

TEST REPORT**Report Number: HK10120176-1**

Application
for

Original Grant of 47 CFR Part 15 Certification
Single New of RSS-210 Issue 8 Equipment Certification

900MHz Transmitter - Baby Unit

FCC ID: N7TAC601T

IC: 5786A-AC601T

Prepared and Checked by:

Koo Wai Ip
Lead Engineer
December 20, 2010

Approved by:

Nip Ming Fung, Melvin
Supervisor
December 20, 2010

- The test report only allows to be revised within the retention period unless further standard or the requirement was noticed.
- This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Intertek Testing Services Hong Kong Ltd.

2/F., Garment Centre, 576 Castle Peak Road, Kowloon, Hong Kong.
Tel: (852) 2173 8888 Fax: (852) 2785 5487 Website: www.hk.intertek-etsemko.com

INTERTEK TESTING SERVICES

GENERAL INFORMATION

Applicant Name:	Angelcare Monitors Inc.
Applicant Address:	3980, Rue St-Ambroise, Montreal, Quebec, H4C 2C7, Canada.
FCC Specification Standard:	FCC Part 15, October 1, 2009 Edition
FCC ID:	N7TAC601T
FCC Model(s):	AC601
IC Specification Standard:	RSS-210 Issue 8, December 2010 RSS-Gen Issue 3, December 2010 RSS-102 Issue 4, March 2010
IC:	5786A-AC601T
IC Model(s):	AC601
Type of EUT:	Transmitter
Description of EUT:	900MHz Transmitter - Baby Unit
Serial Number:	N/A
Sample Receipt Date:	December 03, 2010
Date of Test:	November 30-December 03, 2010
Report Date:	December 20, 2010
Environmental Conditions:	Temperature: +10 to 40°C Humidity: 10 to 90%

INTERTEK TESTING SERVICES

Table of Contents

1.0 Test Results Summary & Statement of Compliance	4
1.1 Summary of Test Results	4
1.2 Statement of Compliance	4
2.0 General Description	6
2.1 Product Description	6
2.2 Test Methodology	6
2.3 Test Facility	6
3.0 System Test Configuration	8
3.1 Justification	8
3.2 EUT Exercising Software	9
3.3 Details of EUT and Description of Accessories	10
3.4 Measurement Uncertainty	10
3.5 Equipment Modification	10
4.0 Test Results	12
4.1 Field Strength Calculation	12
4.2 Radiated Emissions	13
4.2.1 Radiated Emission Configuration Photograph	13
4.2.2 Radiated Emission Data	13
4.2.3 Transmitter Duty Cycle Calculation	13
4.3 Radiated Emission on the Bandedge	17
4.4 AC Power Line Conducted Emission	18
4.4.1 AC Power Line Conducted Emission Configuration Photograph	18
4.4.2 AC Power Line Conducted Emission Data	18
4.5 Radio Frequency Exposure Compliance	20
5.0 Equipment List	22

Appendix – Exhibits for Application of Certification

INTERTEK TESTING SERVICES

EXHIBIT 1

TEST RESULTS SUMMARY & STATEMENT OF COMPLIANCE

INTERTEK TESTING SERVICES

1.0 Test Results Summary & Statement of Compliance

1.1 Summary of Test Results

Test Items	FCC Part 15 Section	RSS-210/ RSS-Gen [#] / RSS-310 [^] Section	Results	Details see section
Antenna Requirement	15.203	7.1.2 [#]	Pass	2.1
Radiated Emission Radiated Emission on the Bandedge	15.249(a), 209, & 109 15.249(d)	A2.9(a) A2.9(b)	Pass Pass	4.2 4.3
Radiated Emission in Restricted Bands	15.205	2.2	Pass	4.2
AC Power Line Conducted Emission	15.207 & 15.107	7.2.4 [#]	Pass	4.4
Radio Frequency Exposure Compliance	N/A	RSS-102	Pass	4.5

Note: Pursuant to FCC Part 15 Section 15.215(c), the 20dB bandwidth of the emission was contained within the frequency band designated (mentioned as above) which the EUT operated. The effects, if any, from frequency sweeping, frequency hopping, other modulation techniques and frequency stability over expected variations in temperature and supply voltage were considered.

1.2 Statement of Compliance

The equipment under test is found to be complying with the following standards:

FCC Part 15, October 1, 2009 Edition
RSS-210 Issue 8, December 2010
RSS-Gen Issue 3, December 2010
RSS-102 Issue 4, March 2010

INTERTEK TESTING SERVICES

EXHIBIT 2

GENERAL DESCRIPTION

INTERTEK TESTING SERVICES

2.0 General Description

2.1 Product Description

The Equipment Under Test (EUT) is a 900MHz Transmitter - Baby Unit. It operates at 926.2MHz, 926.8MHz and 927.6MHz. The EUT is powered by a 120VAC to 7.5VDC 150mA adaptor, and/or 4 x "AAA" size 1.5VDC battery.

The antenna used in baby unit is integral, and the test sample is a prototype.

The circuit description is attached in the Appendix and saved with filename: descri.pdf.

2.2 Test Methodology

Both AC power line-conducted and radiated emission measurements were performed according to the procedures in ANSI C63.4 (2003). Preliminary radiated scans and all radiated measurements were performed in Open Area Test Sites. All Radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "**Justification Section**" of this Application.

2.3 Test Facility

The open area test site and conducted measurement facility used to collect the radiated data and conducted data are at Roof Top and 2nd Floor respectively of Intertek Testing Services Hong Kong Ltd., which is located at Garment Centre, 576 Castle Peak Road, Kowloon, Hong Kong. This test facility and site measurement data have been fully placed on file with the FCC and the Industry Canada.

INTERTEK TESTING SERVICES

EXHIBIT 3

SYSTEM TEST CONFIGURATION

INTERTEK TESTING SERVICES

3.0 System Test Configuration

3.1 Justification

For radiated emissions testing, the equipment under test (EUT) was setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, all cables (if any) were manipulated to produce worst case emissions.

The EUT was powered by a 120VAC to 7.5VDC 150mA adaptor and/or new 4 x "AAA" 1.5VDC batteries.

For the measurements, the EUT was attached to a plastic stand if necessary and placed on the wooden turntable. If the EUT attached to peripherals, they were connected and operational to simulate typical use.

The signal was maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization were varied during the search for maximum signal level. The antenna height was varied from 1 to 4 meters. Radiated emissions were taken at three meters unless the signal level was too low for measurement at that distance. If necessary, a pre-amplifier was used and/or the test was conducted at a closer distance.

For any intentional radiator powered by AC power line, measurements of the radiated signal level of the fundamental frequency component of the emission was performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage.

For transmitter radiated measurement, the spectrum analyzer resolution bandwidth was 100 kHz for frequencies below 1000 MHz. The resolution bandwidth was 1 MHz for frequencies above 1000 MHz.

Radiated emission measurement for transmitter was performed from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

Emission that are directly caused by digital circuits in the transmit path and transmitter portion were measured, and the limit are according to FCC Part 15 Section 15.109.

INTERTEK TESTING SERVICES

3.1 Justification - Cont'd

Detector function for radiated emissions is in peak mode. Average readings, when required, are taken by measuring the duty cycle of the equipment under test and subtracting the corresponding amount in dB from the measured peak readings. A detailed description for the calculation of the average factor can be found in Exhibit 4.2.3.

Pulse desensitization is not applicable for this device. Since the transmitter transmits the RF signal continuously.

For AC line conducted emission test, the EUT along with its peripherals were placed on a 1.0m(W)x1.5m(L) and 0.8m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane. The EUT was connected to power mains through a line impedance stabilization network (LISN), which provided 50ohm coupling impedance for measuring instrument. The LISN housing, measuring instrument case, reference ground plane, and vertical ground plane were bounded together. The excess power cable between the EUT and the LISN was bundled.

All connecting cables of EUT and peripherals were manipulated to find the maximum emission.

All relevant operation modes have been tested, and the worst case data is included in this report.

3.2 EUT Exercising Software

There was no special software to exercise the device. Once the unit is powered up, it transmits the RF signal continuously.

INTERTEK TESTING SERVICES

3.3 Details of EUT and Description of Accessories

Details of EUT:

An AC adaptor and/or a battery (provided with the unit) were used to power the device. Their description are listed below.

- (1) An AC adaptor (120VAC to 7.5VDC 150mA, Model: PA-07.515-DVAA)
(Supplied by Client)
- (2) Backup Battery: 4 x “AAA” size 1.5VDC battery (Supplied by Client)

Description of Accessories:

- (1) Sensor Pad, Brand: Angelcare (Supplied by Client)

3.4 Measurement Uncertainty

When determining of the test conclusion, the Measurement Uncertainty of test has been considered.

Uncertainty and Compliance - Unless the standard specifically states that measured values are to be extended by the measurement uncertainty in determining compliance, all compliance determinations are based on the actual measured value.

3.5 Equipment Modification

Any modifications installed previous to testing by Angelcare Monitors Inc. will be incorporated in each production model sold/leased in the United States and Canada.

No modifications were installed by Commercial & Electrical Division, Intertek Testing Services Hong Kong Ltd.

INTERTEK TESTING SERVICES

EXHIBIT 4

TEST RESULTS

INTERTEK TESTING SERVICES

4.0 Test Results

Data is included of the worst case configuration (the configuration which resulted in the highest emission levels). A sample calculation, configuration photographs and data tables of the emissions are included.

4.1 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CF - AG$$

where FS = Field Strength in $\text{dB}\mu\text{V}/\text{m}$

RA = Receiver Amplitude (including preamplifier) in $\text{dB}\mu\text{V}$

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB

AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows:-

$$FS = RR + LF$$

where FS = Field Strength in $\text{dB}\mu\text{V}/\text{m}$

RR = RA - AG in $\text{dB}\mu\text{V}$

LF = CF + AF in dB

Assume a receiver reading of 52.0 $\text{dB}\mu\text{V}$ is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 $\text{dB}\mu\text{V}/\text{m}$. This value in $\text{dB}\mu\text{V}/\text{m}$ was converted to its corresponding level in $\mu\text{V}/\text{m}$.

$$RA = 52.0 \text{ dB}\mu\text{V}$$

$$AF = 7.4 \text{ dB}$$

$$CF = 1.6 \text{ dB}$$

$$AG = 29.0 \text{ dB}$$

$$FS = RR + LF$$

$$FS = 23 + 9 = 32 \text{ dB}\mu\text{V}/\text{m}$$

$$RR = 23.0 \text{ dB}\mu\text{V}$$

$$LF = 9.0 \text{ dB}$$

$$\text{Level in } \mu\text{V}/\text{m} = \text{Common Antilogarithm } [(32 \text{ dB}\mu\text{V}/\text{m})/20] = 39.8 \mu\text{V}/\text{m}$$

INTERTEK TESTING SERVICES

4.2 Radiated Emissions

4.2.1 Radiated Emission Configuration Photograph

Worst Case Radiated Emission
at

927.600 MHz

The worst case radiated emission configuration photographs are attached in the Appendix and saved with filename: config photos.pdf

4.2.2 Radiated Emission Data

The data in tables 1-3 list the significant emission frequencies, the limit and the margin of compliance.

Judgement -

Passed by 3.3 dB margin

4.2.3 Transmitter Duty Cycle Calculation

The average factor is not applicable for this device as the transmitted signal is a continuously signal.

INTERTEK TESTING SERVICES

Mode: TX-Channel A

Table 1

Radiated Emission Data

Polarization	Frequency (MHz)	Reading (dB μ V)	Pre-Amp Gain (dB)	Antenna Factor (dB)	Net at 3m - Peak (dB μ V/m)	Limit at 3m (dB μ V/m)	Margin (dB)
V	926.200	73.5	16	33.0	90.5	94.0	-3.5
V	1852.400	54.6	33	27.2	48.8	54.0	-5.2
V	2778.600	50.1	33	30.4	47.5	54.0	-6.5
V	3704.800	46.5	33	33.3	46.8	54.0	-7.2
V	4631.000	48.5	33	34.9	50.4	54.0	-3.6
V	5557.200	40.4	33	36.6	44.0	54.0	-10.0
V	6483.400	40.7	33	36.9	44.6	54.0	-9.4
V	7409.600	40.4	33	37.9	45.3	54.0	-8.7

NOTES:

1. Peak detector is used for the emission measurement.
2. All measurements were made at 3 meters. Radiated emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other radiated emissions than those reported were detected at a test distance of 0.3-meter.
3. Negative value in the margin column shows emission below limit.
4. Horn antenna is used for the emission over 1000MHz.
5. Emission (the row indicated by ***bold italic***) within the restricted band meets the requirement of FCC Part 15 Section 15.205 / RSS-210 Section 2.2.

INTERTEK TESTING SERVICES

Mode: TX-Channel C

Table 2

Radiated Emission Data

Polarization	Frequency (MHz)	Reading (dB μ V)	Pre-Amp Gain (dB)	Antenna Factor (dB)	Net at 3m - Peak (dB μ V/m)	Limit at 3m (dB μ V/m)	Margin (dB)
V	927.600	73.7	16	33.0	90.7	94.0	-3.3
V	1855.200	54.4	33	27.2	48.6	54.0	-5.4
V	2782.800	49.9	33	30.4	47.3	54.0	-6.7
V	3710.400	46.2	33	33.3	46.5	54.0	-7.5
V	4638.000	48.4	33	34.9	50.3	54.0	-3.7
V	5565.600	40.5	33	36.6	44.1	54.0	-9.9
V	6493.200	40.5	33	36.9	44.4	54.0	-9.6
V	7420.800	40.3	33	37.9	45.2	54.0	-8.8

NOTES: 1. Peak detector is used for the emission measurement.

2. All measurements were made at 3 meters. Radiated emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other radiated emissions than those reported were detected at a test distance of 0.3-meter.

3. Negative value in the margin column shows emission below limit.

4. Horn antenna is used for the emission over 1000MHz.

5. Emission (the row indicated by ***bold italic***) within the restricted band meets the requirement of FCC Part 15 Section 15.205 / RSS-210 Section 2.2.

INTERTEK TESTING SERVICES

Mode: Talk

Table 3

Radiated Emission Data

Polarization	Frequency (MHz)	Reading (dB μ V)	Pre-amp (dB)	Antenna Factor (dB)	Net at 3m (dB μ V/m)	Limit at 3m (dB μ V/m)	Margin (dB)
V	32.062	36.8	16	10.0	30.8	40.0	-9.2
V	40.080	36.0	16	10.0	30.0	40.0	-10.0
V	48.098	34.6	16	11.0	29.6	40.0	-10.4
V	56.110	34.5	16	11.0	29.5	40.0	-10.5
V	64.134	36.0	16	9.0	29.0	40.0	-11.0
V	72.152	38.4	16	7.0	29.4	40.0	-10.6

NOTES:

1. Peak detector is used for the emission measurement.
2. All measurements were made at 3 meters. Radiated emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other radiated emissions than those reported were detected at a test distance of 0.3-meter.
3. Negative value in the margin column shows emission below limit.
4. Horn antenna is used for the emission over 1000MHz.
5. Emission (the row indicated by ***bold italic***) within the restricted band meets the requirement of FCC Part 15 Section 15.205 / RSS-210 Section 2.2.

INTERTEK TESTING SERVICES

4.3 Radiated Emission on the Bandedge

From the following plots, they show that the fundamental emissions are confined in the specified band (902MHz and 928MHz). In case of emissions up to two standard bandwidths away from the bandedge, the delta measurement technique is used for determining bandedge compliance. Standard bandwidth is the bandwidth specified by ANSI C63.4 (2003) for frequency being measured.

Emissions radiated outside of the specified frequency bands, except harmonics, are attenuated by 50 dB below the level of the fundamental or to the general radiated emission limits in FCC Part 15 Section 15.209 / Table 5 of RSS-Gen, whichever is the lesser attenuation, which meet the requirement of FCC Part 15 Section 15.249(d) / RSS-210 A2.9(b).

Radiated Emission on bandedge plots are attached in the Appendix and saved with filename: be.pdf

INTERTEK TESTING SERVICES

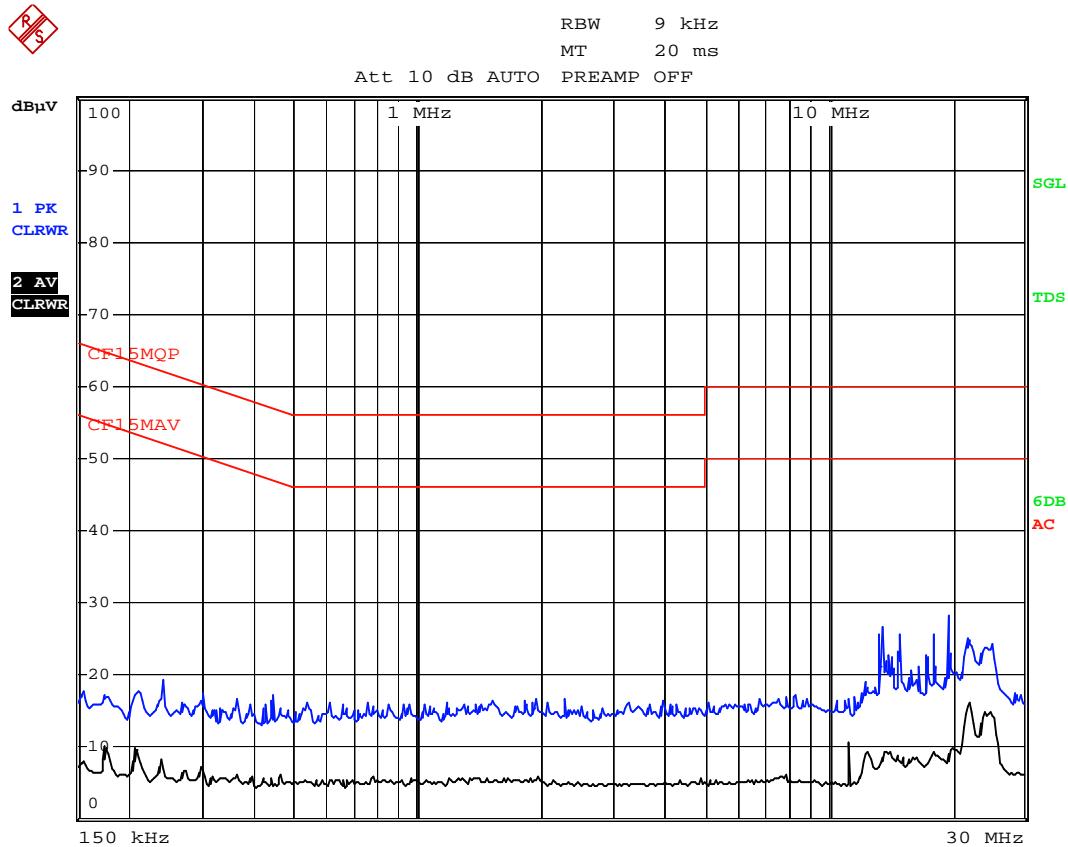
4.4 AC Power Line Conducted Emission

- Not applicable – EUT is only powered by battery for operation.
- EUT connects to AC power line. Emission Data is listed in following pages.
- Base Unit connects to AC power line and has transmission. Handset connects to AC power line but has no transmission. Emission Data of Base Unit is listed in following pages.

4.4.1 AC Power Line Conducted Emission Configuration Photograph

Worst Case Line-Conducted Configuration

The worst case line conducted configuration photographs are attached in the Appendix and saved with filename: config photos.pdf


4.4.2 AC Power Line Conducted Emission Data

The plot(s) and data in the following pages list the significant emission frequencies, the limit and the margin of compliance.

Passed by more than 20 dB margin

INTERTEK TESTING SERVICES

Worst Case: Tx Mode (Light Off, Sound)

Date: 3.DEC.2010 19:14:21

INTERTEK TESTING SERVICES

4.5 Radio Frequency Exposure Compliance

The Routine RF Exposure Evaluation, Routine SAR Evaluation and Declaration of RF Exposure Compliance are saved as filename: RF exposure.pdf

INTERTEK TESTING SERVICES

EXHIBIT 5
EQUIPMENT LIST

INTERTEK TESTING SERVICES

5.0 Equipment List

1) Radiated Emissions Test

Equipment	Biconical Antenna	Log Periodic Antenna	Double Ridged Guide Antenna
Registration No.	EW-0954	EW-0446	EW-1015
Manufacturer	EMCO	EMCO	EMCO
Model No.	3104C	3146	3115
Calibration Date	Sep. 30, 2008	Oct. 02, 2008	Jul. 28, 2008
Calibration Due Date	Oct. 14, 2011	Oct. 26, 2011	Aug. 09, 2011

Equipment	Spectrum Analyzer		EMI Test Receiver	Digital Multimeter
Registration No.	EW-2188	EW-2466	EW-2251	EW-1237
Manufacturer	AGILENTTECH	R&S	R&S	FLUKE
Model No.	E4407B	FSP30	ESCI	179
Calibration Date	Dec. 18, 2008	Nov. 11, 2009	Oct. 22, 2009	Sep. 01, 2010
Calibration Due Date	Dec. 31, 2010	Feb. 11, 2011	Jan. 22, 2011	Oct. 01, 2011

2) Conducted Emissions Test

Equipment	LISN	Pulse Limiter	EMI Test Receiver
Registration No.	EW-0090	EW-0700	EW-2500
Manufacturer	R&S	R&S	ROHDESGHARZ
Model No.	ESH3-Z5	ESH3-Z2	ESCI
Calibration Date	Feb. 05, 2010	Jun. 08, 2009	Sep. 20, 2009
Calibration Due Date	Feb. 05, 2011	Dec. 08, 2010	Dec. 20, 2010

END OF TEST REPORT