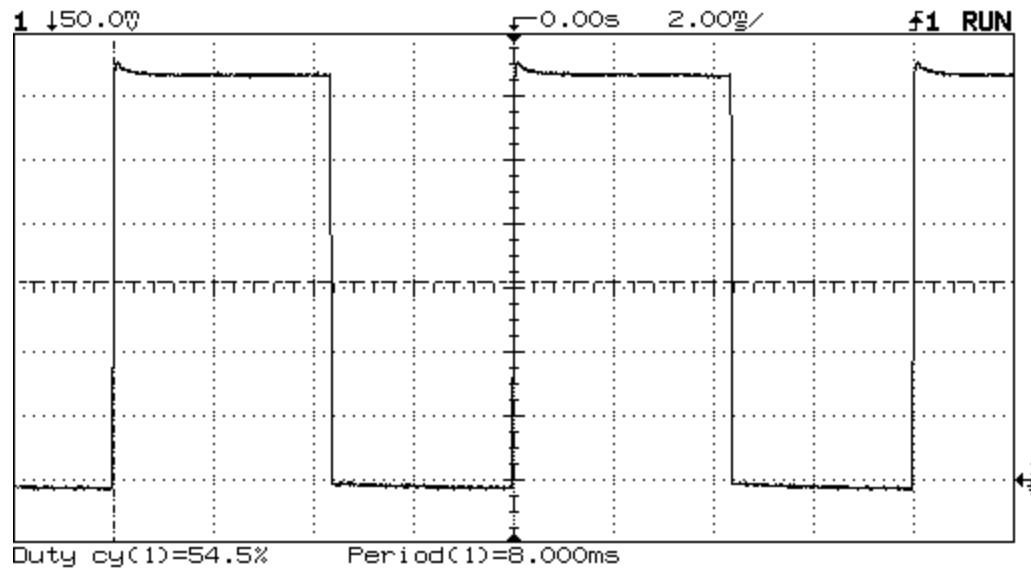
Model Name	Matchcode	Description
Colinear Mobile Whip Antenna	AN-24-2MN360-FMEM	Omni-Antenna, 2 dBi
MFB Omni-Directional Antenna	AN-24-8MN360-NM3	Omni-antenna, 8 dBi,
SPA 2400/75/9/0/V	AN-24-8PL76-SMAF	Planar Antenna, 8.5 dBi
Microceptor Antenna	AN-24-16PL24-NF	Planar Antenna, 16 dBi
SPA 2400/85/17/0/V	AN-24-16PL85-NF	Planar Antenna, 16.5 dBi, 85 Degree
Conifer 26T-2400F	AN-24-24PF8-NF	Paraflector Antenna, 24 dBi

15.207	Conducted emission test 450 kHz – 30 MHz		Passed
--------	---	--	--------

15.247 (a)	Description how the EUT meets the definition of a frequency hopping spread spectrum system		Passed
------------	---	--	--------

See Annex X for details

	Carrier Frequency separation		Passed
--	-------------------------------------	--	--------



Carrier frequency separation is 1 MHz, see page x of the report for details

	Number of Hopping Frequencies		Passed
--	--------------------------------------	--	--------

There are 80 hopping frequencies, see page x of the report for details
--

	Time of Occupancy		Passed
--	-------------------	--	--------

The dwell time per channel is **4.355 milliseconds**, see following test chart for details

	20 dB Bandwidth		Passed
--	------------------------	--	--------

The average 20 dB Bandwidth is 780 kHz, see test charts enclosed.

	Pseudorandom Frequency Hopping Sequence		
--	--	--	--

	Equal Hopping Frequency Use		
--	------------------------------------	--	--

	System Receiver Input Bandwidth		
--	--	--	--

	System Receiver Hopping Capability		
--	---	--	--

15.247 (b)	Maximum peak output power		Passed
-------------------	----------------------------------	--	--------

The maximum peak output power is 30 dBm, see test charts enclosed

	De Facto EIRP Limit		Passed
--	----------------------------	--	--------

An individual TX power level has been given for every antenna covered by this report. This power level will be selected during installation of the unit.

Model Name	Matchcode	Description	TX power setting
Colinear Mobile Whip Antenna	AN-24-2MN360-FMEM	Omni-Antenna, 2 dBi	28
MFB Omni-Directional Antenna	AN-24-8MN360-NM3	Omni-antenna, 8 dBi,	
SPA 2400/75/9/0/V	AN-24-8PL76-SMAF	Planar Antenna, 8.5 dBi	
Microceptor Antenna	AN-24-16PL24-NF	Planar Antenna, 16 dBi	
SPA 2400/85/17/0/V	AN-24-16PL85-NF	Planar Antenna, 16.5 dBi, 85 Degree	
Conifer 26T-2400F	AN-24-24PF8-NF	Paraflector Antenna, 24 dBi	

	Point-to-Point Operation		Not applicable
--	---------------------------------	--	----------------

	RF Exposure Compliance Statement		Passed
--	---	--	--------

	Installation/Operation Manual Requirements		Passed
--	---	--	--------

§15.247 (c)	Band-edge Compliance of Conducted Emissions		Passed
--------------------	--	--	--------

See test charts enclosed

	Spurios RF Conducted Emissions		Passed
--	---------------------------------------	--	--------

**Spurious RF conducted Emissions according to FCC Rules,
Part 15, Subpart C, Section 15.247**

Model:	WIMAN II
Type:	FHSS RF Modem
Serial No.:	0001
Applicant:	Airdata WIMAN Systems Inc
Test Site:	Open Field Test Site (< 1GHz) Semi-anechoic chamber (>1GHz)
Distance:	3 Meter
Date of test:	April 2000

Frequency (MHz)	Detector	Analyzer Reading (dBm)	Correction Factor (dB)	Power Level (dBm)
7225.0	Peak	-29.52	N/A	-29.52

	Spurious Radiated Emissions		Passed
--	------------------------------------	--	--------

**Field Strength of Emissions according to FCC Rules,
Part 15, Subpart C, Section 15.247**

Model:	WIMAN II
Type:	FHSS RF Modem
Serial No.:	0001
Applicant:	Airdata WIMAN Systems Inc
Test Site:	Open Field Test Site (< 1GHz) Semi-anechoic chamber (>1GHz)
Distance:	3 Meter
Date of test:	April 2000

Frequency (MHz)	Detector	Antenna Polarization	Analyzer Reading (dB μ V)	Correction Factor (dB)	Field Strength (dB μ V/m)
49.67	Quasi Peak	Horizontal	18.6	15.7	34.3
629.0	Quasi Peak	Horizontal	9.9	30.4	40.3
2406.6	Peak	Horizontal	15.37	31.0	46.37
4809.2	Peak	Vertical	15.02	28.2	43.22
7207.7	Peak	Vertical	19.91	31.0	50.91
9604.6	Peak	Horizontal	18.01	34.7	52.8
14416.0	Peak	Vertical	14.74	37.0	51.4

Sample calculation of field strength values:

$$\text{Field Strength (dB}\mu\text{V/m)} = \text{Analyzer Reading (dB}\mu\text{V)} + \text{Correction Factor (dB)}$$

Test instruments used: (see equipment list for details)
02, 13, 14, 16, 38, 40, 42, 57, 64, 67

15.247 (g)	Description how the EUT complies with the requirement of this section	---	Test performed by applicant
-------------------	--	-----	-----------------------------

15.247 (h)	Requirement to avoid frequency coordination of multiple FHSS systems		
-------------------	---	--	--

Receive mode (RX):			
Section 15.207	Conducted emission test 450 kHz - 30 MHz		Passed

**Conducted Power Line Emissions according to FCC Rules,
Part 15, Subpart C, Section 15.207**
- Receive Mode -

Model:	WIMAN II
Type:	FHSS RF Modem
Serial No.:	0001
Applicant:	Airdata WIMAN Systems Inc.
Test Site:	Shielded Room No. 2
Date of test:	April 2000

Frequency (MHz)	Detector	Analyzer Reading (dB μ V)	Limit (dB μ V/m)	Margin (dB)
0.202	Quasipeak	43.4	48.0	4.6
19.56	Quasipeak	39.7	48.0	8.3
27.715	Quasipeak	40.1	48.0	7.9
28.041	Quasipeak	40.5	48.0	7.5

Test instruments used: (see equipment list for details)
02, 13, 14, 16, 38, 40, 42, 57, 64, 67

§15.209	Radiated emission test	-	
---------	------------------------	---	--

**Field Strength of Emissions according to FCC Rules,
Part 15, Subpart C, Section 15.209**
- Receive Mode -

Model:	WIMAN II
Type:	FHSS RF Modem
Serial No.:	0001
Applicant:	Airdata WIMAN Inc.
Test Site:	Open Field Test Site (< 1GHz) Semi-anechoic chamber (>1GHz)
Distance:	3 Meter
Date of test:	April 2000

Frequency (MHz)	Detector	Antenna Polarization	Analyzer Reading (dB μ V)	Correction Factor (dB)	Field Strength (dB μ V/m)
49.67	Quasi Peak	Horizontal	18.6	15.7	34.3
629.0	Quasi Peak	Horizontal	9.9	30.4	40.3

Sample calculation of field strength values:

$$\text{Field Strength (dB}\mu\text{V/m)} = \text{Analyzer Reading (dB}\mu\text{V)} + \text{Correction Factor (dB)}$$

Test instruments used: (see equipment list for details)

02, 13, 14, 16, 38, 40, 42, 57, 64, 67

12. Referenced Regulations

All tests were performed with reference to the following regulations and standards:

<input type="checkbox"/>	FCC Part 15 Subpart A	Code of Regulations Part 15 (Radio Frequency Devices), Subpart A (General) of the Federal Communication Commission (FCC)	October 20, 1997
<input type="checkbox"/>	FCC Part 15 Subpart B	Code of Regulations Part 15 (Radio Frequency Devices), Subpart B (Unintentional Radiators) of the Federal Communication Commission (FCC)	October 20, 1997
<input checked="" type="checkbox"/>	FCC Part 15 Subpart C	Code of Regulations Part 15 (Radio Frequency Devices), Subpart C (Intentional Radiators) of the Federal Communication Commission (FCC)	October 20, 1997
<input checked="" type="checkbox"/>	ANSI C63.4	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz - 40 GHz	October, 1992
<input type="checkbox"/>	RSS-210	Radio Standards Specification RSS-210 Issue 2 for Low Power Licence-Exempt Radiocommunication Devices of Industry Canada	February 24, 1996

13. Test Charts taken during Testing