

Shenzhen Huatongwei International Inspection Co., Ltd.

1/F,Bldg 3,Hongfa Hi-tech Industrial Park,Genyu Road,Tianliao,Gongming,Shenzhen,China Phone:86-755-26748019 Fax:86-755-26748089 http://www.szhtw.com.cn

Shayna Zhu

Jeff Sten

Hours mu

TEST REPORT

Report Reference No.....: TRE16040103 R/C......:65407

FCC ID.....: N9STY-R-434

Applicant's name.....: TOYO ELECTRIC MFG. Co., LTD.

TAIWAN

Manufacturer...... T&Y ELECTRIC(SHENZHEN)Co., LTD.

Address...... ANLIANG INDUSTRIAL ZONE, HENGGANG, LONGGANG

DISTRICT, GD, CHINA

Test item description: Low-Voltage CONTROLLER

Trade Mark Holiday Brilliant Lights

Model/Type reference...... TY-R-434

Listed Model(s)...... TY-R-434-1

Standard: FCC CFR Title 47 Part 15 Subpart C Section 15.231

Date of receipt of test sample........... April 20, 2016

Date of testing...... April 21, 2016- April 29, 2016

Date of issue...... April 29, 2016

Result...... PASS

Compiled by

(position+printed name+signature)..: File administrators Shayne Zhu

Supervised by

(position+printed name+signature)..: Project Engineer Jeff Sun

Approved by

(position+printed name+signature)..: RF Manager Hans Hu

Testing Laboratory Name: Shenzhen Huatongwei International Inspection Co., Ltd

Gongming, Shenzhen, China

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Report No: TRE16040103 Page: 2 of 24 Issued: 2016-04-29

Contents

<u>1.</u>	TEST STANDARDS AND TEST DESCRIPTION	3
1.1.	Test Standards	3
1.2.	Test Description	3
<u>2 .</u>	SUMMARY	4
2.1.	Client Information	4
2.2.	Product Description	4
2.3.	EUT operation mode	5
2.4.	EUT configuration	5
2.5.	Modifications	5
<u>3 .</u>	TEST ENVIRONMENT	6
3.1.	Address of the test laboratory	6
3.2.	Test Facility	6
3.3.	Environmental conditions	7
3.4.	Statement of the measurement uncertainty	7
3.5.	Equipments Used during the Test	8
<u>4 .</u>	TEST CONDITIONS AND RESULTS	9
4.1.	Antenna requirement	9
4.2.	AC Power Conducted Emission(Not Applicable)	10
4.3.	Radiated Emission	11
4.4.	Occpied Bandwidth	16
4.5.	Deactivation Time	17
<u>5 .</u>	TEST SETUP PHOTOS OF THE EUT	18
c	EXTERNAL AND INTERNAL PHOTOS OF THE EUT	19
<u>6.</u>	EXIEKNAL AND INTERNAL PROTOS OF THE EUT	19

Report No: TRE16040103 Page: 3 of 24 Issued: 2016-04-29

1. TEST STANDARDS AND TEST DESCRIPTION

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.231: Periodic operation in the band 40.66–40.70 MHz and above 70 MHz.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

1.2. Test Description

Test Item	Section in CFR 47	Result
Conducted Emissions	15.207	N/A
Radiated & Spurious Emissions	15.205/15.209(a)/15.231(b/15.35(c)	PASS
Deactivation Time	15.231(a)(1)	PASS
Duty Cycle	15.231	PASS
Occpied Bandwidth	15.231(c)	PASS

Remark: The measurement uncertainty is not included in the test result.

Report No: TRE16040103 Page: 4 of 24 Issued: 2016-04-29

2. **SUMMARY**

2.1. Client Information

Applicant:	TOYO ELECTRIC MFG. Co., LTD.
Address:	9TH,FL 30 SEC 3 RENAI RD DAAN DISTRICT, TAIPEI 106 TAIWAN
Manufacturer: T&Y ELECTRIC(SHENZHEN)Co., LTD.	
Address:	ANLIANG INDUSTRIAL ZONE, HENGGANG, LONGGANG DISTRICT,GD,CHINA

2.2. Product Description

Name of EUT	Low-Voltage CONTROLLER
Trade Mark:	Holiday Brilliant Lights
Model No.:	TY-R-434
Listed Model(s):	TY-R-434-1
Power supply:	DC 3.0V from battery
Adapter information:	-
Operation frequency:	434.20MHz
Channel number:	1
Modulation Type:	OOK/ASK
Antenna type:	Fixed Antenna
Antenna gain:	10dBi

Note: The product model TY-R-434-1 is identical in the same PCB layout, interior structure and electrical circuits with the model TY-R-434 which tested in Shenzhen Huatongwei International Inspection Co., Ltd..The differences between TY-R-434 and TY-R-434-1 are: 1. TY-R-434 is with 1 button more than TY-R-434-1; 2. They have different model name for commercial purpose.

Report No: TRE16040103 Page: 5 of 24 Issued: 2016-04-29

2.3. EUT operation mode

The EUT has been tested under typical operating condition. The Applicant provides software to control the EUT for staying in continous transmitting mode for testing.

Note: All 4 buttons had been pre-tested and the worst case is the "COLOR" button. Also, only measurement data of worst case is recorded in the test report.

2.4. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- O supplied by the lab

\circ	Power Cable	Length (m):	/
		Shield :	1
		Detachable :	/
\circ	Multimeter	Manufacturer:	/
		Model No. :	/

2.5. Modifications

No modifications were implemented to meet testing criteria.

Report No: TRE16040103 Page: 6 of 24 Issued: 2016-04-29

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd.

Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China Phana: 86, 755, 26748040, Fay: 86, 755, 26748040

Phone: 86-755-26748019 Fax: 86-755-26748089

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories

(identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories, Date of Registration: February 28, 2015. Valid time is until February 27, 2018.

A2LA-Lab Cert. No. 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for tec hnical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing. Valid time is until December 31, 2016.

FCC-Registration No.: 317478

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FC C is maintained in our files. Registration 317478, Renewal date Jul. 18, 2014, valid time is until Jul. 18, 2017.

IC-Registration No.: 5377A&5377B

The 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377A on Dec. 31, 2013, valid time is until Dec. 31, 2016.

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377B on Dec.03, 2014, valid time is until Dec.03, 2017.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Aust ralian C-Tick mark as a result of our A2LA accreditation.

VCCI

Radiated disturbance above 1GHz measurement of Shenzhen Huatongwei International Inspection Co., Ltd. h as been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-292. Date of Registration: Dec. 24, 2013. Valid time is until Dec. 23, 2016.

Telecommunication Ports Conducted Interference Measurement of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-1837. Date of Registration: May 07, 2013. Valid time is until May 06, 2016.

DNV

Shenzhen Huatongwei International Inspection Co., Ltd. has been found to comply with the requirements of D NV towards subcontractor of EMC and safety testing services in conjunction with the EMC and Low voltage Di rectives and in the voluntary field. The acceptance is based on a formal quality Audit and follow-ups according to relevant parts of ISO/IEC Guide 17025 (2005), in accordance with the requirements of the D NV Laboratory Quality Manual towards subcontractors. Valid time is until Aug. 24, 2016.

Report No: TRE16040103 Page: 7 of 24 Issued: 2016-04-29

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C
lative Humidity:	30~60 %
Air Pressure:	950~1050mba

3.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics;Part 1" and TR-100028-02 "Electromagnetic compatibilityand Radio spectrum Matters (ERM);Uncertainties in the measurementof mobile radio equipment characteristics;Part 2 " and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Huatongwei laboratory is reported:

Test Items	Measurement Uncertainty	Notes
Transmitter power conducted	0.57 dB	(1)
Transmitter power Radiated	2.20 dB	(1)
Conducted spurious emission 9KHz-40 GHz	1.60 dB	(1)
Radiated spurious emission 9KHz-40 GHz	2.20 dB	(1)
Conducted Emission 9KHz-30MHz	3.39 dB	(1)
Radiated Emission 30~1000MHz	4.24 dB	(1)
Radiated Emissio 1~18GHz	5.16 dB	(1)
Radiated Emissio 18-40GHz	5.54 dB	(1)
Occupied Bandwidth		(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Report No: TRE16040103 Page: 8 of 24 Issued: 2016-04-29

3.5. Equipments Used during the Test

Deactivation Time & Duty Cycle & Occpied Bandwidth					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	Spectrum Analyzer	AGILENT	E4407B	MY44210775	2015/11/02
2	Climate Chamber	ESPEC	EL-10KA	05107008	2015/11/02
3	Spectrum Analyzer	Rohde&Schwarz	FSP40	1164.4391.40	2015/11/02
4	Test cable	Junkosha Inc.	J12J102248	JUL-06-14- 016	2015/12/05
5	Temporary antenna connector	/	1	1	/

The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

tempt	temporary antenna connector is listed in the equipment list.				
Trans	Transmitter spurious emissions				
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	EMI TEST RECEIVER	Rohde&Schwarz	ESI 26	100009	2015/11/02
2	RF TEST PANEL	Rohde&Schwarz	TS / RSP	335015/ 0017	N/A
3	EMI TEST SOFTWARE	Rohde&Schwarz	ESK1	N/A	N/A
4	Ultra-Broadband Antenna	ShwarzBeck	VULB9163	538	2015/11/08
5	HORN ANTENNA	ShwarzBeck	9120D	1011	2015/11/08
6	Loop Antenna	Rohde&Schwarz	HZ-9	838622\013	2015/11/08
7	Pre-amplifer	SCHWARZBECK	BBV 9743	9743-0022	2015/11/02
8	TURNTABLE	MATURO	TT2.0		N/A
9	ANTENNA MAST	MATURO	TAM-4.0-P		N/A
10	EMI TEST SOFTWARE	Audix	E3	N/A	N/A
11	Test cable	Siva Cables Italy	RG 58A/U	W14.02	2015/12/05

The Cal.Interval was one year

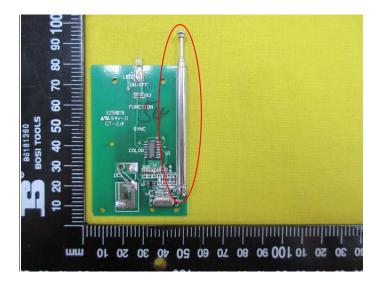
Report No: TRE16040103 Page: 9 of 24 Issued: 2016-04-29

4. TEST CONDITIONS AND RESULTS

4.1. Antenna requirement

Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Refer to statement below for compliance.

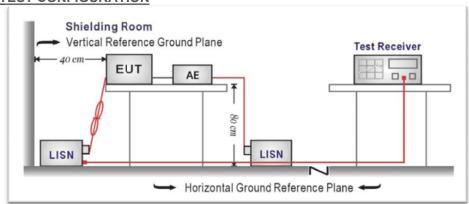
The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Test Result:

The antenna is integral antenna, the best case gain of the antenna is 10dBi

Report No: TRE16040103 Page: 10 of 24 Issued: 2016-04-29

4.2. AC Power Conducted Emission(Not Applicable)


LIMIT

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Frequency	Maximum RF Line Voltage (dBμV)		
(MHz)	Q.P.	Ave.	
0.15 - 0.50	66-56*	56-46*	
0.50 - 5.00	56	46	
5.00 - 30.0	60	50	

^{*} Decreasing linearly with the logarithm of the frequency

TEST CONFIGURATION

TEST PROCEDURE

- The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received DC5V power from the adapter, the adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

TEST RESULTS

Not applicable to this device.

Report No: TRE16040103 Page: 11 of 24 Issued: 2016-04-29

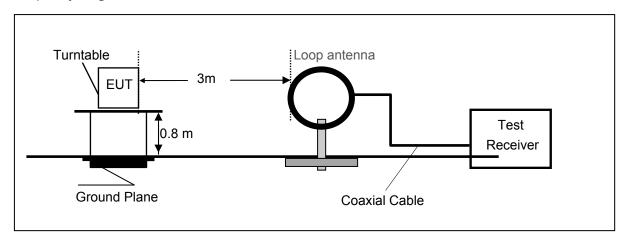
4.3. Radiated Emission

LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table:

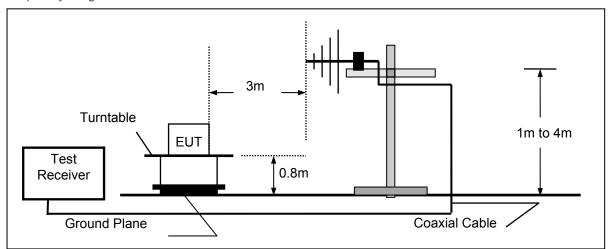
Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009 - 0.490	300	20*log(2400/F(kHz))	2400/F(kHz)
0.490 - 1.705	30	20*log(24000/F(kHz))	24000/F(kHz)
1.705 - 30.0	30	29.54	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

In addition to the provisions of §15.205, the field strength of emissions from intentional radiators operated under this section shall not exceed the following:

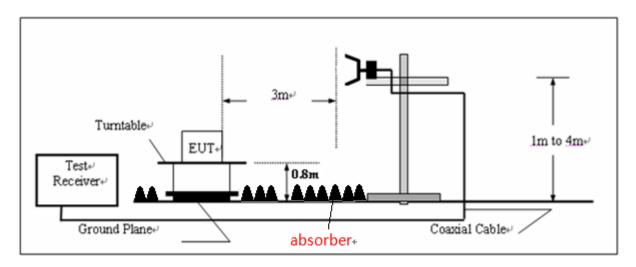

Funda- mental fre- quency (MHz)	Field strength of funda- mental (microvolts/ meter)	Field strength of spurious emissions (microvolts/meter)
40.66– 40.70.	2,250	225
70-130	1,250	125
130-174	¹ 1,250 to 3,750	¹ 125 to 375
174-260	3,750	375
260-470	¹ 3,750 to 12,500	¹ 375 to 1,250
Above 470	12,500	1,250

¹ Linear interpolations.

TEST CONFIGURATION


Radiated Emission Test Set-Up

Frequency range 9KHz - 30MHz



Report No: TRE16040103 Page: 12 of 24 Issued: 2016-04-29

Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° C to acquire the highest emissions from EUT
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. The fundamental frequency is 434.20MHz, So the radiation emissions frequency range were tested from 30MHz to 5GHz.

For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissionsat the specified measurement distance, while keeping the measurement antenna aimed at the source ofemissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurementantenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 mabove the ground or reference ground plane.

Report No: TRE16040103 Page: 13 of 24 Issued: 2016-04-29

TEST RESULTS

The emissions from 9kHz to 5GHz are measured peak and average level, below 1GHz measured QP level, detailed test data please see below. Besides, we tested 3 direction and recorded the worst data from 30MHz to 5GHz.

The frequency spectrum above 1 GHz for Transmitter was investigated. All emission not reported are much lower than the prescribed limits. Set the RBW=1MHz,VBW=3MHz for Peak Detector while the Average Result calculated from PEAK, the Average Result =Peak Field Strength+Duty Cycle Correction Factor.

Radiated emission(Below 30MHz)

Emissions detected are more than 20 dB below the limit line(s),

Result of Tx mode (9KHz-30MHz):PASS

Frequency (MHz)	Corrected Reading (dBµV/m)@3m	FCC Limit (dBµV/m) @3m	Margin (dB)	Detector
0.0135	72.26	125.00	52.74	PK
0.0467	68.64	114.22	45.58	PK
0.5041	61.87	113.55	51.68	PK
0.6784	59.83	110.97	51.14	PK
1.8450	35.65	109.54	73.89	PK
15.1371	28.34	109.54	81.20	PK

Remark: At frequencies below 30MHz, Limit 3m(dBuV)= Limit xm(dBuV)+20 log(xm/3m); At frequencies below 30MHz, Limit 3m(dBuV)= Limit xm(dBuV)+40 log(xm/3m),x replace the number 10.30.300.

Radiated emission of fundamental emission

Frequency (MHz)	Corrected Reading (dBµV/m)@3m	FCC Limit (dBµV/m) @3m	Margin (dB)	Detector	Polarization
434.20	79.79	100.83	21.04	PK	Horizontal
434.20	70.53	80.83	10.3	AV	Horizontal
434.20	87.23	100.83	13.6	PK	Vertical
434.20	77.97	80.83	2.86	AV	Vertical

Report No: TRE16040103 Page: 14 of 24 Issued: 2016-04-29

Spurious radiated emission

Spurious radiated emission						
Frequency (MHz)	Corrected Reading (dBµV/m)@3m	FCC Limit (dBµV/m) @3m	Margin (dB)	Detector	Polarization	
871.32	58.14	80.83	22.69	PK	Horizontal	
1303.13	64.11	80.83	16.72	PK	Horizontal	
1737.77	67.27	80.83	13.56	PK	Horizontal	
2606.45	50.18	80.83	30.65	PK	Horizontal	
3038.28	45.09	80.83	35.74	PK	Horizontal	
3473.00	42.86	80.83	37.97	PK	Horizontal	
3906.82	40.78	80.83	40.05	PK	Horizontal	
871.32	48.88	60.83	11.95	AV	Horizontal	
1303.13	54.85	60.83	5.98	AV	Horizontal	
1737.77	58.01	60.83	2.82	AV	Horizontal	
2606.45	40.92	60.83	19.91	AV	Horizontal	
3038.28	35.83	60.83	25	AV	Horizontal	
3473.00	33.60	60.83	27.23	AV	Horizontal	
3906.82	31.52	60.83	29.31	AV	Horizontal	
868.26	66.28	80.83	14.55	PK	Vertical	
1303.13	71.66	80.83	9.17	PK	Vertical	
1737.77	74.99	80.83	5.84	PK	Vertical	
2169.55	52.94	80.83	27.89	PK	Vertical	
2606.45	51.27	80.83	29.56	PK	Vertical	
3038.28	44.94	80.83	35.89	PK	Vertical	
3473.00	46.75	80.83	34.08	PK	Vertical	
868.26	57.02	60.83	3.81	AV	Vertical	
1303.13	59.10	60.83	1.73	AV	Vertical	
1737.77	59.13	60.83	1.70	AV	Vertical	
2169.55	43.68	60.83	17.15	AV	Vertical	
2606.45	42.01	60.83	18.82	AV	Vertical	
3038.28	35.68	60.83	25.15	AV	Vertical	
3473.00	37.49	60.83	23.34	AV	Vertical	

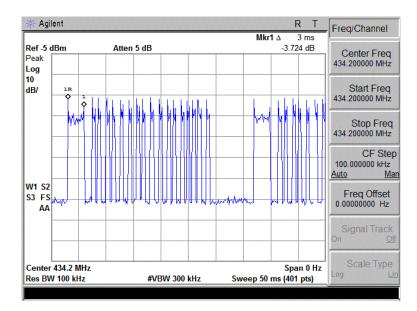
Note 1:

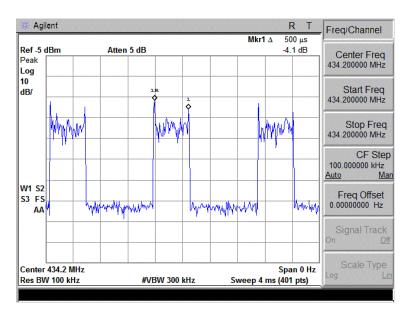
1. According to section 15.35(b), when average radiated emission measurements are specified, including emission measurement below 1000MHz, there also is limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit for the frequency being investigated.

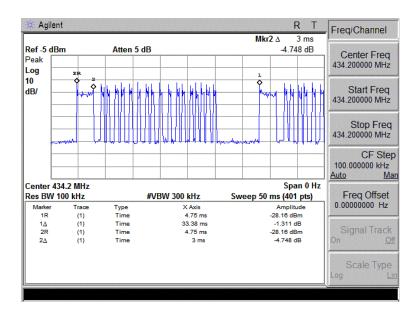
Note 2: Average Result = Peak Field Strength+Duty Cycle Correction Factor.

Note 3: Duty Cycle Correction Factor value refers to below.

Duty Cycle Correction Factor

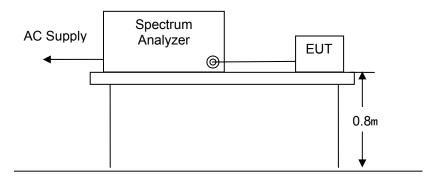

 TX_{on} = TX_{on} (narrower pulses)+ TX_{on} (winder pulses)=Time of one narrower pulse X Number of narrower pulses + Time of one winder pulse X Number of winder pulses


Number of winder pulses=1, Number of narrower pulses=17


Duty Cycle = $TX_{on}/(TX_{on} + TX_{off}) \times 100\% = [3msX1 + 0.5msX17)]/33.38msX100\% = 34.45\%$

Duty Cycle Correction Factor = 20log (Duty Cycle) =20log(0.3445)= -9.26

Report No: TRE16040103 Page: 15 of 24 Issued: 2016-04-29

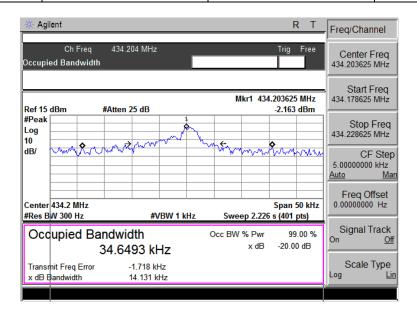

Report No: TRE16040103 Page: 16 of 24 Issued: 2016-04-29

4.4. Occpied Bandwidth

Limit

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70MHz and below 900MHz

TEST CONFIGURATION

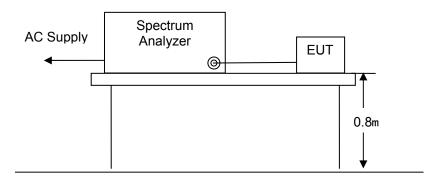


TEST PROCEDURE

- 1.As required by 47 CFR 15.231(c):The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70MHz and below 900MHz.Bandwidth is determined at the points 20dB down from the modulated carrier.
- 2. The EUT connected to the spectrum analyzer was operated in linear scale and zero span mode after tuning to the transmitter carrier frequency.

TEST RESULTS

Channel Frequency (MHz)	20dB Bandwidth (MHz)	Limit (MHz)	Result
434.20	0.014131	0.25%*434.20=1.0855	PASS

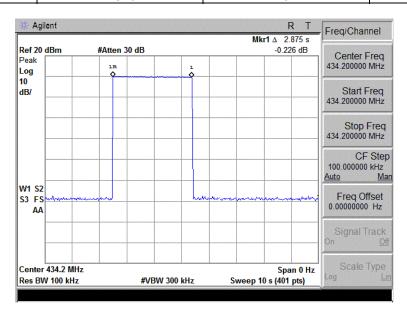

Report No: TRE16040103 Page: 17 of 24 Issued: 2016-04-29

4.5. Deactivation Time

LIMIT

A manually operated transmitter shall employ a switch that will auto-matically deactivate the transmitter within not more than 5 seconds of being released.

TEST CONFIGURATION

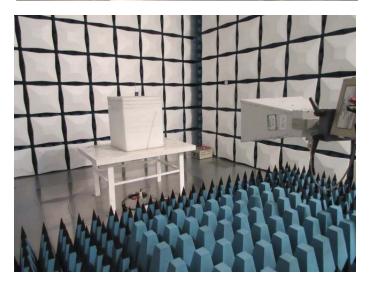

TEST PROCEDURE

- 1 The EUT was placed on a wooded table which is 0.8m height and close to receiver antenna of spectrum analyzer.
- 2 The spectrum analyzer resolution bandwidth was set to 100kHz and video bandwidth was set to 300kHz to encompass all significant spectral components during the test. The spectrum analyzer was operated in linear scale and zero span mode after tuning to the transmitter carrier frequency.

TEST RESULTS

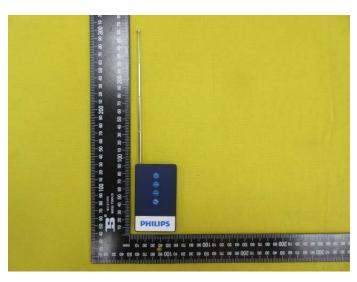
Note: The transmitter was manually activated, and the carrier frequency 434.20MHz:

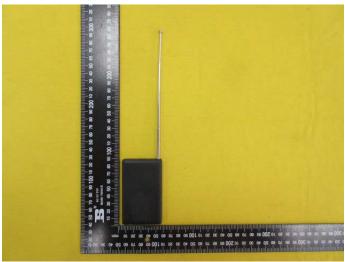
Frequency (MHz)	One transmission time (s)	Limit (s)	Result	
434.20	2.875	5	Pass	



Report No: TRE16040103 Page: 18 of 24 Issued: 2016-04-29

5. Test Setup Photos of the EUT

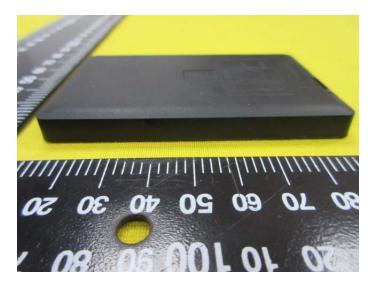



Report No: TRE16040103 Page: 19 of 24 Issued: 2016-04-29

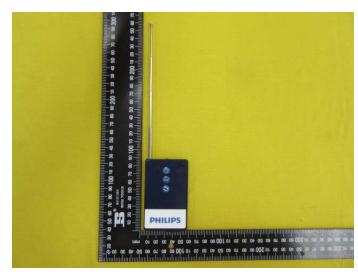
6. External and Internal Photos of the EUT

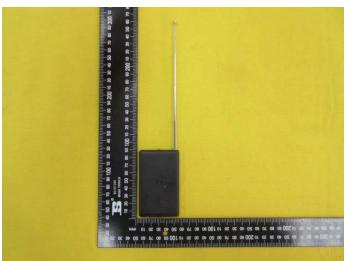
TY-R-434:

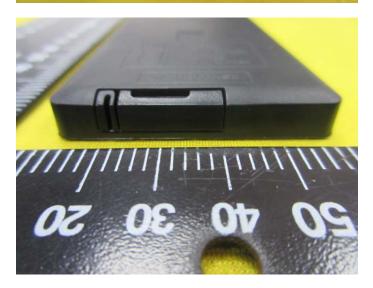
External Photos



Report No: TRE16040103 Page: 20 of 24 Issued: 2016-04-29

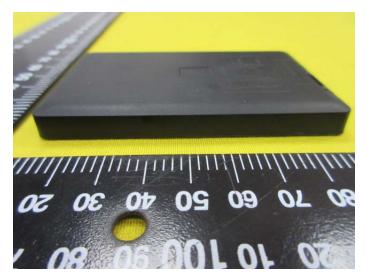




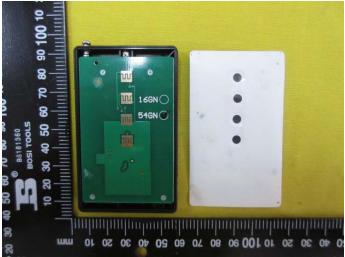


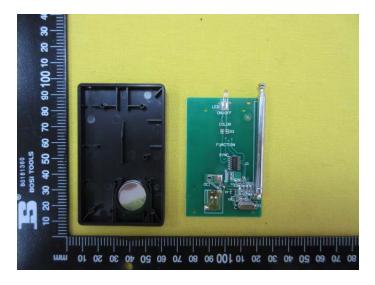
Report No: TRE16040103 Page: 21 of 24 Issued: 2016-04-29

TY-R-434-1:

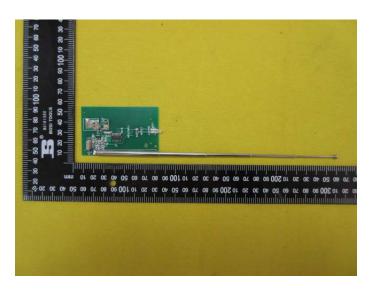


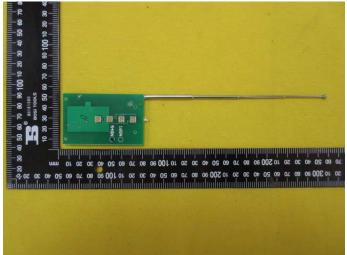
Report No: TRE16040103 Page: 22 of 24 Issued: 2016-04-29





Report No: TRE16040103 Page: 23 of 24 Issued: 2016-04-29


Internal Photos



Report No: TRE16040103 Page: 24 of 24 Issued: 2016-04-29

.....End of Report.....