

FCC / IC Test Report

FCC ID : N7NMC7350
IC : 2417C-MC7350
Equipment : Wireless Module
Model No. : AirPrime MC7350
Brand Name : AirPrime
Applicant : Sierra Wireless Inc.
Address : 13811 Wireless Way Richmond, British Columbia, Canada, V6V 3A4.
Standard : 47 CFR FCC Part 22 Subpart H
RSS-132 Issue 3 January 2013
Received Date : Oct. 07, 2013
Tested Date : Oct. 14 ~ Oct. 31, 2013

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Approved & Reviewed by:

Gary Chang / Manager

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information.....	5
1.2	Local Support Equipment List	6
1.3	Test Setup Chart	6
1.4	The Equipment List	7
1.5	Test Standards	8
1.6	Measurement Uncertainty	8
2	TEST CONFIGURATION.....	9
2.1	Testing Condition and Location Information.....	9
2.2	The Worst Test Modes and Channel Details	9
3	TEST RESULTS.....	10
3.1	Effective Radiated Power	10
3.2	Radiated Emissions.....	13
3.3	Conducted Emissions.....	17
3.4	Band Edge	20
3.5	Occupied Bandwidth	22
3.6	Peak to Average Ratio	24
3.7	Frequency Stability	26
4	TEST LABORATORY INFORMATION	28

Release Record

Report No.	Version	Description	Issued Date
FG3O0701P22	Rev. 01	Initial issue	Nov. 15, 2013

Summary of Test Results

FCC Rules	IC Rules	Test Items	Measured	Result
2.1046 22.913(a)(2)	RSS-132 5.4	Effective Radiated Power	Power[dBm] : CDMA: 23.75	Pass
2.1053 22.917(a)	RSS-132 5.5	Radiated Emissions	Meet the requirement of limit	Pass
2.1051 22.917(a)	RSS-132 5.5	Conducted Emissions	Meet the requirement of limit	Pass
2.1051 22.917(a)	RSS-132 5.5	Band Edge	Meet the requirement of limit	Pass
2.1049 22.917(a)	RSS-Gen 4.6.1	Occupied Bandwidth	Meet the requirement of limit	Pass
-	RSS-132 5.4	Peak to average ratio	Meet the requirement of limit	Pass
2.1055 22.355	RSS-132 5.3	Frequency Stability	Meet the requirement of limit	Pass

1 General Description

1.1 Information

1.1.1 Specification of the Equipment under Test (EUT)

Operating Band (MHz)	CDMA2000 1xRTT 1xEV-DO Release 0, Revision A BC0, 824.7~848.31MHz
Modulation	QPSK, QQPSK, HPSK
H/W Version	1.0
S/W Version	SWI9x15E_04.04.00.00

1.1.2 Maximum ERP, Frequency Tolerance and Emission Designator

System	Modulation	Maximum ERP (W)	Emission Designator
CDMA2000	HPSK	0.237	1M27F9W

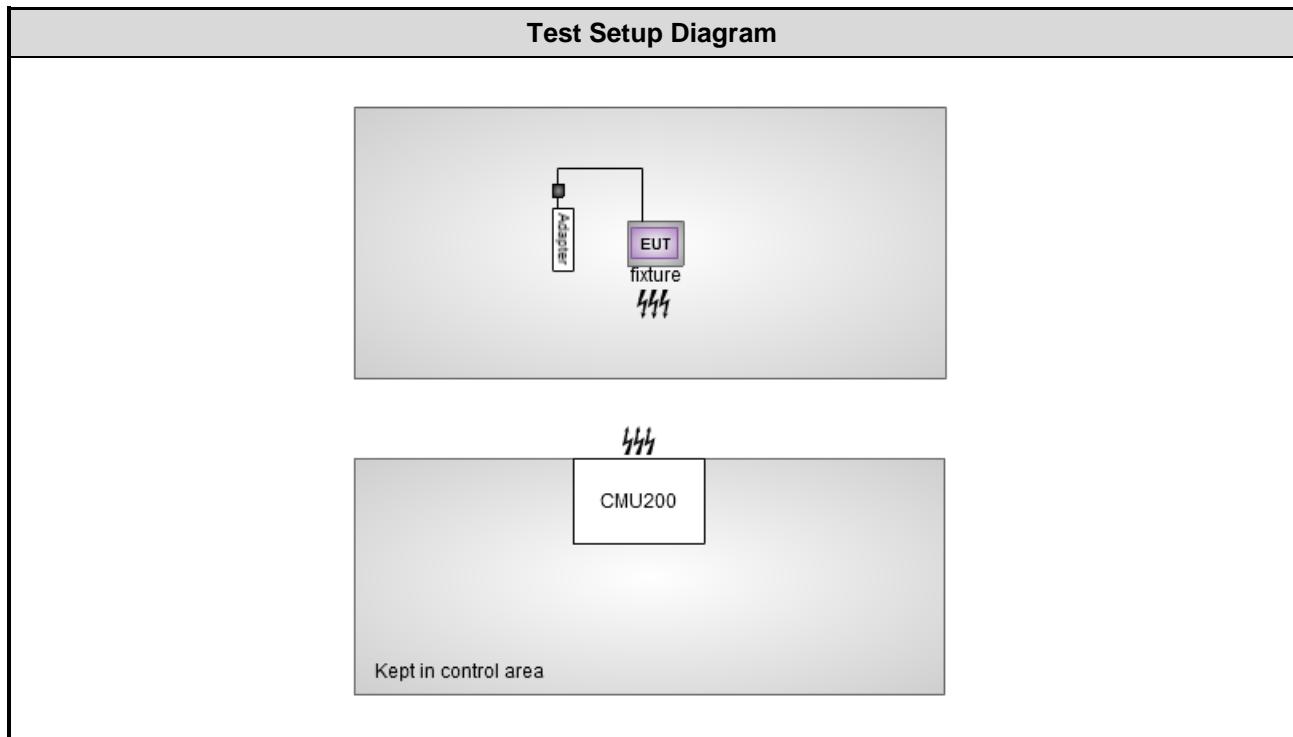
1.1.3 Antenna Details

Ant. No.	Type	Gain (dBi)	Connector	Remark
1	Dipole	1	SMA	---

1.1.4 EUT Operational Condition

Supply Voltage	<input type="checkbox"/> AC mains	<input checked="" type="checkbox"/> DC	
Type of DC Source	<input type="checkbox"/> Internal DC supply	<input type="checkbox"/> External DC adapter	<input checked="" type="checkbox"/> From host
Operational Voltage	<input checked="" type="checkbox"/> V _{nom} (120 V)	<input checked="" type="checkbox"/> V _{max} (126.5 V)	<input checked="" type="checkbox"/> V _{min} (93.5 V)
Operational Climatic	<input checked="" type="checkbox"/> T _{nom} (20°C)	<input checked="" type="checkbox"/> T _{max} (50°C)	<input checked="" type="checkbox"/> T _{min} (-30°C)

1.1.5 Operating Channel List


CDMA2000		
	Channel	Frequency (MHz)
Low	1013	824.7
Middle	384	836.52
High	777	848.31

1.2 Local Support Equipment List

Support Equipment List						
No.	Equipment	Brand	Model	S/N	FCC ID	Signal cable / Length (m)
1	Fixture	---	---	---	---	---
2	Adapter for fixture	GlobTek, Inc.	GT-41062-1805	---	---	USB, 1.8m shielded w/o core

Note: Item 1, 2 was provided by applicant.

1.3 Test Setup Chart

1.4 The Equipment List

Test Item	Radiated Emission				
Test Site	966 chamber1 / (03CH01-WS)				
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until
3m semi-anechoic chamber	CHAMPRO	SAC-03	03CH01-WS	Jan. 04, 2013	Jan. 03, 2014
Spectrum Analyzer	R&S	FSV40	101498	Jan. 24, 2013	Jan. 23, 2014
Receiver	R&S	ESR3	101658	Jan. 28, 2013	Jan. 27, 2014
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-522	Jan. 11, 2013	Jan. 10, 2014
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1096	Feb. 18, 2013	Feb. 17, 2014
Amplifier	Burgeon	BPA-530	100219	Nov. 28, 2012	Nov. 27, 2013
Amplifier	Agilent	83017A	MY39501308	Dec. 18, 2012	Dec. 17, 2013
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16014/4	Dec. 25, 2012	Dec. 24, 2013
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16019/4	Dec. 25, 2012	Dec. 24, 2013
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16139/4	Dec. 25, 2012	Dec. 24, 2013
RF Cable-R03m	Woken	CFD400NL-LW	CFD400NL-001	Dec. 25, 2012	Dec. 24, 2013
RF Cable-R10m	Woken	CFD400NL-LW	CFD400NL-002	Dec. 25, 2012	Dec. 24, 2013
control	EM Electronics	EM1000	60612	N/A	N/A

Note: Calibration Interval of instruments listed above is one year.

Test Item	RF Conducted				
Test Site	RF Conducted (TH01-WS)				
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until
Spectrum Analyzer	R&S	FSV 40	101063	Feb. 18, 2013	Feb. 17, 2014
TEMP&HUMIDITY CHAMBER	GIANT FORCE	GCT-225-40-SP-SD	MAF1212-002	Nov. 29, 2012	Nov. 28, 2013
Signal Generator	R&S	SMB100A	175727	Jan. 14, 2013	Jan. 13, 2014
Radio Communication Analyzer	R&S	CMU200	112403	Jan. 31, 2013	Jan. 30, 2014

Note: Calibration Interval of instruments listed above is one year.

1.5 Test Standards

According to the specification of EUT, the EUT must comply with following standards.

47 CFR FCC Part 22 Subpart H

47 CFR FCC Part 2

ANSI C63.4-2003

RSS-132 Issue3 January 2013

SRSP-503 Issue 7, September 2008

ANSI / TIA / EIA-603-C -2004

1.6 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2).

Measurement Uncertainty	
Parameters	Uncertainty
Bandwidth	±35.286 Hz
Conducted power	±0.536 dB
Frequency error	±35.286 Hz
Temperature	±0.3 °C
Conducted emission	±2.946 dB
AC conducted emission	±2.43 dB
Radiated emission	±2.49 dB

2 Test Configuration

2.1 Testing Condition and Location Information

Test Item	Test Site	Ambient Condition	Tested By
RF conducted	TH01-WS	22°C / 63%	Brad Wu
Radiated Emissions	03CH01-WS	22°C / 63%	Anderson Hong

➤ FCC site registration No.: 657002

➤ IC site registration No.: 10807A-1

2.2 The Worst Test Modes and Channel Details

Test item	Mode	Test channel
Effective Radiated Power	CDMA	1013, 384, 777
Radiated Emissions ≤ 1GHz	CDMA	384
Radiated Emissions > 1GHz	CDMA	1013, 384, 777
Conducted Emissions	CDMA 1xEV-DO	1013, 384, 777 1013, 384, 777
Band Edge	CDMA 1xEV-DO	1013, 777 1013, 777
Occupied Bandwidth	CDMA 1xEV-DO	1013, 384, 777 1013, 384, 777
Peak to average ratio	CDMA 1xEV-DO	1013, 384, 777 1013, 384, 777
Frequency Stability	CDMA 1xEV-DO	384 384

3 Test Results

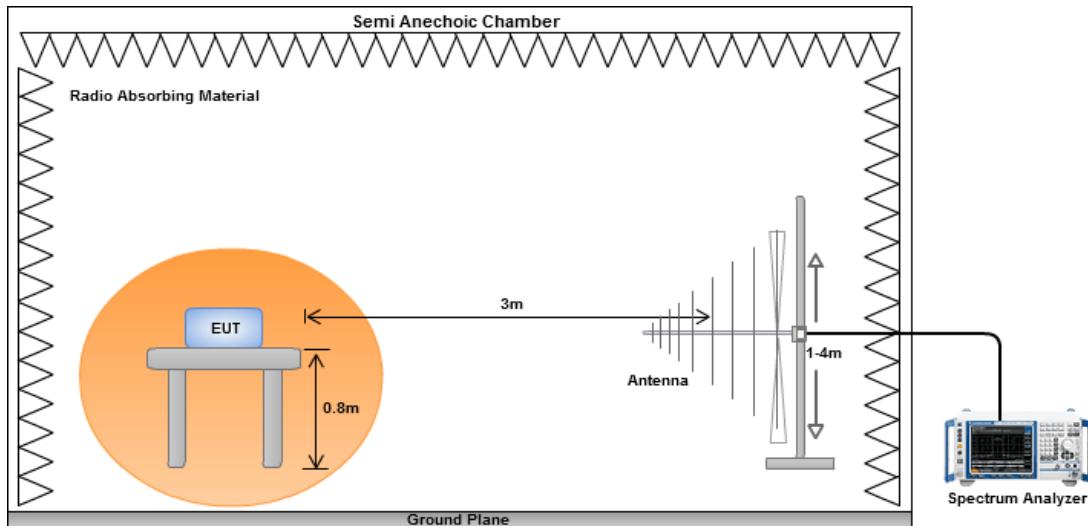
3.1 Effective Radiated Power

3.1.1 Limit of Effective Radiated Power

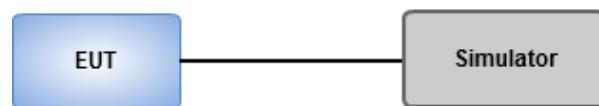
The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts.

3.1.2 Test Procedures

For E.R.P measurement


1. The EUT links up with simulator and is set to maximum output power level at low / middle / high channel. Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at a height of 0.8 m test table above the ground plane.
2. Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.
4. After finding the max radiated emission, substitution method will be used for getting effective radiated power. EUT will be removed and substitution antenna will be placed at same position. Signal generator will output CW signal to substitution antenna through a RF cable. Rotate turntable and move antenna to find maximum radiated emission. Adjust output power of signal generator to let the maximum radiated emission is same as step 3. Record the output power level.
5. E.I.R.P = output power of step 4 + gain of substitution antenna – cable loss of RF cable. ERP can be calculated by below formula:
$$E.R.P = E.I.R.P - 2.15dB$$

For Conducted power measurement


1. The EUT links up with simulator and is set to maximum output power level at low / middle / high channel.
2. Measure the output power of low / middle / high channel of the EUT

3.1.3 Test Setup

Effective Radiated Power Measurement

Conducted Power Measurement

3.1.4 Test Result of Conducted Output Power (dBm)

Band	CDMA 2000 BC0		
Channel	1013	384	777
Frequency (MHz)	824.7	836.52	848.31
RC1+SO55	23.89	24.00	23.92
RC3+SO55	23.95	24.02	23.96
RC3+SO32(+F-SCH)	23.88	23.96	23.94
RC3+SO32(+SCH)	23.93	23.95	23.93
RTAP 153.6	23.64	23.78	23.71
RETAP 4096	23.66	23.76	23.69

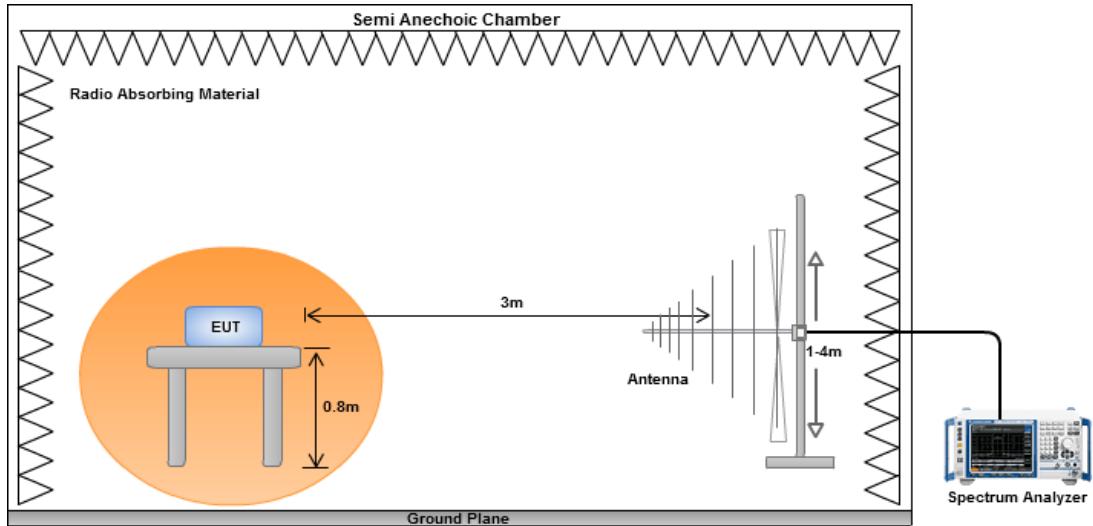
3.1.5 Test Result of Effective Radiated Power (dBm)

Mode	CDMA2000 RC3+SO55							
Channel	Frequency (MHz)	ERP (dBm)	Limit (dBm)	Margin (dB)	S.A Reading (dBm)	S.G Power Vaule (dBm)	Correction Factor (dB)	
1013	824.7	23.72	38.45	-14.73	-6.27	21.99	3.88	
384	836.52	23.75	38.45	-14.70	-6.40	22.00	3.90	
777	848.31	23.47	38.45	-14.98	-6.85	21.70	3.92	

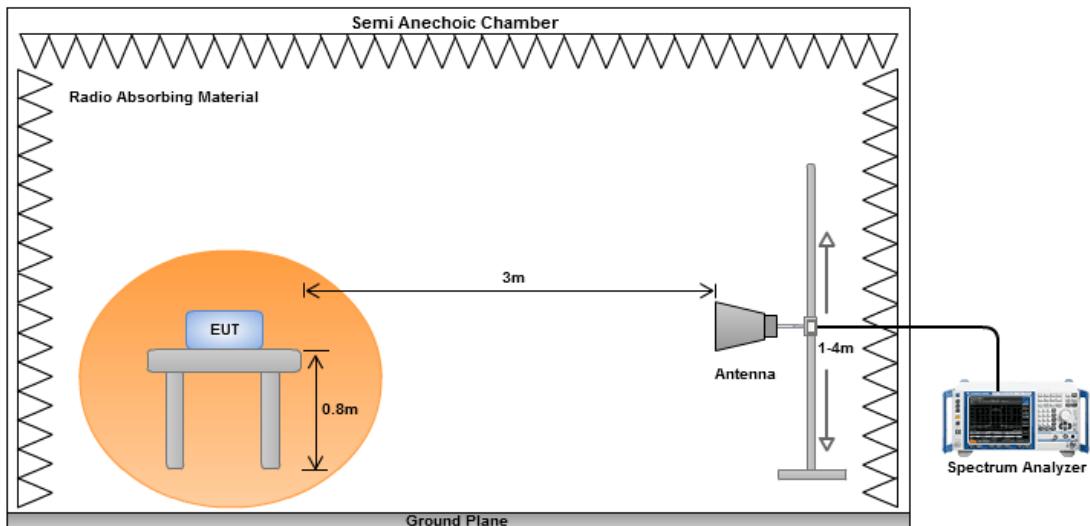
NOTE: ERP = S.G power value + correction factor - 2.15

3.2 Radiated Emissions

3.2.1 Limit of Radiated Emissions


The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB equal to -13dBm.

3.2.2 Test Procedures


1. Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at a height of 0.8 m test table above the ground plane.
2. Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.
4. After finding the max radiated emission, substitution method will be used for getting effective radiated power. EUT will be removed and substitution antenna will be placed at same position. Signal generator will output CW signal to substitution antenna through a RF cable. Rotate turntable and move antenna to find maximum radiated emission. Adjust output power of signal generator to let the maximum radiated emission is same as step 3. Record the output power level.
5. E.I.R.P = output power of step 4 + gain of substitution antenna – cable loss of RF cable. ERP can be calculated by below formula:
$$E.R.P = E.I.R.P - 2.15dB$$

3.2.3 Test Setup

Radiated Emissions below 1 GHz

Radiated Emissions above 1 GHz

3.2.4 Test Result of Radiated Emissions below 1GHz

Mode	CDMA2000 RC3+SO55 , Channel : 384						
Frequency (MHz)	Antenna Polarity	E.R.P (dBm)	Limit (dBm)	Margin (dB)	S.A Reading (dBm)	S.G Power Vaule (dBm)	Correction Factor (dB)
107.60	H	-55.66	-13.00	-42.66	-40.57	-53.86	0.35
174.63	H	-56.91	-13.00	-43.91	-45.91	-57.66	2.90
240.53	H	-51.37	-13.00	-38.37	-39.78	-54.88	5.66
264.70	H	-54.36	-13.00	-41.36	-43.85	-57.80	5.59
374.39	H	-57.43	-13.00	-44.43	-48.99	-60.80	5.52
623.68	H	-63.40	-13.00	-50.40	-59.15	-65.55	4.30
35.82	V	-53.41	-13.00	-40.41	-42.72	-39.44	-11.82
106.88	V	-51.37	-13.00	-38.37	-40.99	-49.59	0.37
130.88	V	-50.92	-13.00	-37.92	-44.26	-48.82	0.05
264.82	V	-48.98	-13.00	-35.98	-39.96	-52.42	5.59
305.62	V	-49.54	-13.00	-36.54	-41.70	-52.96	5.57
381.20	V	-52.63	-13.00	-39.63	-46.30	-55.99	5.51

NOTE: ERP = S.G power value + correction factor - 2.15

3.2.5 Test Result of Radiated Emissions above 1GHz

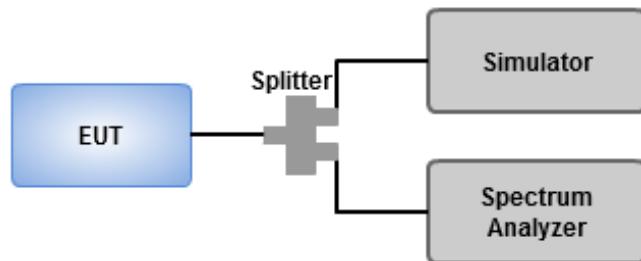
Mode	CDMA2000 RC3+SO55, Channel : 1013						
Frequency (MHz)	Antenna Polarity	E.R.P (dBm)	Limit (dBm)	Margin (dB)	S.A Reading (dBm)	S.G Power Vaule (dBm)	Correction Factor (dB)
1649.40	H	-49.71	-13.00	-36.71	-50.65	-52.66	5.10
2474.10	H	-51.53	-13.00	-38.53	-57.04	-55.51	6.13
3298.80	H	-51.76	-13.00	-38.76	-60.29	-55.34	5.73
1649.40	V	-44.26	-13.00	-31.26	-45.27	-47.21	5.10
2474.10	V	-44.93	-13.00	-31.93	-51.97	-48.91	6.13
3298.80	V	-45.37	-13.00	-32.37	-55.33	-48.95	5.73

Mode	CDMA2000 RC3+SO55, Channel : 384						
Frequency (MHz)	Antenna Polarity	E.R.P (dBm)	Limit (dBm)	Margin (dB)	S.A Reading (dBm)	S.G Power Vaule (dBm)	Correction Factor (dB)
1673.04	H	-49.27	-13.00	-36.27	-50.41	-52.16	5.04
2509.56	H	-51.01	-13.00	-38.01	-56.94	-55.05	6.19
3346.08	H	-51.22	-13.00	-38.22	-59.78	-54.76	5.69
1673.04	V	-44.59	-13.00	-31.59	-45.77	-47.48	5.04
2509.56	V	-44.42	-13.00	-31.42	-51.82	-48.46	6.19
3346.08	V	-45.35	-13.00	-32.35	-55.43	-48.89	5.69

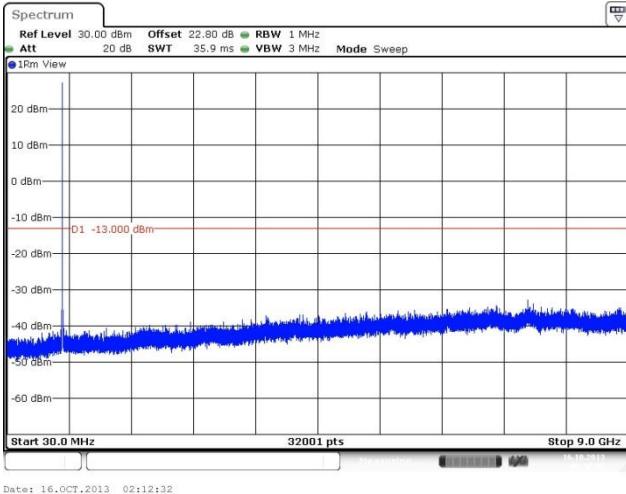
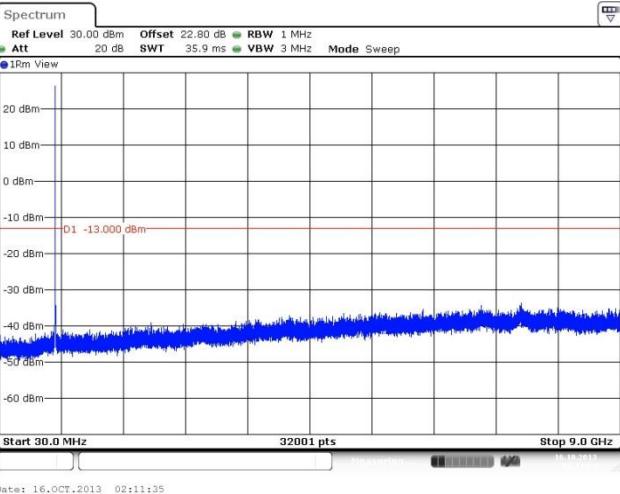
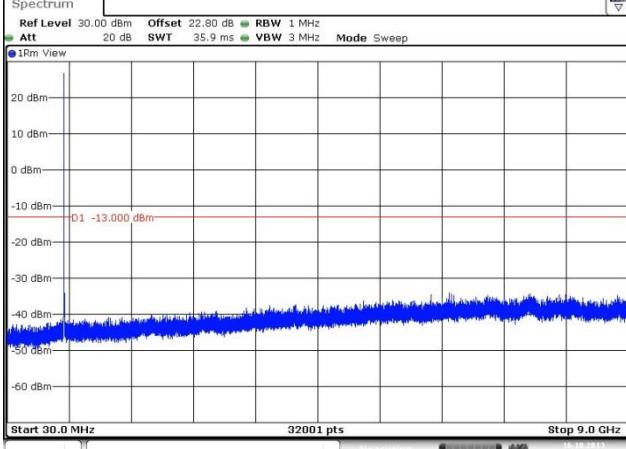
Mode	CDMA2000 RC3+SO55, Channel : 777						
Frequency (MHz)	Antenna Polarity.	E.R.P (dBm)	Limit (dBm)	Margin (dB)	S.A Reading (dBm)	S.G Power Vaule (dBm)	Correction Factor (dB)
1696.62	H	-50.47	-13.00	-37.47	-51.81	-53.30	4.98
2544.93	H	-51.85	-13.00	-38.85	-58.20	-55.95	6.25
3393.24	H	-52.15	-13.00	-39.15	-60.74	-55.65	5.65
1696.62	V	-45.64	-13.00	-32.64	-46.98	-48.47	4.98
2544.93	V	-45.75	-13.00	-32.75	-53.50	-49.85	6.25
3393.24	V	-45.91	-13.00	-32.91	-56.10	-49.41	5.65

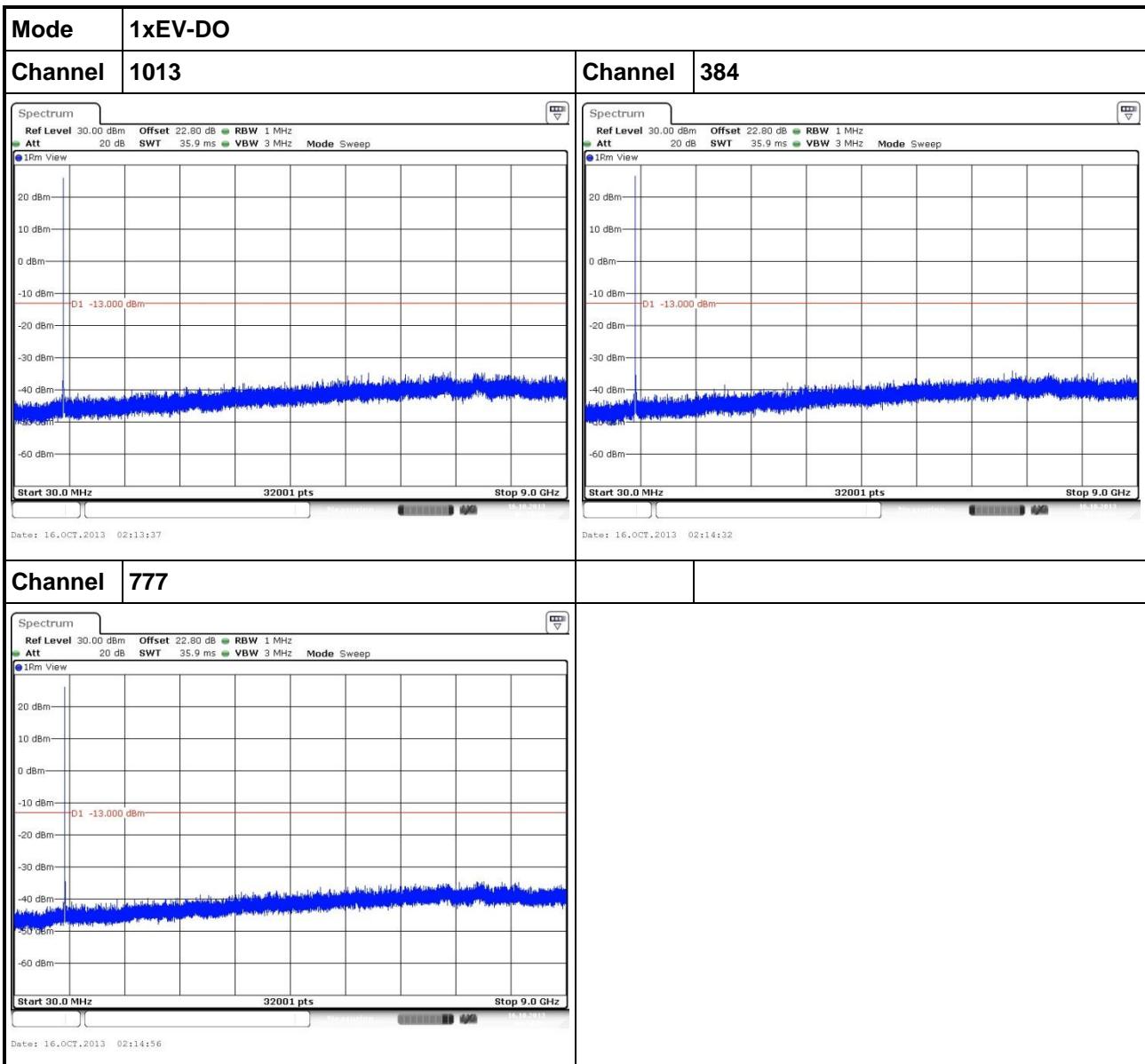
NOTE: ERP = S.G power value + correction factor - 2.15

3.3 Conducted Emissions


3.3.1 Limit of Conducted Emissions

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB equal to -13dBm.




3.3.2 Test Procedures

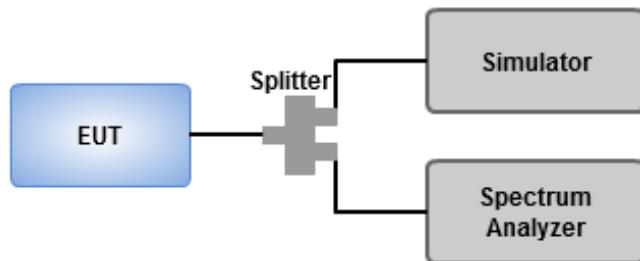

1. Lowest, middle and highest operating channels are tested for this item.
2. Scan frequency range is from 30MHz~9GHz.
3. Set RBW = 1MHz, VBW = 3MHz, detector = RMS, sweep time = auto.
4. Record the max trace value and capture the test plot of each sub frequency band.

3.3.3 Test Setup

3.3.4 Test Result of Conducted Emissions

Mode	CDMA	
Channel	1013	Channel 384
	 Date: 16.OCT.2013 02:12:32	 Date: 16.OCT.2013 02:11:35
Channel	777	
	 Date: 16.OCT.2013 02:11:59	

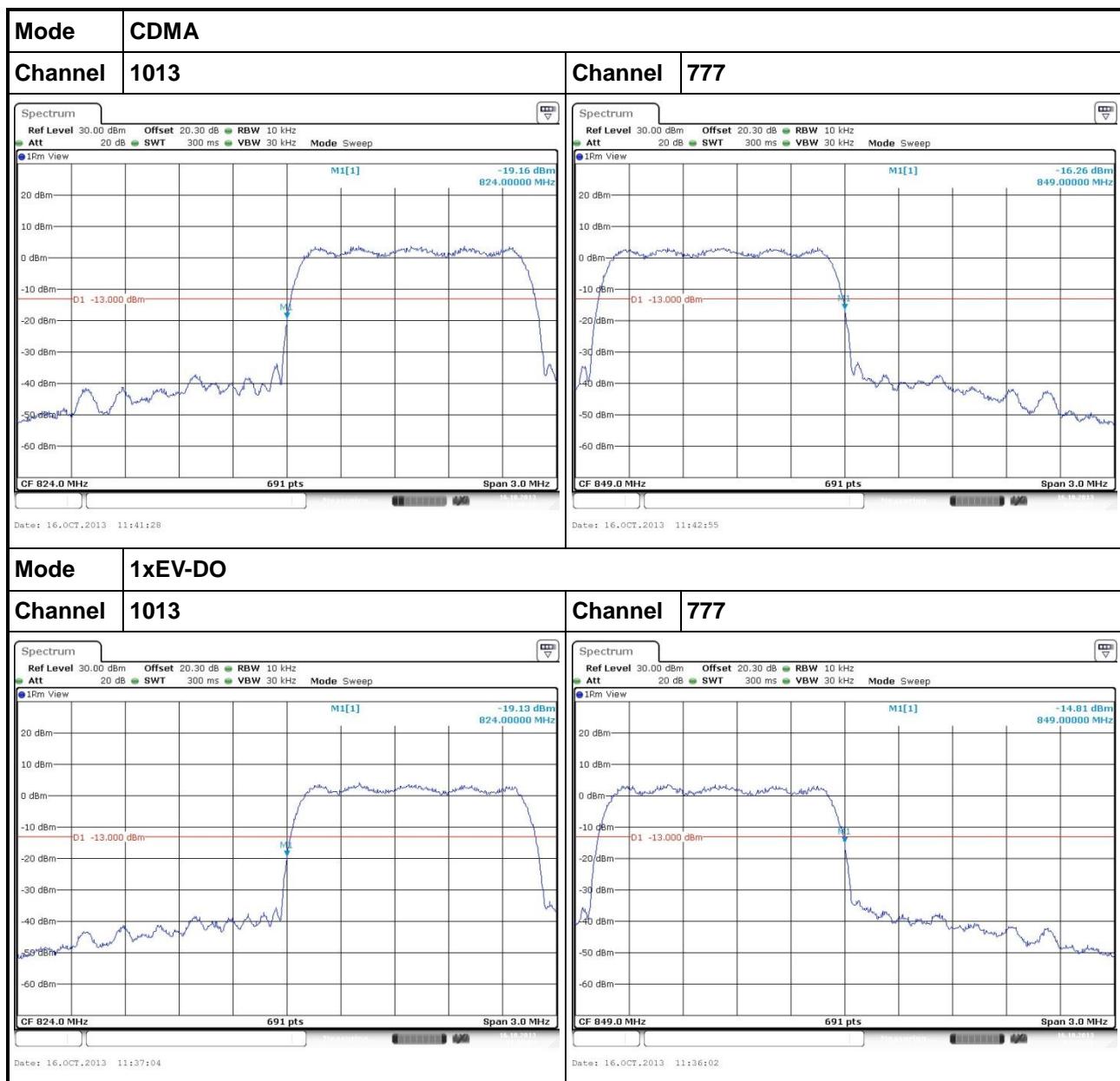
3.4 Band Edge


3.4.1 Limit of Band Edge

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB equal to -13dBm.

3.4.2 Test Procedures

1. Lowest and highest operating channels are tested for this item.
2. The center frequency of spectrum analyzer will be set to 824 and 849 MHz.
3. Set RBW = 10kHz, VBW=30kHz, span = 3 MHz, detector = RMS, sweep time = auto
4. Record the max trace value and capture the test plot.

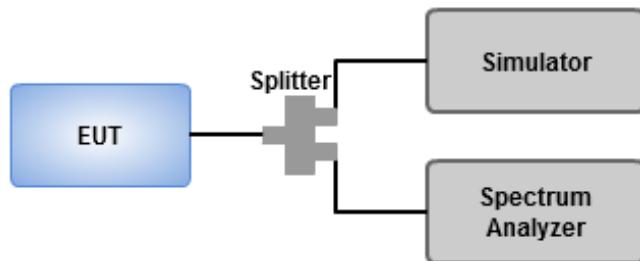

3.4.3 Test Setup

3.4.4 Test Result of Band Edge

MODE	Channel	Frequency (MHz)	Measured value (dBm)	Correction Factor (dB)	Correction Value(dBm)	Limit (dBm)
CDMA	1013	824.7	-19.16	1.76	-17.40	-13
CDMA	777	848.31	-16.26	1.76	-14.50	-13
1xEV-DO	1013	824.7	-19.13	1.76	-17.37	-13
1xEV-DO	777	848.31	-14.81	1.76	-13.05	-13

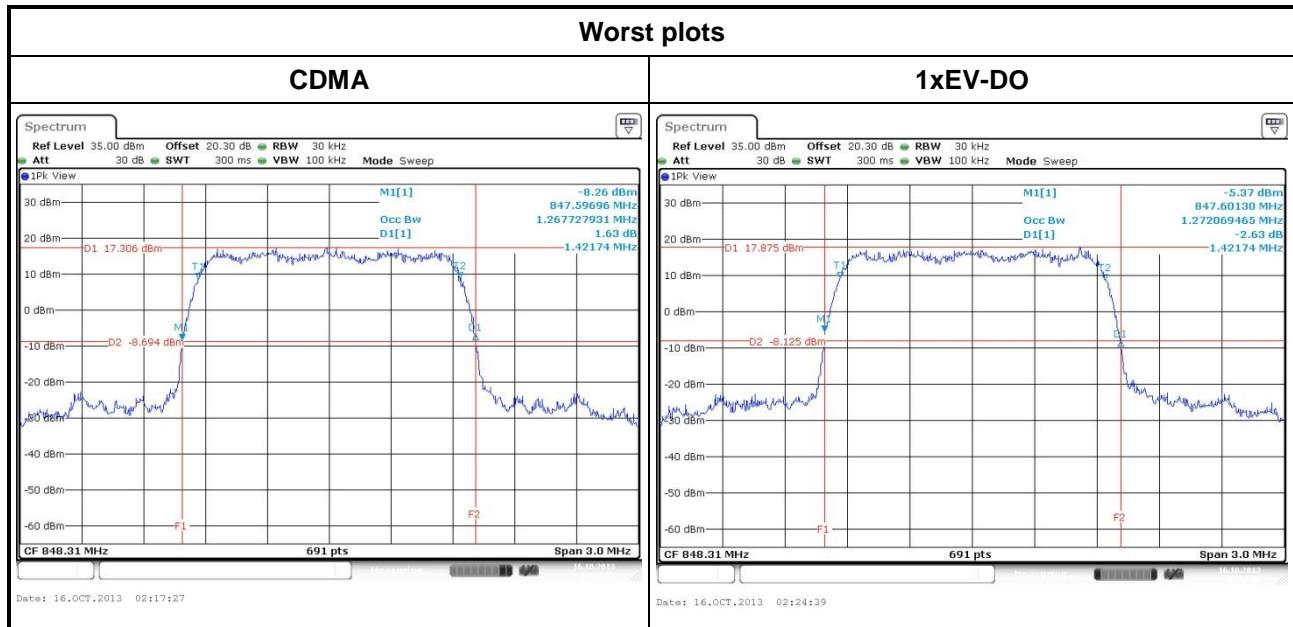
Note: 10kHz is used for measurement since used spectrum analyser has no 15kHz (1% of 26dB bandwidth) setting. Thus correction factor is required for measured value
 Correction factor = $10 * \log(15\text{kHz}/10\text{kHz}) = 1.76 \text{ dB}$

3.5 Occupied Bandwidth


3.5.1 Limit of Occupied Bandwidth

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB equal to -13dBm.

3.5.2 Test Procedures

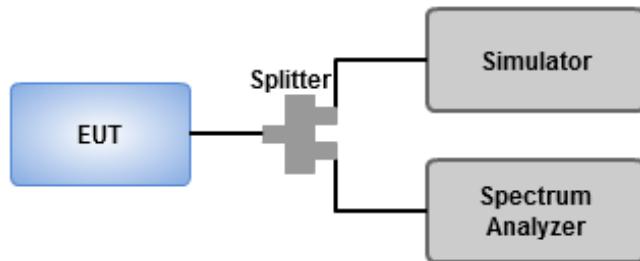

1. Set resolution bandwidth (RBW) = 10 kHz, Video bandwidth = 30 kHz for GSM mode.
2. Detector = Sample, Trace mode = max hold.
3. Sweep = auto couple, Allow the trace to stabilize.
4. Using occupied bandwidth measurement function of spectrum analyzer to measure occupied bandwidth

3.5.3 Test Setup

3.5.4 Test Result of Occupied Bandwidth

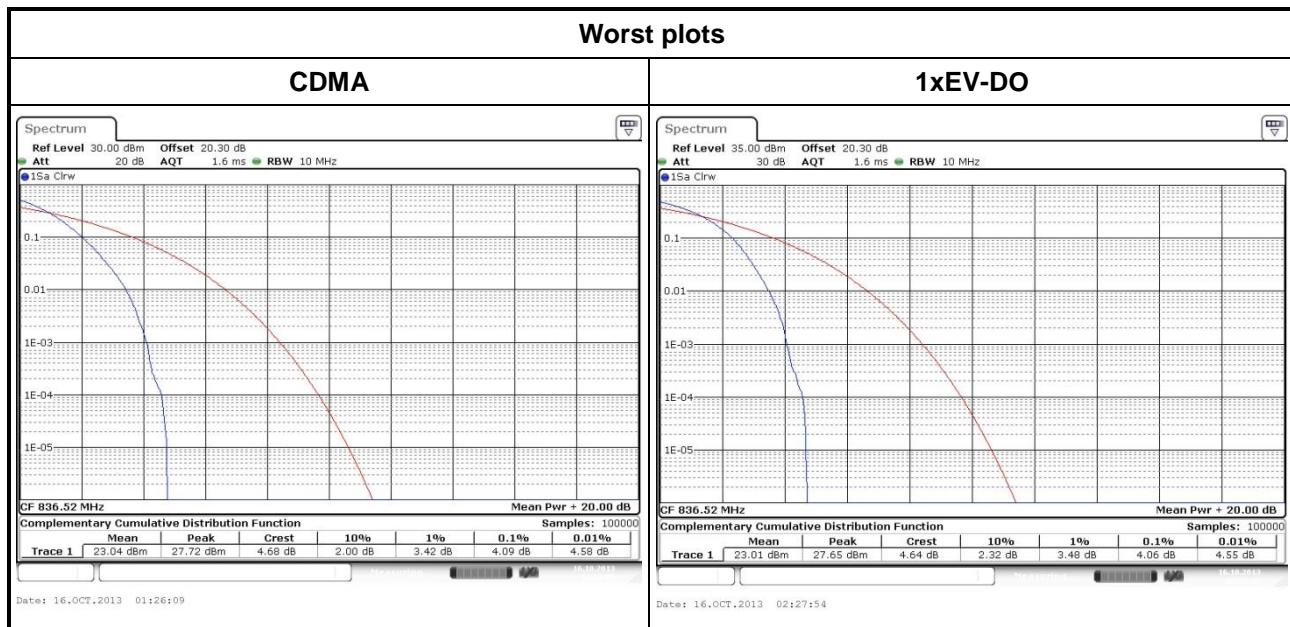
MODE	Channel	Frequency (MHz)	26dB BW (MHz)	99% OBW (MHz)
CDMA	1013	824.7	1.4217	1.27
CDMA	384	836.52	1.4130	1.27
CDMA	777	848.31	1.4217	1.27
1xEV-DO	1013	824.7	1.4174	1.27
1xEV-DO	384	836.52	1.4174	1.27
1xEV-DO	777	848.31	1.4217	1.27

3.6 Peak to Average Ratio


3.6.1 Limit of Peak to Average Ratio

Peak-to-average ratio (PAR) of the transmission may not exceed 13 dB

3.6.2 Test Procedures

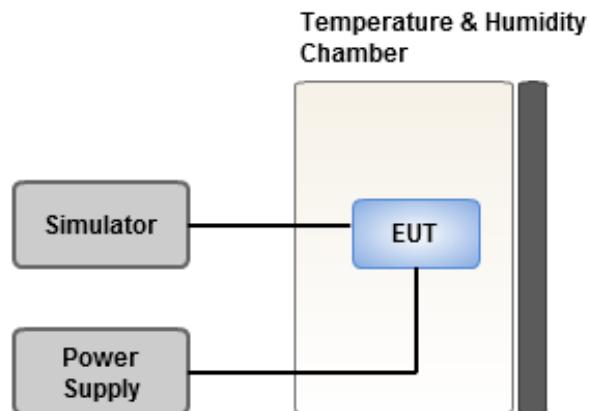

1. Enable CCDF function of spectrum analyzer and set RBW=10MHz
2. Set the number of counts to a value that stabilizes the measured CCDF curve
3. Record the maximum PAPR level associated with a probability of 0.1%.

3.6.3 Test Setup

3.6.4 Test Result of Peak to Average Ratio

MODE	Channel	Frequency (MHz)	Peak to Average ratio (dB)
CDMA	1013	824.70	3.65
CDMA	384	836.52	4.09
CDMA	777	848.31	3.59
1xEV-DO	1013	824.70	3.71
1xEV-DO	384	836.52	4.06
1xEV-DO	777	848.31	3.88

3.7 Frequency Stability


3.7.1 Limit of Frequency Stability

The frequency stability shall be less +/- 2.5ppm.

3.7.2 Test Procedures

1. EUT was placed at temperature chamber and connected to an external power supply.
2. Temperature and voltage condition shall be tested to confirm frequency stability.
3. Temperature range is from -30~50°C and voltage range is from lowest to highest working voltage.
4. Link up EUT and simulator. Confirm frequency drift value of simulator and record it.

3.7.3 Test Setup

3.7.4 Test Result of Frequency Stability

Mode	CDMA		
Temperature (°C)	Voltage (Vac)	Frequency Drift (ppm)	Limit (ppm)
50	110	0.010	2.5
40	110	0.011	2.5
30	110	0.010	2.5
20	110	0.008	2.5
10	110	0.010	2.5
0	110	0.007	2.5
-10	110	0.005	2.5
-20	110	0.006	2.5
-30	110	0.002	2.5
20	126.5	0.013	2.5
20	93.5	0.010	2.5

Mode	1xEV-DO		
Temperature (°C)	Voltage (Vac)	Frequency Drift (ppm)	Limit (ppm)
50	110	0.011	2.5
40	110	0.012	2.5
30	110	0.011	2.5
20	110	0.010	2.5
10	110	0.012	2.5
0	110	0.008	2.5
-10	110	0.007	2.5
-20	110	0.005	2.5
-30	110	0.004	2.5
20	126.5	0.016	2.5
20	93.5	0.013	2.5

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp, it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan Hsiang. Location map can be found on our website <http://www.icertifi.com.tw>.

Linkou

Tel: 886-2-2601-1640
No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City, Taiwan, R.O.C.

Kwei Shan

Tel: 886-3-271-8666
No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

If you have any suggestion, please feel free to contact us as below information

Tel: 886-3-271-8666
Fax: 886-3-318-0155
Email: ICC_Service@icertifi.com.tw

==END==