

FCC RADIO TEST REPORT

Applicant's company	Cybertan Technology Inc.
Applicant Address	No. 99, Park Avenue III, Science-based Industrial Park, Hsinchu, 308 Taiwan
FCC ID	N89-ZE250
Manufacturer's company	Cybertan Technology Inc.
Manufacturer Address	No. 99, Park Avenue III, Science-based Industrial Park, Hsinchu, 308 Taiwan

Product Name	Quark IoT gateway
Brand Name	CyberTAN
Model No.	ZE250-A-IN
Test Rule Part(s)	47 CFR FCC Part 15 Subpart C § 15.249
Test Freq. Range	902~928MHz
Received Date	Mar. 09, 2016
Final Test Date	May 24, 2016
Submission Type	Original Equipment

Statement

Test result included is only for the Z-wave of the product.

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in **ANSI C63.10-2013** and **47 CFR FCC Part 15 Subpart C**.

The test equipment used to perform the test is calibrated and traceable to NML/ROC.

Table of Contents

1. VERIFICATION OF COMPLIANCE	1
2. SUMMARY OF THE TEST RESULT	2
3. GENERAL INFORMATION	3
3.1. Product Details.....	3
3.2. Accessories.....	3
3.3. Table for Filed Antenna.....	4
3.4. Table for Carrier Frequencies	5
3.5. Table for Test Modes.....	5
3.6. Table for Testing Locations.....	5
3.7. Table for Supporting Units	6
3.8. Duty Cycle.....	6
3.9. Test Configurations	7
4. TEST RESULT	11
4.1. AC Power Line Conducted Emissions Measurement.....	11
4.2. Field Strength of Fundamental Emissions Measurement.....	15
4.3. 20dB Spectrum Bandwidth Measurement	18
4.4. Radiated Emissions Measurement.....	20
4.5. Band Edge Emissions Measurement	27
4.6. Antenna Requirements	29
5. LIST OF MEASURING EQUIPMENTS	30
6. MEASUREMENT UNCERTAINTY.....	31
APPENDIX A. TEST PHOTOS	A1 ~ A5

History of This Test Report

Report No.: FR632503AD

Project No: CB10505270

1. VERIFICATION OF COMPLIANCE

Product Name : Quark IoT gateway
Brand Name : CyberTAN
Model Name : ZE250-A-IN
Applicant : Cybertan Technology Inc.
Test Rule Part(s) : 47 CFR FCC Part 15 Subpart C § 15.249

Sportun International as requested by the applicant to evaluate the EMC performance of the product sample received on Mar. 09, 2016 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

Reviewed By:

Sam Chen

SPORTON INTERNATIONAL INC.

2. SUMMARY OF THE TEST RESULT

Applied Standard: 47 CFR FCC Part 15 Subpart C			
Part	Rule Section	Description of Test	Result
4.1	15.207	AC Power Line Conducted Emissions	Complies
4.2	15.249(a)	Field Strength of Fundamental Emissions	Complies
4.3	15.215(c)	20dB Spectrum Bandwidth	Complies
4.4	15.249(a)/(d)	Radiated Emissions	Complies
4.5	15.249(d)	Band Edge Emissions	Complies
4.6	15.203	Antenna Requirements	Complies

3. GENERAL INFORMATION

3.1. Product Details

Items	Description
Power Type	From power adapter
Modulation	GFSK
Data Rate	100kbps
Frequency Range	902~928MHz
Operation Frequency Range	916MHz
Channel Number	1
Channel Band Width (99%)	0.11 MHz
Max. Field Strength	93.87 dBuV/m at 3m (QP)
Carrier Frequencies	Please refer to section 3.3
Antenna	Please refer to section 3.3

3.2. Accessories

Power	Brand	Model	Rating
Adapter	Ktec	KSAS0120500200HU	INPUT: 100-240V, 50/60Hz, 0.4A OUTPUT: 5.0V, 2.0A
Others			
RJ-45 cable, non-shielded, 1m			

3.3. Table for Filed Antenna

For WiFi and Bluetooth Antenna:

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	Airgain	M2410CMRSU	PIFA Antenna	U.FL	2.4
2	Airgain	M2410DCR	PIFA Antenna	U.FL	1.5

For Zigbee and Z-wave Antenna:

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	
					Zigbee	Z-wave
3	Airgain	M815DSU	PIFA Antenna	U.FL	2.2	0.8

Note: The EUT has three antennas.

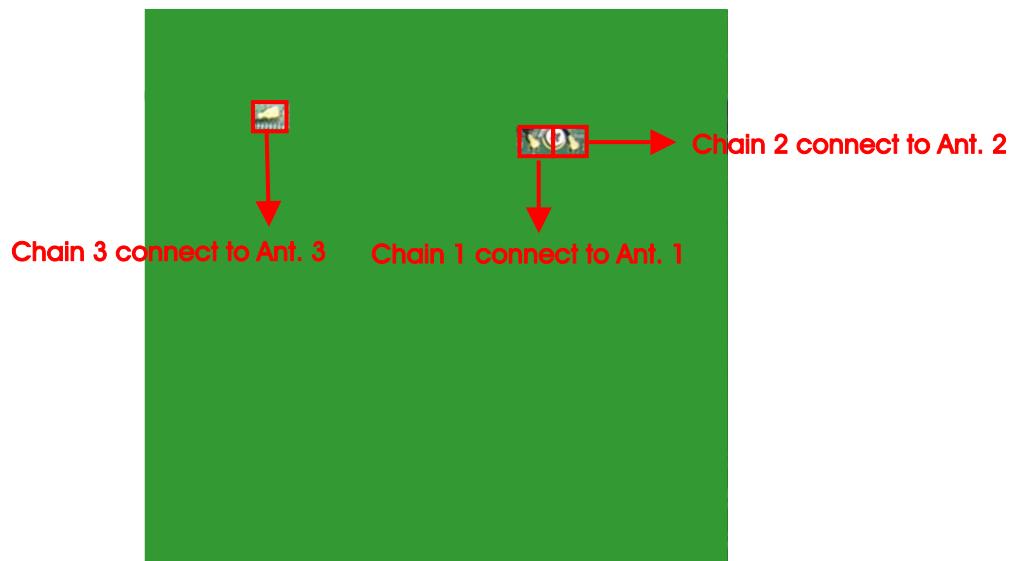
For IEEE 802.11b/g/n mode (1TX/1RX):

The EUT supports the antenna with TX and RX diversity functions.

Both Ant.1 and Ant.2 support transmit and receive functions, but only one of them will be used at one time.

The Ant.1 generated the worst case, so it was selected to test and record in the report.

For Bluetooth mode (1TX, 1RX):


The EUT supports the antenna with TX and RX diversity functions.

Both Ant.1 and Ant.2 support transmit and receive functions, but only one of them will be used at one time.

The Ant.2 generated the worst case, so it was selected to test and record in the report.

For Zigbee and Z-wave mode (1TX, 1RX):

Only Ant. 3 can be used as transmitting antenna and receiving antenna.

3.4. Table for Carrier Frequencies

Frequency Band	Channel No.	Frequency
902~928MHz	1	916 MHz

3.5. Table for Test Modes

Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Channel	Antenna
AC Power Line Conducted Emissions	Normal Link	-	-
Field Strength of Fundamental Emissions 20dB Spectrum Bandwidth	CTX	1	3
Radiated Emissions 30MHz ~ 1GHz	Normal Link	-	-
Radiated Emissions 1GHz~10 th Harmonic	CTX	1	3
Band Edge Emissions	CTX	1	3

Note1: The EUT can only be used at Z axis position.

Note2: The micro USB port is upgrading firmware only.

The following test modes were performed for all tests:

For Conducted Emission test:

Mode 1. Normal Link - EUT

For Radiated Emission test (Below 1GHz):

Mode 1. Normal Link - EUT

For Radiated Emission test (Above 1GHz):

Mode 1. CTX

For Co-location MPE Test:

The EUT could be applied with 2.4GHz WLAN function, Bluetooth function, Zigbee and Z-wave function; therefore Co-location Maximum Permissible Exposure (Please refer to FA632503) test is added for simultaneously transmit among 2.4GHz WLAN function, Bluetooth function, Zigbee and Z-wave function.

3.6. Table for Testing Locations

Test Site Location					
Address:	No.8, Lane 724, Bo-ai St., Jhubei City, Hsinchu County 302, Taiwan, R.O.C.				
TEL:	886-3-656-9065				
FAX:	886-3-656-9085				
Test Site No.	Site Category	Location	FCC Designation No.	IC File No.	VCCI Reg. No
03CH01-CB	SAC	Hsin Chu	TW0006	IC 4086D	-
CO01-CB	Conduction	Hsin Chu	TW0006	IC 4086D	-
TH01-CB	OVEN Room	Hsin Chu	-	-	-

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC).

3.7. Table for Supporting Units

For Test Site No: CO01-CB

Support Unit	Brand	Model	FCC ID
NB*3	DELL	E6430	DoC
Z-wave	Sigma Designs	ZM5202AU-CME3R	DoC
Zigbee	MMB Networks	MMB ZM100A10	DoC
Bluetooth	Azurewave	AW-NB165NF	DoC
AP	CBT	EWW605-A1	DoC
Flash disk3.0	Transcend	639205 7755	DoC

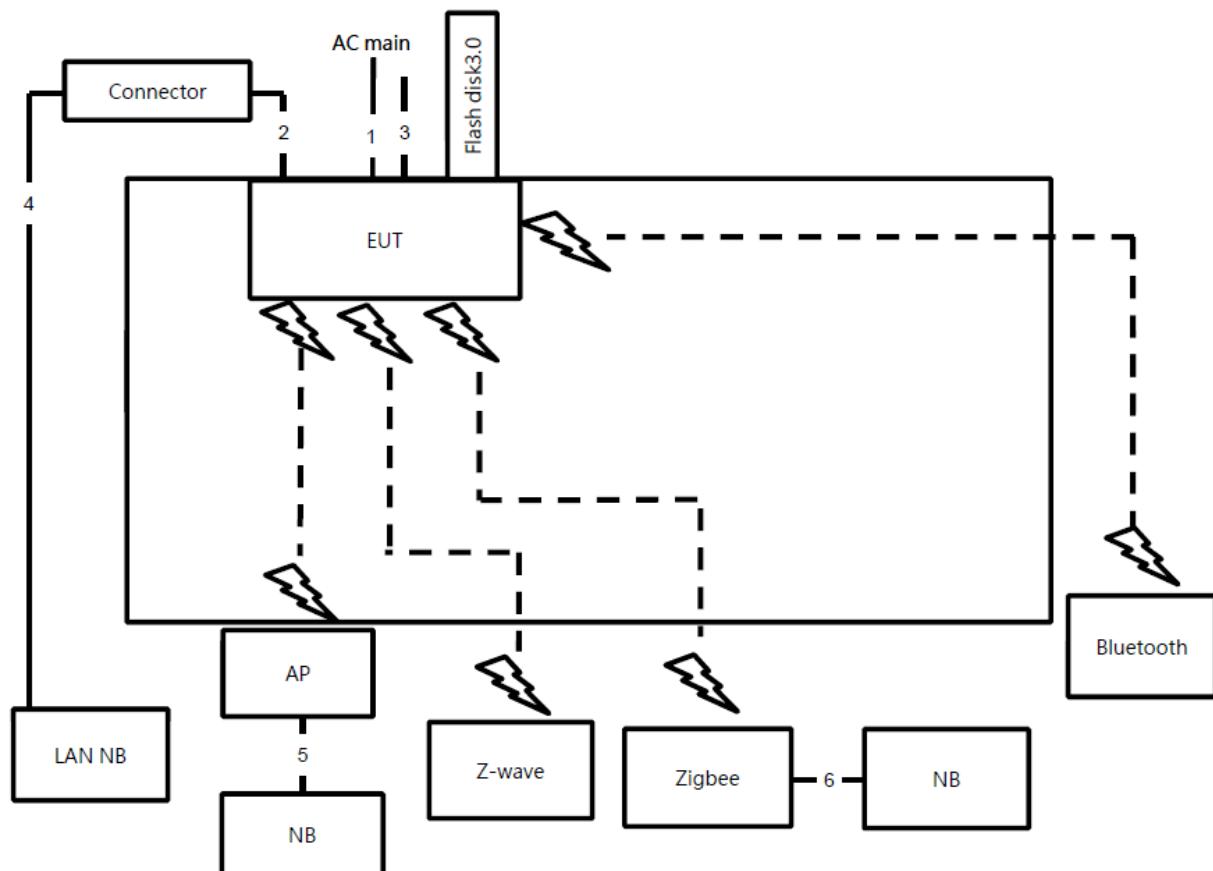
For Test Site No: 03CH01-CB (Below 1GHz)

Support Unit	Brand	Model	FCC ID
NB*3	DELL	E4300	DoC
Z-wave	Sigma Designs	ZM5202AU-CME3R	DoC
Zigbee	MMB Networks	MMB ZM100A10	DoC
Bluetooth	Azurewave	AW-NB165NF	DoC
AP	CBT	EWW605-A1	DoC
Flash disk3.0	Transcend	639205 7755	DoC

For Test Site No: 03CH01-CB (Above 1GHz)

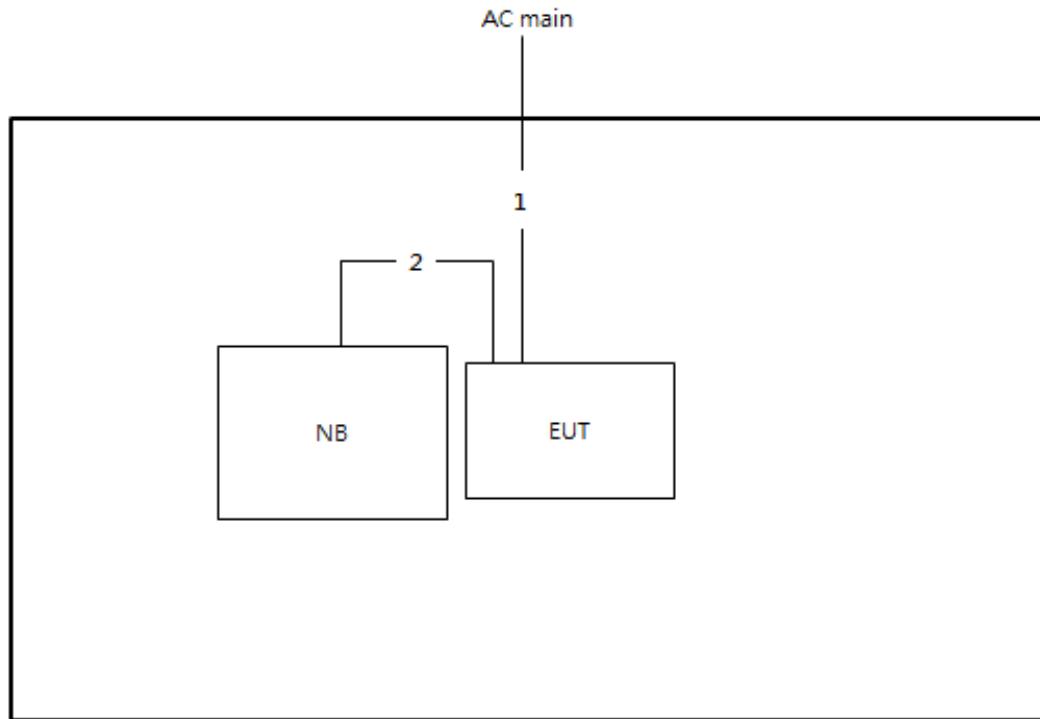
Support Unit	Brand	Model	FCC ID
NB	DELL	E4300	DoC

For Test Site No: TH01-CB


Support Unit	Brand	Model	FCC ID
NB	DELL	E4300	DoC

3.8. Duty Cycle

On Time (ms)	On+Off Time (ms)	Duty Cycle (%)	Duty Factor (dB)	1/T Minimum VBW (kHz)
3.400	58.050	5.86	12.32	0.29

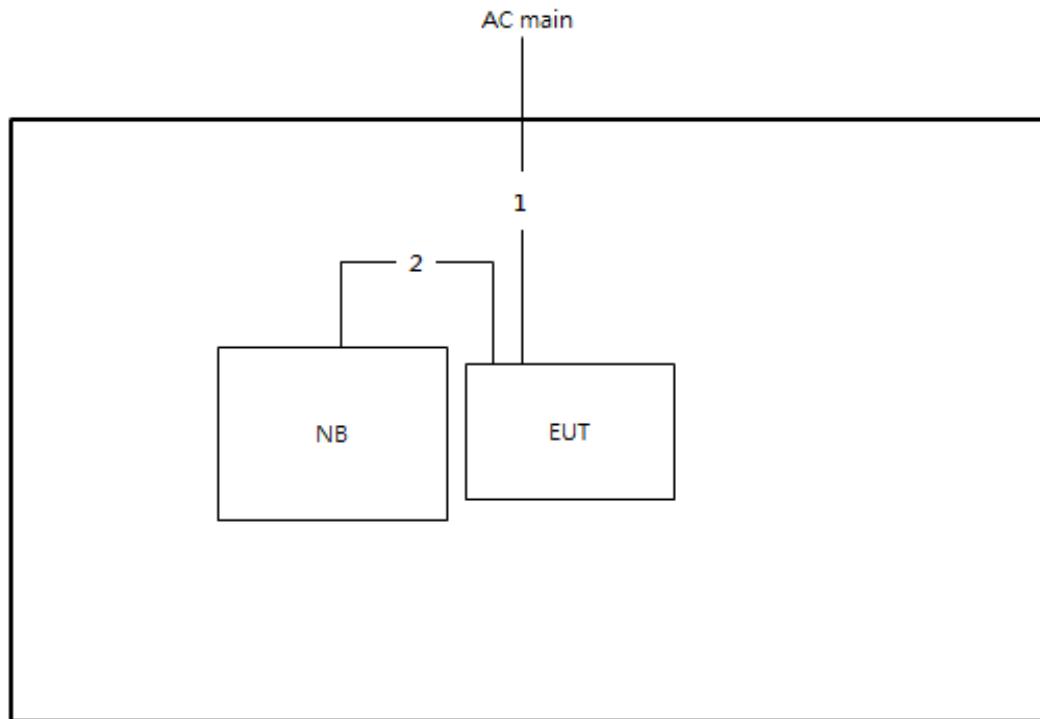

3.9. Test Configurations

3.9.1. AC Power Line Conduction Emissions Test Configuration

Item	Connection	Shielded	Length
1	Power cable	No	1.5m
2	RJ-45 cable	No	1m
3	USB cable	Yes	1m
4	RJ-45 cable	No	10m
5	RJ-45 cable	No	1.5m
6	USB cable	Yes	1m

3.9.2. Field Strength of Fundamental Emissions Test Configuration

Item	Connection	Shielded	Length
1	Power cable	No	1.5m
2	RJ-45 cable	No	1m


3.9.3. Radiation Emissions Test Configuration

Test Configuration: 30MHz~1GHz

Item	Connection	Shielded	Length
1	Power cable	No	1.5m
2	RJ-45 cable	No	1m
3	USB cable	Yes	1m
4	RJ-45 cable	No	10m
5	RJ-45 cable	No	1.5m
6	USB cable	Yes	1m

Test Configuration: Above 1GHz

Item	Connection	Shielded	Length
1	Power cable	No	1.5m
2	RJ-45 cable	No	1m

4. TEST RESULT

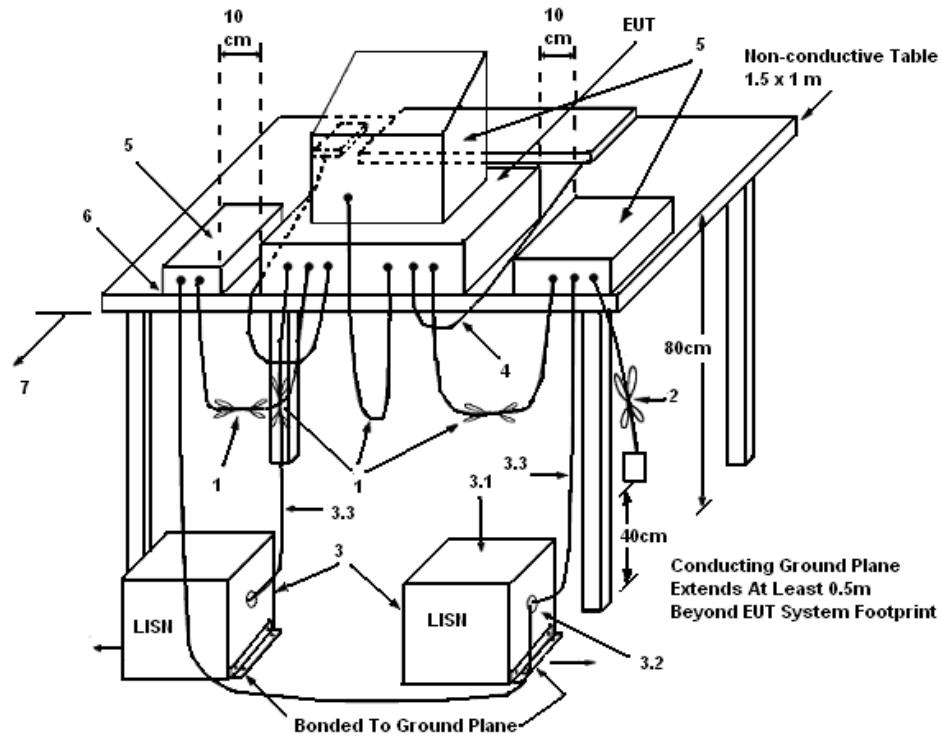
4.1. AC Power Line Conducted Emissions Measurement

4.1.1. Limit

For this product which is designed to be connected to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Frequency (MHz)	QP Limit (dBuV)	AV Limit (dBuV)
0.15~0.5	66~56	56~46
0.5~5	56	46
5~30	60	50

4.1.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the receiver.

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

4.1.3. Test Procedures

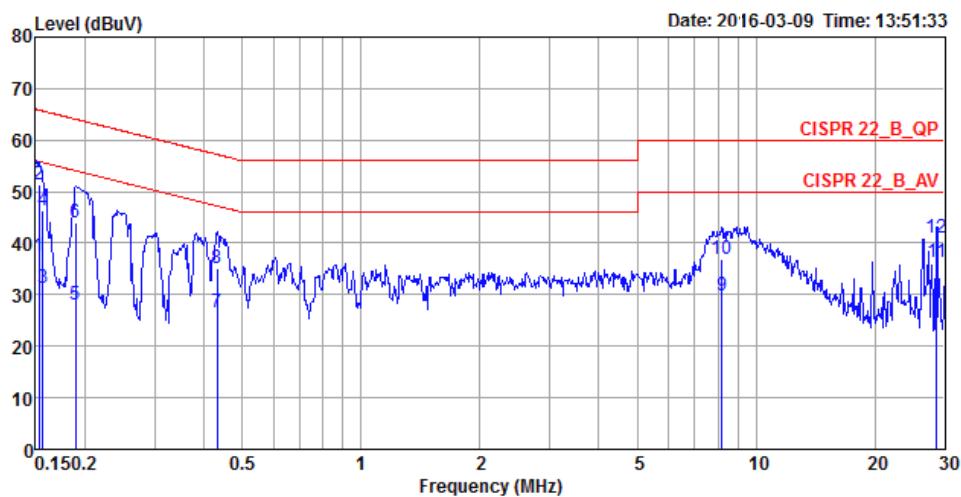
1. Configure the EUT according to ANSI C63.10. The EUT or host of EUT has to be placed 0.4 meter far from the conducting wall of the shielding room and at least 80 centimeters from any other grounded conducting surface.
2. Connect EUT or host of EUT to the power mains through a line impedance stabilization network (LISN).
3. All the support units are connected to the other LISNs. The LISN should provide 50uH/50ohms coupling impedance.
4. The frequency range from 150 kHz to 30 MHz was searched.
5. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
6. The measurement has to be done between each power line and ground at the power terminal.

4.1.4. Test Setup Layout

LEGEND:

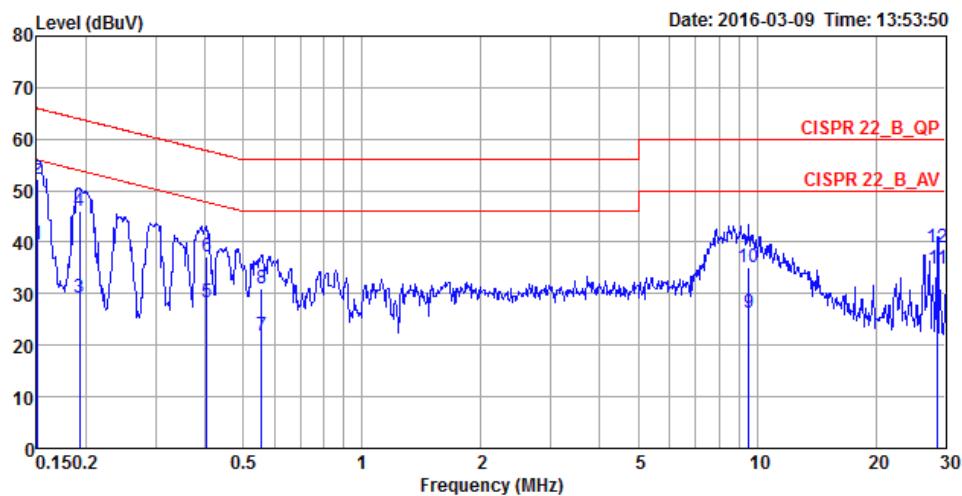
- (1) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- (2) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- (3) EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50Ω . LISN can be placed on top of, or immediately beneath, reference ground plane.
 - (3.1) All other equipment powered from additional LISN(s).
 - (3.2) Multiple outlet strip can be used for multiple power cords of non-EUT equipment.
 - (3.3) LISN at least 80 cm from nearest part of EUT chassis.
- (4) Cables of hand-operated devices, such as keyboards, mice, etc., shall be placed as for normal use.
- (5) Non-EUT components of EUT system being tested.
- (6) Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop.
- (7) Rear of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane.

4.1.5. Test Deviation


There is no deviation with the original standard.

4.1.6. EUT Operation during Test

The EUT was placed on the test table and programmed in normal function.


4.1.7. Results of AC Power Line Conducted Emissions Measurement

Temperature	20°C	Humidity	60%
Test Engineer	Deven Huang	Phase	Line
Configuration	Normal Link		

Freq	Level	Over Limit	Limit Line	Read Level	LISN		Cable Loss	Pol/Phase	Remark
					MHz	dBuV			
1	0.1532	37.51	-18.31	55.82	27.56	9.93	0.02	LINE	Average
2	0.1532	51.22	-14.60	65.82	41.27	9.93	0.02	LINE	QP
3	0.1565	31.15	-24.50	55.65	21.20	9.93	0.02	LINE	Average
4	0.1565	46.39	-19.26	65.65	36.44	9.93	0.02	LINE	QP
5	0.1894	28.03	-26.03	54.06	18.08	9.93	0.02	LINE	Average
6	0.1894	43.98	-20.08	64.06	34.03	9.93	0.02	LINE	QP
7	0.4328	26.49	-20.71	47.20	16.52	9.93	0.04	LINE	Average
8	0.4328	35.17	-22.03	57.20	25.20	9.93	0.04	LINE	QP
9	8.1916	29.69	-20.31	50.00	19.37	10.14	0.18	LINE	Average
10	8.1916	36.85	-23.15	60.00	26.53	10.14	0.18	LINE	QP
11	28.6825	36.42	-13.58	50.00	25.49	10.65	0.28	LINE	Average
12	28.6825	41.01	-18.99	60.00	30.08	10.65	0.28	LINE	QP

Temperature	20°C	Humidity	60%
Test Engineer	Deven Huang	Phase	Neutral
Configuration	Normal Link		

Freq	Level	Over	Limit	Read	LISN	Cable	Pol/Phase	Remark
		Line	dBuV	Level	Factor	Loss		
MHz	dBuV	dB	dBuV	dBuV	dB	dB		
1	0.1508	39.68	-16.28	55.96	29.88	9.78	0.02	NEUTRAL
2	0.1508	52.39	-13.57	65.96	42.59	9.78	0.02	NEUTRAL
3	0.1924	29.31	-24.62	53.93	19.50	9.79	0.02	NEUTRAL
4	0.1924	46.06	-17.87	63.93	36.25	9.79	0.02	NEUTRAL
5	0.4040	28.45	-19.32	47.77	18.62	9.79	0.04	NEUTRAL
6	0.4040	37.14	-20.63	57.77	27.31	9.79	0.04	NEUTRAL
7	0.5552	21.93	-24.07	46.00	12.09	9.80	0.04	NEUTRAL
8	0.5552	31.02	-24.98	56.00	21.18	9.80	0.04	NEUTRAL
9	9.5521	26.31	-23.69	50.00	16.08	10.00	0.23	NEUTRAL
10	9.5521	35.16	-24.84	60.00	24.93	10.00	0.23	NEUTRAL
11	28.6840	34.69	-15.31	50.00	24.08	10.33	0.28	NEUTRAL
12	28.6840	38.95	-21.05	60.00	28.34	10.33	0.28	NEUTRAL

Note:

Level = Read Level + LISN Factor + Cable Loss

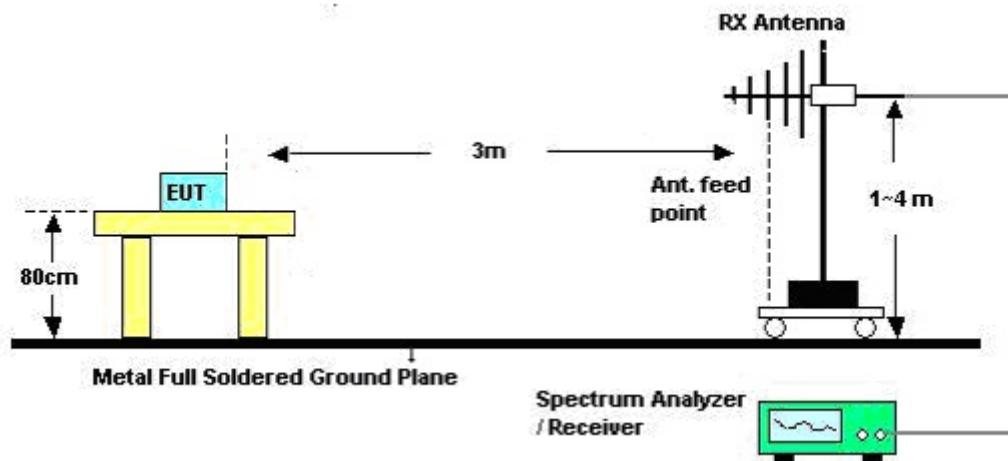
4.2. Field Strength of Fundamental Emissions Measurement

4.2.1. Limit

The field strength of fundamental emissions within these bands specified at a distance of 3 meters (measurement instrumentation employing an average detector) shall comply with the following table.

Frequency Band (MHz)	Fundamental Emissions Limit (dBuV/m) at 3m
902~928MHz	94 (QP)

4.2.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Power Meter Parameter	Setting
RBW	100 kHz
VBW	300 kHz
Detector	QP
Trace	Max Hold
Sweep Time	Auto

4.2.3. Test Procedures

1. Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
5. For Fundamental emissions, use 100kHz VBW and 300kHz RBW for QP reading in spectrum analyzer.
6. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.

4.2.4. Test Setup Layout

4.2.5. Test Deviation

There is no deviation with the original standard.

4.2.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.2.7. Test Result of Field Strength of Fundamental Emissions

Temperature	22°C	Humidity	54%
Test Engineer	Clemens Fang/ Gino Huang	Configurations	Channel 1
Test Date	May 17, 2016		

Channel 1

Freq	Level	Limit	Over	Read	Cable	Antenna	Preamp	A/Pos	T/Pos	Remark	Pol/Phase
		Line	Limit	Level	Loss	Factor	Factor	cm	deg		
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg	
1	898.20	28.83	46.00	-17.17	31.60	2.40	27.28	32.45	100	265 QP	VERTICAL
2	916.00	93.87	93.98	-0.11	96.50	2.41	27.42	32.46	100	269 QP	VERTICAL
3	928.00	38.95	46.00	-7.05	41.48	2.42	27.51	32.46	100	301 QP	VERTICAL

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

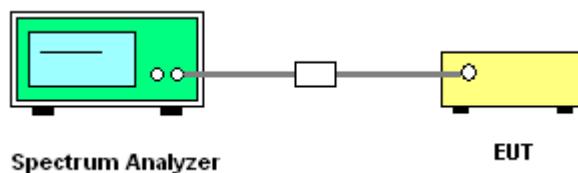
Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

4.3. 20dB Spectrum Bandwidth Measurement

4.3.1. Limit

Intentional radiators must be designed to ensure that the 20 dB bandwidth of the emissions in the specific band (902~928MHz).

4.3.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> 20dB Bandwidth
RBW	10 kHz
VBW	10 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

4.3.3. Test Procedures

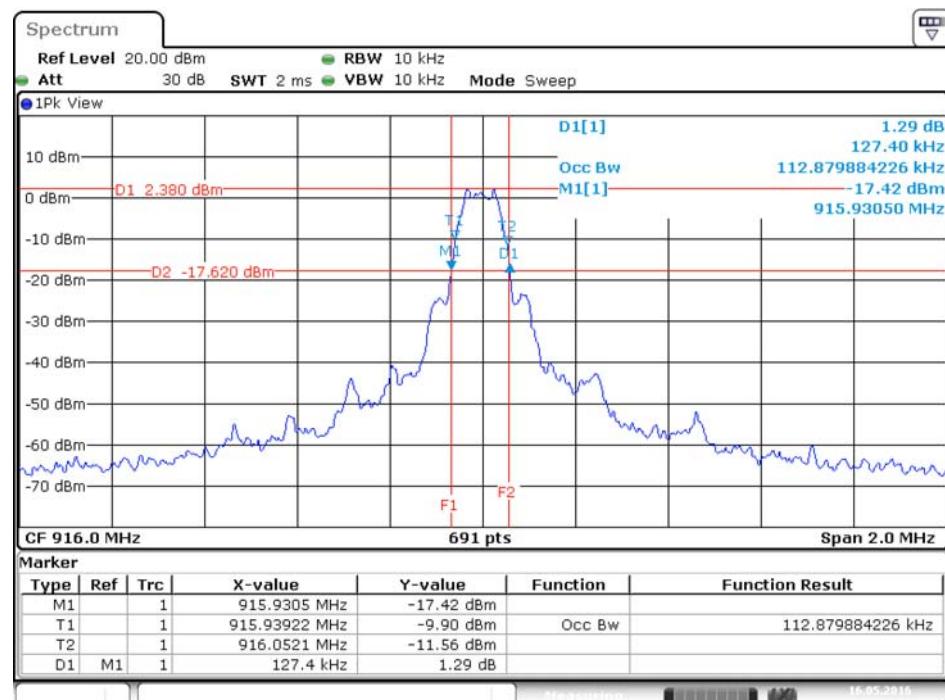
1. The transmitter output (antenna port) was connected to the spectrum analyser in peak hold mode.
2. The resolution bandwidth of 10 kHz and the video bandwidth of 10 kHz were used.
3. Measured the spectrum width with power higher than 6dB below carrier.

4.3.4. Test Setup Layout

4.3.5. Test Deviation

There is no deviation with the original standard.

4.3.6. EUT Operation during Test


The EUT was programmed to be in continuously transmitting mode.

4.3.7. Test Result of 20dB Spectrum Bandwidth

Temperature	25°C	Humidity	65%
Test Engineer	Andy Tsai	Configurations	Channel 1

Frequency	20dB BW (MHz)	99% OBW (MHz)	Frequency range (MHz) $f_L > 902\text{MHz}$	Frequency range (MHz) $f_H < 928\text{MHz}$	Test Result
916 MHz	0.13	0.11	915.9305	916.0579	Complies

20 dB/99% Bandwidth Plot on 916 MHz

4.4. Radiated Emissions Measurement

4.4.1. Limit

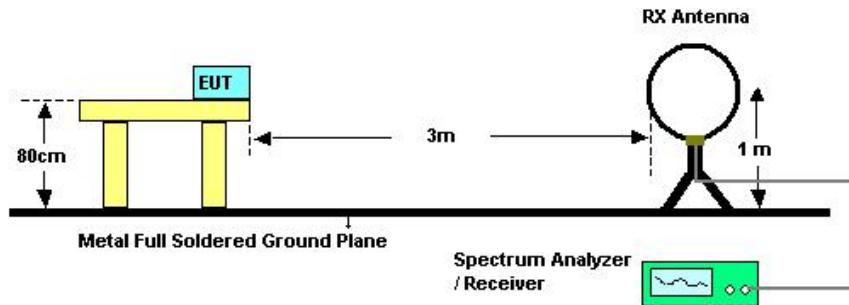
Harmonic emissions limits comply with below 54 dBuV/m at 3m. Other emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or comply with the radiated emissions limits specified in section 15.209(a) limit in the table below has to be followed.

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

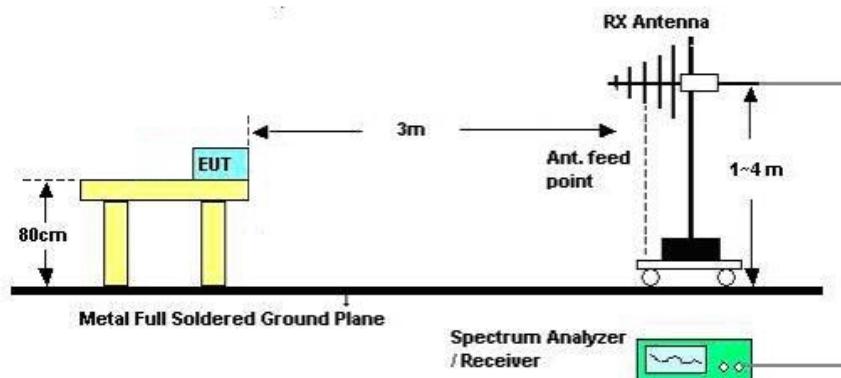
4.4.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer and receiver.

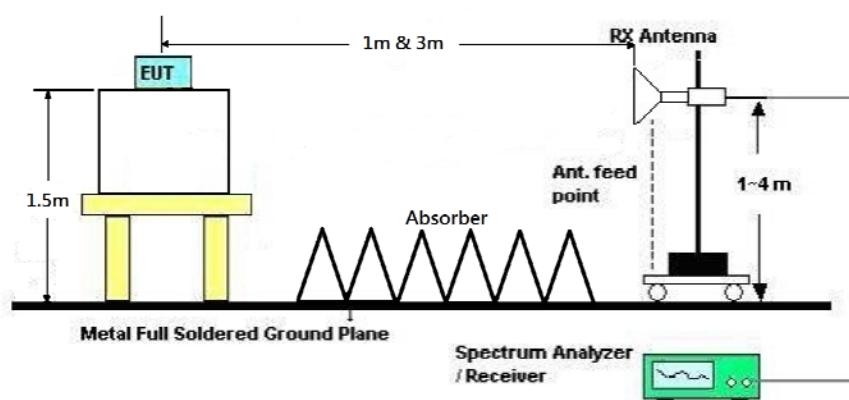
Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW (Emission in restricted band)	1MHz / 3MHz for Peak, 1 MHz / 1/T for Average
RBW / VBW (Emission in non-restricted band)	100kHz / 300kHz for Peak


Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RBW 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RBW 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RBW 120kHz for QP

4.4.3. Test Procedures


1. Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
6. For emissions above 1GHz, use 1MHz VBW and 3MHz RBW for peak reading. Then 1MHz RBW and 1/T VBW for average reading in spectrum analyzer.
7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High – Low scan is not required in this case.

4.4.4. Test Setup Layout


For Radiated Emissions: 9kHz ~30MHz

For Radiated Emissions: 30MHz~1GHz

For Radiated Emissions: Above 1GHz

4.4.5. Test Deviation

There is no deviation with the original standard.

4.4.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

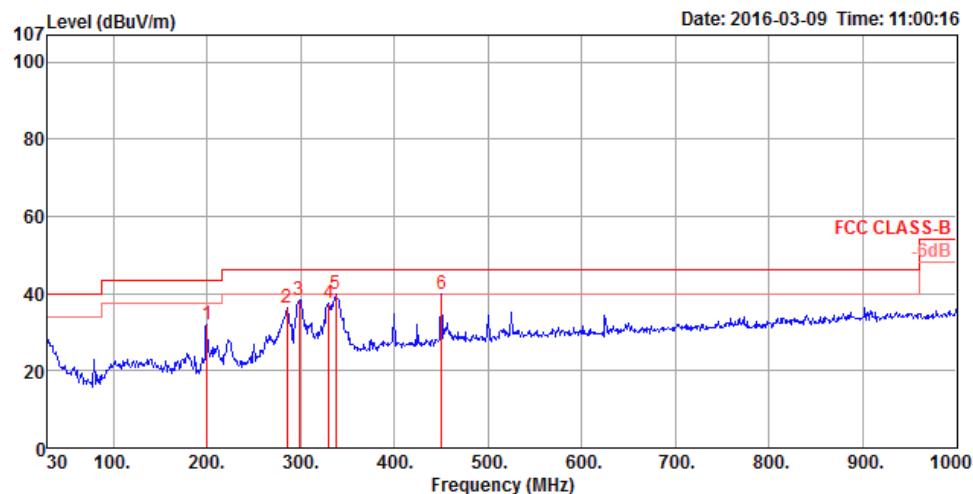
4.4.7. Results of Radiated Emissions (9kHz~30MHz)

Temperature	22°C	Humidity	54%
Test Engineer	Clemens Fang/ Gino Huang	Configurations	Normal Link
Test Date	Mar. 09, 2016		

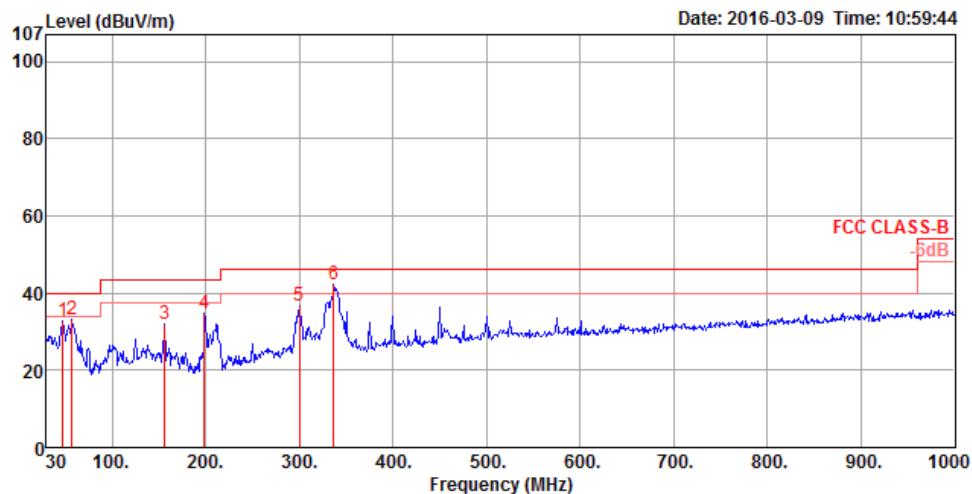
Freq. (MHz)	Level (dBuV)	Over Limit (dB)	Limit Line (dBuV)	Remark
-	-	-	-	See Note

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.


Distance extrapolation factor = $40 \log (\text{specific distance} / \text{test distance})$ (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.


4.4.8. Results of Radiated Emissions (30MHz~1GHz)

Temperature	22°C	Humidity	54%
Test Engineer	Clemens Fang/ Gino Huang	Configurations	Normal Link

Horizontal

Freq	Level	Limit		Over Limit	Read Level	Cable Loss	Antenna Factor	Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
		Line	dBuV/m									
		MHz	dBuV/m	dBuV/m	dB	dB	dB	dB	dB	cm	deg	
1	199.75	32.08	43.50	-11.42	46.93	1.70	16.00	32.55	125	88	Peak	HORIZONTAL
2	285.11	36.38	46.00	-9.62	47.59	2.01	19.30	32.52	100	136	Peak	HORIZONTAL
3	298.69	38.42	46.00	-7.58	49.34	2.04	19.56	32.52	125	104	Peak	HORIZONTAL
4	329.73	37.43	46.00	-8.57	47.37	2.13	20.46	32.53	100	279	Peak	HORIZONTAL
5	337.49	40.00	46.00	-6.00	49.73	2.15	20.65	32.53	125	65	Peak	HORIZONTAL
6	450.01	39.75	46.00	-6.25	46.91	2.42	23.00	32.58	100	112	Peak	HORIZONTAL

Vertical

Freq	Level	Limit		Over Limit	Read Level	Cable Loss	Antenna Factor	Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
		MHz	dBuV/m	MHz	dBuV/m	dB	dB	dB/m	dB	cm	deg	
1	47.46	32.71	40.00	-7.29	48.89	0.95	15.50	32.63	100	328	Peak	VERTICAL
2	57.16	33.29	40.00	-6.71	52.02	1.02	12.87	32.62	125	8	Peak	VERTICAL
3	156.10	31.90	43.50	-11.60	46.37	1.53	16.56	32.56	100	82	Peak	VERTICAL
4	198.78	34.58	43.50	-8.92	49.53	1.69	15.91	32.55	100	195	Peak	VERTICAL
5	299.66	36.70	46.00	-9.30	47.59	2.05	19.58	32.52	100	291	Peak	VERTICAL
6	336.52	42.11	46.00	-3.89	51.88	2.14	20.62	32.53	200	130	Peak	VERTICAL

Note:

Add band-reject filter to filter fundamental signal of 916MHz.

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = 20 log Emission level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

4.4.9. Results for Radiated Emissions (1GHz~10th Harmonic)

Temperature	22°C	Humidity	54%
Test Engineer	Clemens Fang/ Gino Huang	Configurations	Channel 1
Test Date	May 13, 2016		

Horizontal

Freq	Level	Limit		Over Limit	Read Level	Cable Loss	Antenna Factor	Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg	
1	1831.98	38.87	54.00	-15.13	43.69	4.49	27.40	36.71	104	108	Average	HORIZONTAL
2	1832.01	44.19	74.00	-29.81	49.01	4.49	27.40	36.71	104	108	Peak	HORIZONTAL

Vertical

Freq	Level	Limit		Over Limit	Read Level	Cable Loss	Antenna Factor	Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg	
1	1832.00	40.88	54.00	-13.12	45.70	4.49	27.40	36.71	208	353	Average	VERTICAL
2	1832.06	44.87	74.00	-29.13	49.69	4.49	27.40	36.71	208	353	Peak	VERTICAL

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = 20 log Emission level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

4.5. Band Edge Emissions Measurement

4.5.1. Limit

Band edge emissions radiated outside of the specified frequency bands shall be attenuated by at least 50 dB below the level of the fundamental or comply with the radiated emissions limits specified in section 15.209(a) limit in the table below has to be followed.

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.5.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	100 MHz
RBW / VBW (Emission in restricted band)	RBW 120kHz for QP
RBW / VBW (Emission in non-restricted band)	100kHz/300kHz for Peak

4.5.3. Test Procedures

The test procedure is the same as section 4.4.3.

4.5.4. Test Setup Layout

This test setup layout is the same as that shown in section 4.4.4.

4.5.5. Test Deviation

There is no deviation with the original standard.

4.5.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.5.7. Test Result of Band Edge and Fundamental Emissions

Temperature	22°C	Humidity	54%
Test Engineer	Clemens Fang/ Gino Huang	Configurations	Channel 1
Test Date	May 17, 2016		

Channel 1

Freq	Level	Limit	Over	Read	Cable	Antenna	Preamp	A/Pos	T/Pos	Remark	Pol/Phase
		Line	Limit	Level	Loss	Factor	Factor	cm	deg		
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg	
1	898.20	28.83	46.00	-17.17	31.60	2.40	27.28	32.45	100	265 QP	VERTICAL
2	916.00	93.87			96.50	2.41	27.42	32.46	100	269 QP	VERTICAL
3	928.00	38.95	46.00	-7.05	41.48	2.42	27.51	32.46	100	301 QP	VERTICAL

Item 2 is the fundamental frequency at 916 MHz.

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

4.6. Antenna Requirements

4.6.1. Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited.

4.6.2. Antenna Connector Construction

Please refer to section 3.3 in this test report, antenna connector complied with the requirements.

5. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMI Receiver	Agilent	N9038A	My52260123	9kHz ~ 8.45GHz	Jan. 27, 0216	Conduction (CO01-CB)
LISN	F.C.C.	FCC-LISN-50-16-2	04083	150kHz ~ 100MHz	Dec. 08, 2015	Conduction (CO01-CB)
LISN	Schwarzbeck	NSLK 8127	8127647	9kHz ~ 30MHz	Dec. 23, 2015	Conduction (CO01-CB)
COND Cable	Woken	Cable	01	150kHz ~ 30MHz	May 25, 2015	Conduction (CO01-CB)
Software	Audix	E3	6.120210n	-	N.C.R.	Conduction (CO01-CB)
Loop Antenna	Teseq	HLA 6120	24155	9kHz - 30 MHz	Mar. 12, 2015*	Radiation (03CH01-CB)
BILOG ANTENNA	TESEQ	CBL6112D	37880	20MHz ~ 2GHz	Sep. 03, 2015	Radiation (03CH01-CB)
Horn Antenna	EMCO	3115	00075790	750MHz ~ 18GHz	Oct. 22, 2015	Radiation (03CH01-CB)
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170252	15GHz ~ 40GHz	Jul. 21, 2015	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8447D	2944A10940	0.1MHz ~ 1.3GHz	Feb. 24, 2016	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8449B	3008A02310	1GHz ~ 26.5GHz	Jan. 18, 2016	Radiation (03CH01-CB)
Pre-Amplifier	WM	TF-130N-R1	923365	26GHz ~ 40GHz	Nov. 13, 2015	Radiation (03CH01-CB)
Spectrum Analyzer	R&S	FSP40	100056	9kHz ~ 40GHz	Oct. 27, 2015	Radiation (03CH01-CB)
RF Cable-low	Woken	Low Cable-1	N/A	30 MHz ~ 1 GHz	Nov. 02, 2015	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-16	N/A	1 GHz ~ 18 GHz	Nov. 02, 2015	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-17	N/A	1 GHz ~ 18 GHz	Nov. 02, 2015	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-40G-1	N/A	18GHz ~ 40 GHz	Nov. 02, 2015	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-40G-2	N/A	18GHz ~ 40 GHz	Nov. 02, 2015	Radiation (03CH01-CB)
Test Software	Audix	E3	6.2009-I0-7	N/A	N/A	Radiation (03CH01-CB)
Spectrum analyzer	R&S	FSV40	100979	9kHz~40GHz	Dec. 09, 2015	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-6	1 GHz – 26.5 GHz	Nov. 02, 2015	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-7	1 GHz – 26.5 GHz	Nov. 02, 2015	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-8	1 GHz – 26.5 GHz	Nov. 02, 2015	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-9	1 GHz – 26.5 GHz	Nov. 02, 2015	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-10	1 GHz – 26.5 GHz	Nov. 02, 2015	Conducted (TH01-CB)

Note: Calibration Interval of instruments listed above is one year.

“*” Calibration Interval of instruments listed above is two years.

N.C.R. means Non-Calibration required.

6. MEASUREMENT UNCERTAINTY

Test Items	Uncertainty	Remark
Conducted Emission (150kHz ~ 30MHz)	3.2 dB	Confidence levels of 95%
Radiated Emission (30MHz ~ 1,000MHz)	3.6 dB	Confidence levels of 95%
Radiated Emission (1GHz ~ 18GHz)	3.7 dB	Confidence levels of 95%
Conducted Emission	1.7 dB	Confidence levels of 95%