

FEB 04 1999

FCC Type Acceptance Application

EXHIBIT 4

TEST REPORT

“Personal Safeguard Companion”

FCC ID – N6TSCACEJ

TITLE:	Test Report	FCC-ID N6TSCACEJ
FILE NAME:	\\MASTER\\TEMP\\Documents in Progress\\Safeguard Comp TR 1_4.doc	
FILE DATE:	01/29/99 10:58 AM	
	Specification Number:	TR101/100/001
	Page 1 of 21	Print Date: 1/29/99

SUMMARY OF TEST REPORT

The Chapman Personal Safeguard Companion was tested to all the relevant FCC requirements.

The Radiated Emission Testing was carried out at the EMI Research and Development Laboratory of Florida Atlantic University. Their Report, "Technical Report 99-004" is appended to this Exhibit.

The Frequency Stability Testing was carried out using the Temperature Test Chamber at Amitek Corporation, in Boca Raton, Florida.

All other testing was carried out in the laboratory at Chapman Technologies, Fort Lauderdale, Florida.

The Test Results demonstrate that the Chapman Personal Safeguard Companion satisfies the relevant FCC requirements.

Report Compiled by:

G K Smith

Date: 2/3/99

TITLE:	Test Report	FCC-ID N6TSCACEJ
FILE NAME:	G:\Documents in Progress\FCC\Safeguard Comp TR 1_4.doc	
FILE DATE:	02/01/99 10:36 AM	
	Specification Number:	TR101/100/001
	Page 2 of 21	Print Date: 2/3/99

1	GENERAL INFORMATION	5
1.1	PURPOSE	5
1.2	GLOSSARY OF TERMS	5
2	SAFEGUARD COMPANION	6
3	TEST SPECIFICATIONS	7
3.1	FCC REGULATIONS	7
3.1.1	GENERAL	7
3.1.2	RELEVANT FCC PARTS	7
3.1.2.1	AMPS Board	7
3.1.2.2	GPS Board	7
3.2	RELEVANT SPECIFICATIONS	8
3.2.1	FCC AND EIA/IS-19-B	8
3.3	METHOD OF MEASUREMENT	8
3.4	STANDARD TEST CONDITIONS	9
3.5	TEST EQUIPMENT	9
3.5.1	AMPS TEST SET	9
3.5.2	MODULATION ANALYZER	9
3.5.3	SPECTRUM ANALYZER	9
3.5.4	MULTIMETER	9
3.5.5	PLOTTER	9
3.5.6	10dB FIXED ATTENUATOR	9
3.5.7	DUMMY LOAD	9
3.5.8	TEMPERATURE TEST CHAMBER	9
4	TESTING	10
4.1	RADIATED EMISSION LIMITS	10
4.2	RF POWER OUTPUT	11
4.2.1	SPECIFICATION	11
4.2.2	MEASUREMENT	11
4.2.3	RESULTS	11
4.3	MODULATION CHARACTERISTICS	12
4.3.1	AUDIO FREQUENCY RESPONSE	12
4.3.2	MODULATION DEVIATION LIMITING	14
4.3.2.1	Specification	14
4.3.2.2	Measurement	14

TITLE:	Test Report		FCC-ID N6TSCACEJ
FILE NAME:	\MASTER\TEMP\Documents in Progress\Safeguard Comp TR 1.4.doc		
FILE DATE:	01/29/99 10:58 AM		
	Specification Number:	TR101/100/001	
	Page 3 of 21	Print Date:	1/29/99

TABLE OF CONTENTS

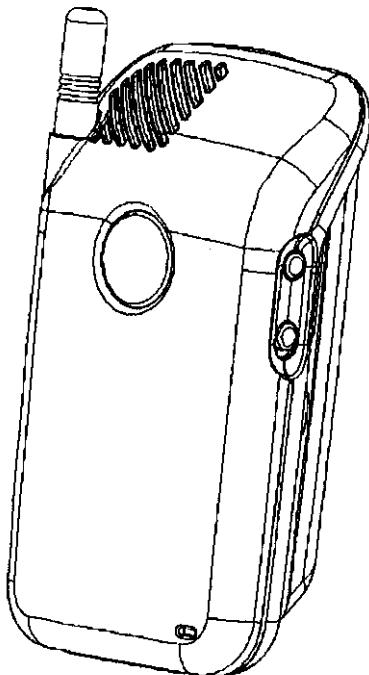
4.3.3	RESULTS	14
4.4	OCCUPIED BANDWIDTH	15
4.4.1	SPECIFICATION	15
4.4.2	MEASUREMENT	15
4.4.3	RESULTS:	16
4.4.3.1	Voice (2500Hz limiting), and SAT 6000H)	16
4.4.3.2	Signaling Tone (10kHz), and SAT 6000Hz	16
4.4.3.3	Wide Band Data	16
4.4.3.4	All Modulation	17
4.5	SPURIOUS EMISSIONS AT ANTENNA TERMINALS	18
4.5.1	SPECIFICATION	18
4.5.2	MEASUREMENT	18
4.5.3	RESULTS	18
4.6	FIELD STRENGTH OF SPURIOUS RADIATION	19
4.7	FREQUENCY STABILITY	20
4.7.1	SPECIFICATION	20
4.7.2	MEASUREMENT	20
4.7.3	RESULTS	21

TITLE:	Test Report		FCC-ID N6TSCACEJ
FILE NAME:	\MASTER\TEMP\Documents in Progress\Safeguard Comp TR 1_4.doc		
FILE DATE:	01/29/99 10:58 AM		
	Specification Number:	TR101/100/001	
	Page 4 of 21	Print Date:	1/29/99

1 General Information

1.1 PURPOSE

The purpose of this document is to provide the Test Results on the Safeguard Companion product for submission to the FCC for Type Acceptance as requested in “EXHIBIT 4 – TEST REPORT”.


1.2 GLOSSARY OF TERMS

Acronym	Description
FCC	Federal Communications Commission
§	Code of Federal Regulations Part.
AMPS	Advanced Mobile Phone System
GPS	Global Positioning System
LED	Light Emitting Diode

TITLE:	Test Report	FCC-ID N6TSCACEJ
FILE NAME:	\\MASTER\\TEMP\\Documents in Progress\\Safeguard Comp TR 1_4.doc	
FILE DATE:	01/29/99 10:58 AM	
	Specification Number:	TR101/100/001

2 Safeguard Companion

The Safeguard Personal Companion is designed for use as a personal security device. It consists of a fully functional AMPS cellular phone (IS-19 and IS 91) and a 12-channel GPS receiver packaged in a hand-held plastic case as shown below.

The AMPS cellular phone is based on a reference design using the ACE Chipset manufactured by Mitel (formally GEC-Plessey). This chipset is used in several cellphones on the market including ones manufactured by Ericsson and Uniden.

The device uses the analog AMPS cellular network for all communications between the user and the Central Control Station. The AMPS network is used for both data and voice communications. An internal loudspeaker and a microphone are used for "handsfree" voice communications.

The device uses the 12-channel GPS receiver for determining its location. The GPS Receiver is based on a reference design using the Zodiac Chipset manufactured by Rockwell Semiconductors.

TITLE:	Test Report		
FILE NAME:	\MASTER\TEMP\Documents in Progress\Safeguard Comp TR 1_4.doc		
FILE DATE:	01/29/99 10:58 AM		
	Specification Number:	TR101/100/001	
	Page 6 of 21	Print Date:	1/29/99

3 Test Specifications

3.1 FCC REGULATIONS

3.1.1 *General*

The specific tests required for FCC Type Acceptance are contained within “FCC Code of Federal Regulations, Title 47”.

§2.985 to §2.997 specify the required data, in general, and §2.999 adds the specific data for the particular type of equipment.

The Safeguard Companion consists of two main boards: the AMPS Cellular Controller and the GPS Receiver. The two functions performed by these boards are those of public cellular radio communications and GPS reception.

3.1.2 *Relevant FCC Parts*

3.1.2.1 AMPS Board

The AMPS Cellular board conforms to Part 22 Subpart K – Domestic Public Cellular Radio Telecommunication Service, §22.900.

3.1.2.2 GPS Board

The GPS receiver conforms to Part 15 Subpart B “Unintentional Radiator”, §15.101. The GPS Receiver operating at 1575MHz, as per §15.101 (b), is exempt from complying with the technical provisions of §15. ET Docket No.97-94, on April 1998, eliminated the Notification requirement of §15.101 and the GPS receiver requires only Declaration of Conformity.

As the GPS receiver forms an integral part of the device, it was switched on during the testing of Radiation Emission Limits, and hence the GPS receiver, as well as the complete device, was tested to §15.109. The results of this testing is given in this report.

TITLE:	Test Report		FCC-ID N6TSCACEJ
FILE NAME:	\MASTER\TEMP\Documents in Progress\Safeguard Comp TR 1_4.doc		
FILE DATE:	01/29/99 10:58 AM		
	Specification Number:	TR101/100/001	
	Page 7 of 21	Print Date:	1/29/99

3.2 RELEVANT SPECIFICATIONS

3.2.1 FCC and EIA/IS-19-B

A list of the tests required by FCC is given in the following Table. Where applicable, EIA Interim Standard "Recommended Minimum Standards for 800-MHZ Cellular Subscriber Units", EIA/IS-19-B, is used as the reference for the measurements and results.

TEST	FCC Part	IS-19-B Clause	Specification			
Radiated Emission Limits	§15.109(a)		§15.109(a)			
RF Power Output		3.2.1	-2dBW, +2dB -4dB			
Modulation Characteristics Modulation Deviation Limiting	§2.987(a)	3.3.2.3	Modulation Response NGT 12kHz peak deviation.			
Occupied Bandwidth Spectrum Noise Suppression		3.4.1	Voice + SAT	20-45kHz <-26dBc >45kHz <-(63+10logP)dBc		
			SAT + ST	20-45kHz <-26dBc 45-60kHz <-45dBc 60-90kHz <-60dBc >90kHz <-(63+10logP)dBc		
			Wideband Data	20-45kHz <-26dBc 45-60kHz <-45dBc 60-90kHz <-60dBc >90kHz <-(63+10logP)dBc		
			All Modulation	869-894MHz <-80dBm		
Spurious Emissions at antenna terminal Harmonic and Spurious Emissions (Conducted) - Discrete		3.4.2.	Voice + SAT	>-(43+10logP)dBc		
			Wideband Data	>-(43+10logP)dBc		
Field Strength of Spurious Radiation	§2.993					
Frequency Stability	§2.995			-30 to +50°C	+- 2.5ppm	

3.3 METHOD OF MEASUREMENT

The Method of Measurement, where appropriate, is as given in the following document:

EIA INTERIM STANDARD

"Recommended Minimum Standards for 800-MHZ Cellular Subscriber Units"

EIA/IS-19-B

TITLE:	Test Report		
FILE NAME:	\MASTER\TEMP\Documents in Progress\Safeguard Comp TR 1 4.doc		
FILE DATE:	01/29/99 10:58 AM		
	Specification Number:	TR101/100/001	
	Page 8 of 21	Print Date:	1/29/99

3.4 STANDARD TEST CONDITIONS

The Standard Test Conditions are as given in Section 6 of the following document:

EIA INTERIM STANDARD

“Recommended Minimum Standards for 800-MHZ Cellular Subscriber Units”

EIA/IS-19-B

3.5 TEST EQUIPMENT

For the Tests carried out at Chapman Technologies, the following Test Equipment was used:

3.5.1 *AMPS Test Set*

MARCONI INSTRUMENTS Radio Communications Test Set 2955B, S/N 132423/078
with adapter AMPS Radio Test System 2957B, S/N 132451/064

3.5.2 *Modulation Analyzer*

HEWLETT PACKARD 8901A. S/N 2324A02790

3.5.3 *Spectrum Analyzer*

HEWLETT PACKARD 8590B, 9kHz to 1.8GHz. S/N 2932A00221

3.5.4 *Multimeter*

HEWLETT PACKARD 3468A. S/N 2137A13790

3.5.5 *Plotter*

HEWLETT PACKARD HP7470A Plotter. S/N 2210A10932 FCC ID BSD8537470A

3.5.6 *10dB Fixed Attenuator*

PASTERNACK PE1070-10.

3.5.7 *Dummy Load*

WEINSCHEL ENGINEERING M1413 S/N 3443, 10W AVG, 1KW Peak.

For the Frequency Stability Test, carried out at Amitek, Corporation, the following test equipment was also used:

3.5.8 *Temperature Test Chamber*

RANSCO 16000 Series Model 16219 S/N 235-009130

TITLE:	Test Report FCC-ID N6TSCACEJ		
FILE NAME:	\MASTER\TEMP\Documents in Progress\Safeguard Comp TR 1_4.doc		
FILE DATE:	01/29/99 10:58 AM		
	Specification Number:	TR101/100/001	
	Page 9 of 21	Print Date:	1/29/99

4 TESTING

4.1 RADIATED EMISSION LIMITS

This test was carried out at EMI Research and Development Laboratory at Florida Atlantic University.

In order to preserve battery life, the cellular board of the Safeguard Companion was set to receive mode and the GPS Receiver board was switched on with a duty cycle of 1 second ON, 2 seconds OFF.

Details of the measurements are given in Florida Atlantic University Technical report No. 99.004, Page 3, which is appended to this Exhibit.

TITLE:	Test Report	FCC-ID N6TSCACEJ	
FILE NAME:	G:\Documents in Progress\FCC\Safeguard Comp TR 1_4.doc		
FILE DATE:	02/01/99 10:36 AM		
	Specification Number:	TR101/100/001	
	Page 10 of 21	Print Date:	2/3/99

4.2 RF POWER OUTPUT

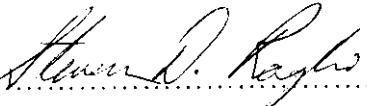
4.2.1 Specification

FCC regulations and OST Bulletin No. 53 control the effective Radiated power (ERP).

The ERP of the Safeguard Companion is as defined in EIA/IS-19-B para. 3.2.1. and Table 4.

The antenna fitted to the Safeguard Companion device has a nominal gain of 0dBd. The Safeguard Companion is a Class III subscriber device with a maximum nominal power level of 0.6W ERP, +2dB, -4dB.

4.2.2 Measurement


The output from the antenna terminal was connected to the input of the AMPS Test Set (para. 3.5.1).

The unit under test was set to transmit at Power Level 0, the maximum output. The Transmit Power is measured at Channels #991, #331, #799 corresponding to the lowest, center and highest frequencies.

4.2.3 Results

Measurement	Standard	Result	Remarks
Channel #991	27.8dBm +2 -4 dB	25.5 dBm	OK
Channel #331	27.8dBm +2 -4 dB	25.8 dBm	OK
Channel #799	27.8dBm +2 -4 dB	24.5 dBm	OK

Date Tested: 12-10-98

Test Engineer: (Signature)

STEVEN D. RAGLIN (Printed)

TITLE:	Test Report	FCC-ID N6TSCACEJ
FILE NAME:	G:\Documents in Progress\FCC\Safeguard Comp TR 1_4.doc	,
FILE DATE:	02/01/99 10:36 AM	
	Specification Number:	TR101/100/001
	Page 11 of 21	Print Date: 2/3/99

4.2 MODULATION CHARACTERISTICS

4.2.1 *Audio Frequency Response*

The Audio Frequency Responses are controlled by the ACE9040 Audio Processor IC. The typical audio responses are given in the ACE9040 specification. These are reproduced below.

ACE9040

TYPICAL FREQUENCY RESPONSES

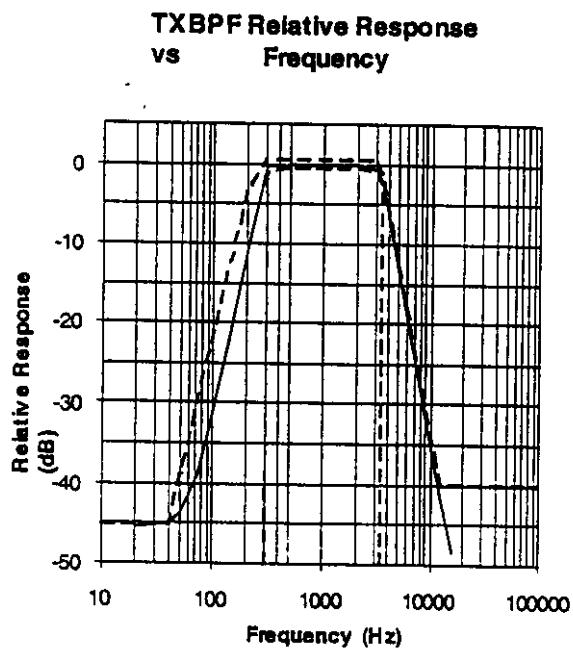


Figure 4

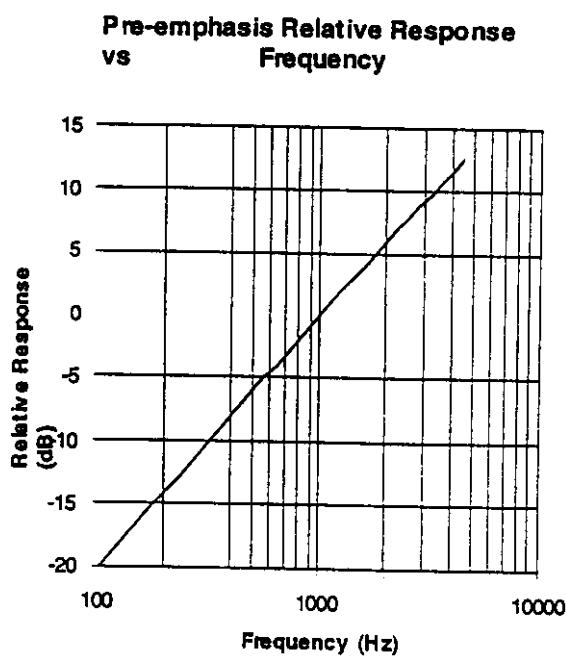


Figure 5

TITLE:	Test Report	FCC-ID N6TSCACEJ	
FILE NAME:	\MASTER\TEMP\Documents in Progress\Safeguard Comp TR 1_4.doc		
FILE DATE:	01/29/99 10:58 AM		
	Specification Number:	TR101/100/001	
	Page 12 of 21	Print Date:	1/29/99

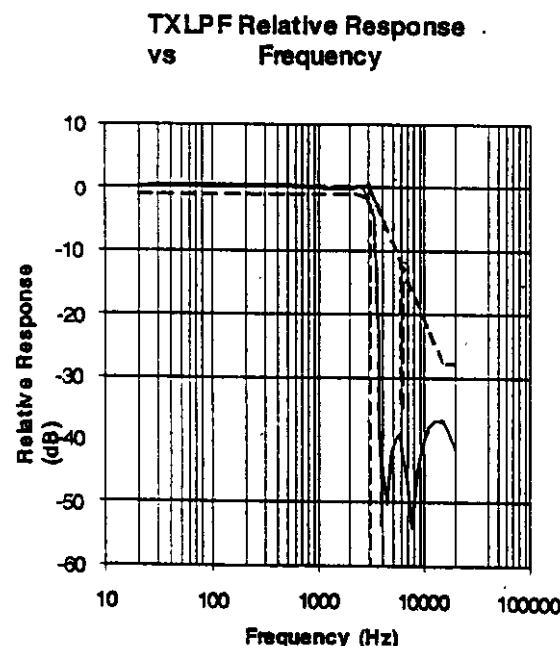


Figure 6

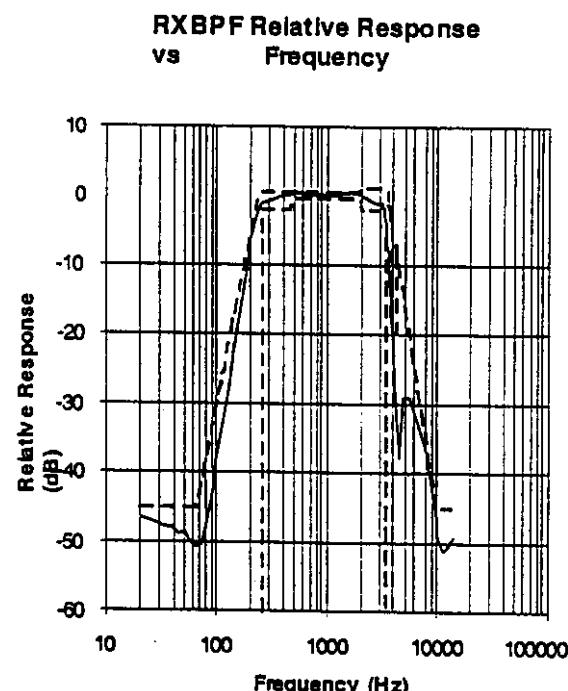


Figure 7

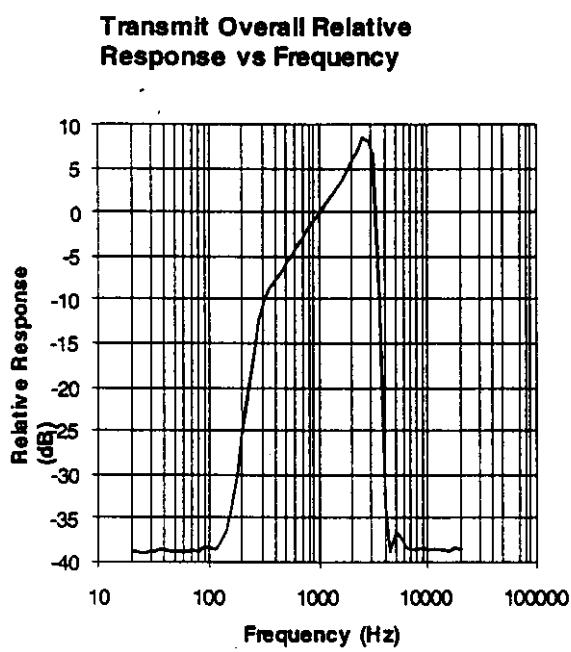


Figure 8

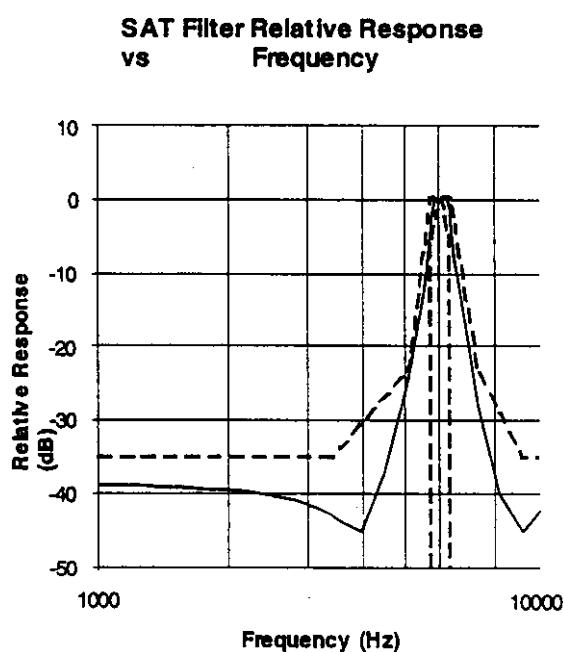


Figure 9

TITLE:	Test Report		
FILE NAME:	\MASTER\TEMP\Documents in Progress\Safeguard Comp TR 1_4.doc		
FILE DATE:	01/29/99 10:58 AM		
	Specification Number:	TR101/100/001	
	Page 13 of 21	Print Date:	1/29/99

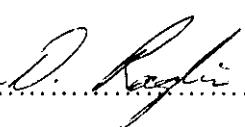
4.3.2 Modulation Deviation Limiting

Modulation limiting refers to the ability of the transmitter circuits to prevent the transmitter from producing deviation in excess of rated system deviation.

The output from the antenna terminal is connected to the input of the Modulation Analyzer (para. 3.5.2). The Deviation Limiting is tested in accordance with Clause 3.3.2.3. of IS-19-B.

4.3.2.1 Specification

The instantaneous peak and steady state deviation shall not exceed $\pm 12\text{kHz}$ at any audio frequency.


4.3.2.2 Measurement

Set transmitter to channel #991 (lowest frequency). With compressor enabled and the SAT disabled, adjust the audio input for $\pm 8\text{kHz}$ peak deviation at 1000Hz. Increase the audio input level by 20dB. Vary the frequency and observe the deviation for all frequencies between 300 and 3000Hz. Record the highest deviation and corresponding frequency. Repeat for channels #331 (center frequency) and #799 (highest frequency).

4.3.3 RESULTS

Measurement	Standard	Result		Remarks
		Max. Deviation		
Channel #991	NMT $\pm 12\text{kHz}$ 300 to 3000Hz	11.86		2.5kHz
Channel #331	NMT $\pm 12\text{kHz}$ 300 to 3000Hz	11.86		2.5kHz
Channel #799	NMT $\pm 12\text{kHz}$ 300 to 3000Hz	11.75		2.5kHz

Date Tested: 12-10-98

Test Engineer: (Signature)

STEVEN D. RAGLIN (Printed)

TITLE:	Test Report		
FILE NAME:	\MASTER\TEMP\Documents in Progress\Safeguard Comp TR 1 4.doc		
FILE DATE:	01/29/99 10:58 AM		
	Specification Number:	TR101/100/001	
	Page 14 of 21	Print Date:	1/29/99

4.4 OCCUPIED BANDWIDTH

The Occupied Bandwidth was tested in accordance with Clause 3.4.1. of IS-19-B.

The output from the antenna terminal is connected to the input of the Spectrum Analyzer, (para. 3.5.3) via a 10dB fixed attenuator (para. 3.5.6). The Spectrum Analyzer display is plotted on a Hewlett Packard 7470A Plotter. (para. 3.5.5).

4.4.1 Specification

The mean power of emissions from the transmitter with modulated carrier shall be attenuated below the mean power of the unmodulated carrier in accordance with the following:

Modulation	Frequency removed from carrier	Attenuation
All modulation	20kHz up to 45kHz	At least 26dBc
Voice and SAT	>45kHz	At least $(63 + 10 \log P)$ dBc
Signaling Tone plus SAT	>45kHz to 60kHz	At least 45dBc
	>60kHz to 90kHz	At least 60dBc
	>90kHz	At least $(63 + 10 \log P)$ dBc
Wideband Data	>45kHz to 60kHz	At least 45dBc
	>60kHz to 90kHz	At least 60dBc
	>90kHz	At least $(63 + 10 \log P)$ dBc

NOTE: P is mean output power in watts.

In the band 869MHz to 894MHz, the mean power of emissions from the transmitter with modulated carrier shall not exceed -80dBm.

4.4.2 Measurement

Set the transmitter to channel #1 (to avoid interference).

For combined audio and SAT measurements, disable compressor and modulate transmitter with 1000Hz tone at a level to produce ± 8 kHz peak deviation. Increase audio level by 13.5dB and change audio frequency to 2500kHz. Switch on SAT tone of 6000Hz with ± 2 kHz peak deviation. Adjust Spectrum Analyzer and record display accordingly.

For combined SAT and Signaling Tone (ST) measurements, the transmitter is modulated with a 10kHz ST frequency with ± 8 kHz peak deviation in addition to the SAT tone of 6000Hz with ± 2 kHz peak deviation.

For Wideband data measurements, the transmitter is modulated with a quasi-random 10kilobit/second data pattern at ± 8 kHz peak deviation.

TITLE:	Test Report		FCC-ID N6TSCACEJ
FILE NAME:	\MASTER\TEMP\Documents in Progress\Safeguard Comp TR 1_4.doc		
FILE DATE:	01/29/99 10:58 AM		
	Specification Number:	TR101/100/001	
	Page 15 of 21	Print Date:	1/29/99

FCC ID – N6TSCACEJ**4.4.3 RESULTS:**

The results of the measurements are given in Spectrum Analyzer plots #

4.4.3.1 Voice (2500Hz limiting), and SAT 6000H)

CONDITION	PLOT	SPEC	RESULTS	REMARKS
20kHz to 45kHz	#1	<-26dBc	-35dBc	PASS
>45kHz, up to 1 st Harmonic	#1 & #2	<-59dBc	-69dBc	PASS

NOTE: Assuming Mean output power of unmodulated carrier = -4dBW

4.4.3.2 Signaling Tone (10kHz), and SAT 6000Hz

CONDITION	PLOT	SPEC	RESULTS	REMARKS
20kHz to 45kHz	#3	<-26dBc	-39dBc	PASS
45kHz to 60 kHz	#4	<-45dBc	-65.5dBc	PASS
60kHz to 90 kHz	#4	<-65dBc	-69dBc	PASS
>90kHz, up to 1 st Harmonic	#4 & #5	<-59dBc	<-70dBc	PASS

NOTE: Assuming Mean output power of unmodulated carrier = -4dBW

4.4.3.3 Wide Band Data

CONDITION	PLOT	SPEC	RESULTS	REMARKS
20kHz to 45kHz	#6	<-26dBc	-32dBc	PASS
45kHz to 60 kHz	#7	<-45dBc	-70dBc	PASS
60kHz to 90 kHz	#7	<-65dBc	-70dBc	PASS
>90kHz, up to 1 st Harmonic	#7 & #8	<-59dBc	-70dBc	PASS

NOTE: Assuming Mean output power of unmodulated carrier = -4dBW

In all Plots, the unmodulated carrier is shown at level 16dBm. A 10dB fixed attenuator was used on the input of the Spectrum Analyzer, hence, level of unmodulated carrier assumed to be 26dBm or -4dBW.

TITLE:	Test Report	FCC-ID N6TSCACEJ
FILE NAME:	\\MASTER\\TEMP\\Documents in Progress\\Safeguard Comp TR 1_4.doc	
FILE DATE:	01/29/99 10:58 AM	
	Specification Number:	TR101/100/001
	Page 16 of 21	Print Date: 1/29/99

FCC ID – N6TSCACEJ

4.4.3.4 All Modulation

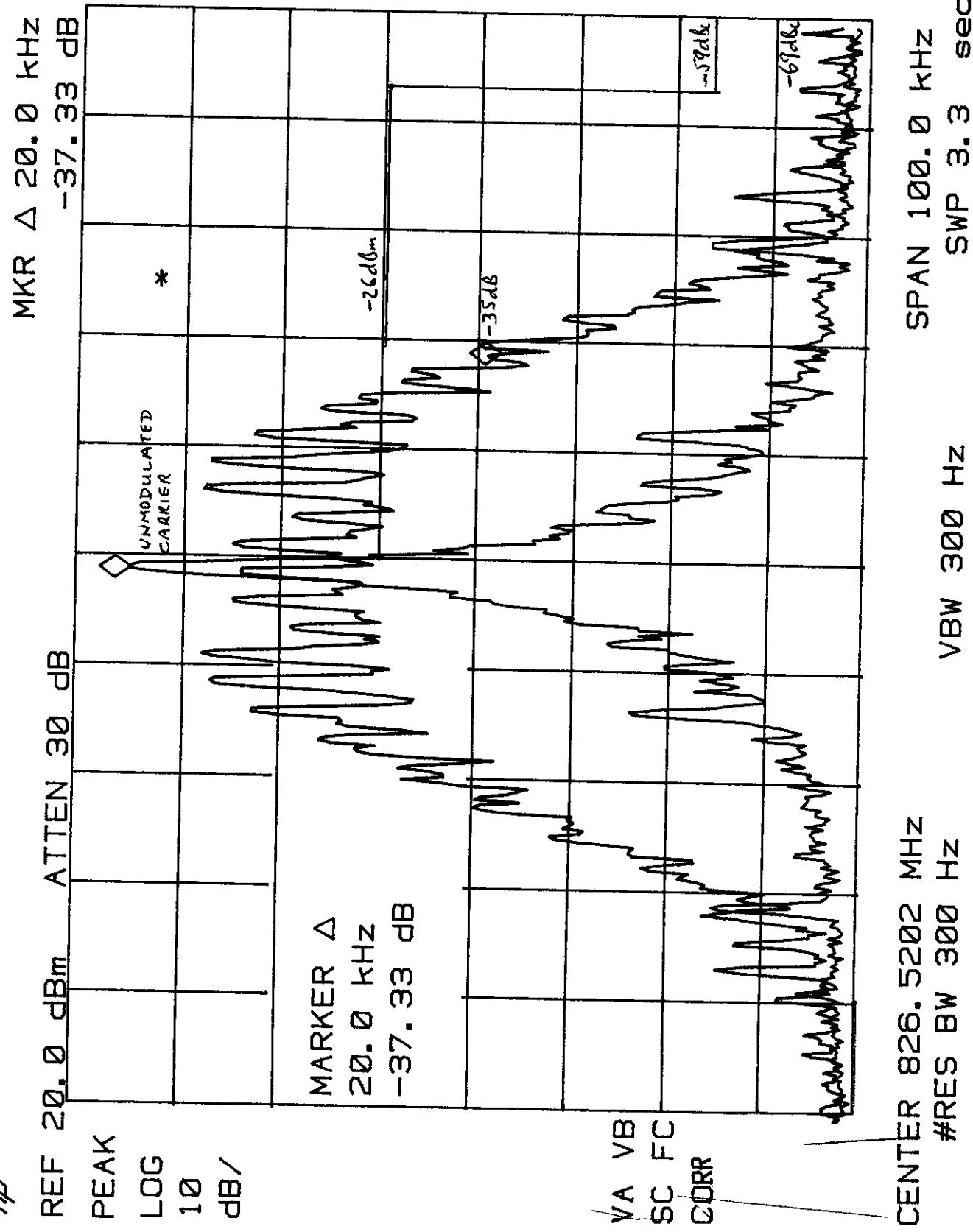
CONDITION	PLOT	SPEC	RESULTS	REMARKS
869MHz to 894MHz	#9	-80dBm	<-85dBm	PASS

NOTES:

- 1) Resolution bandwidth 10kHz in order to reduce noise floor of Spectrum Analyzer below -95dBm
- 2) 10dB fixed attenuator on input of Spectrum Analyzer, hence 10dB added to reading.
- 3) All forms of modulation were applied to unit, in all cases no discrete signals were observed above the Spectrum Analyzer noise, hence just one plot given.

Date Tested: 1/13/99

Test Engineer: (Signature)


... G. K. SORITI (Printed)

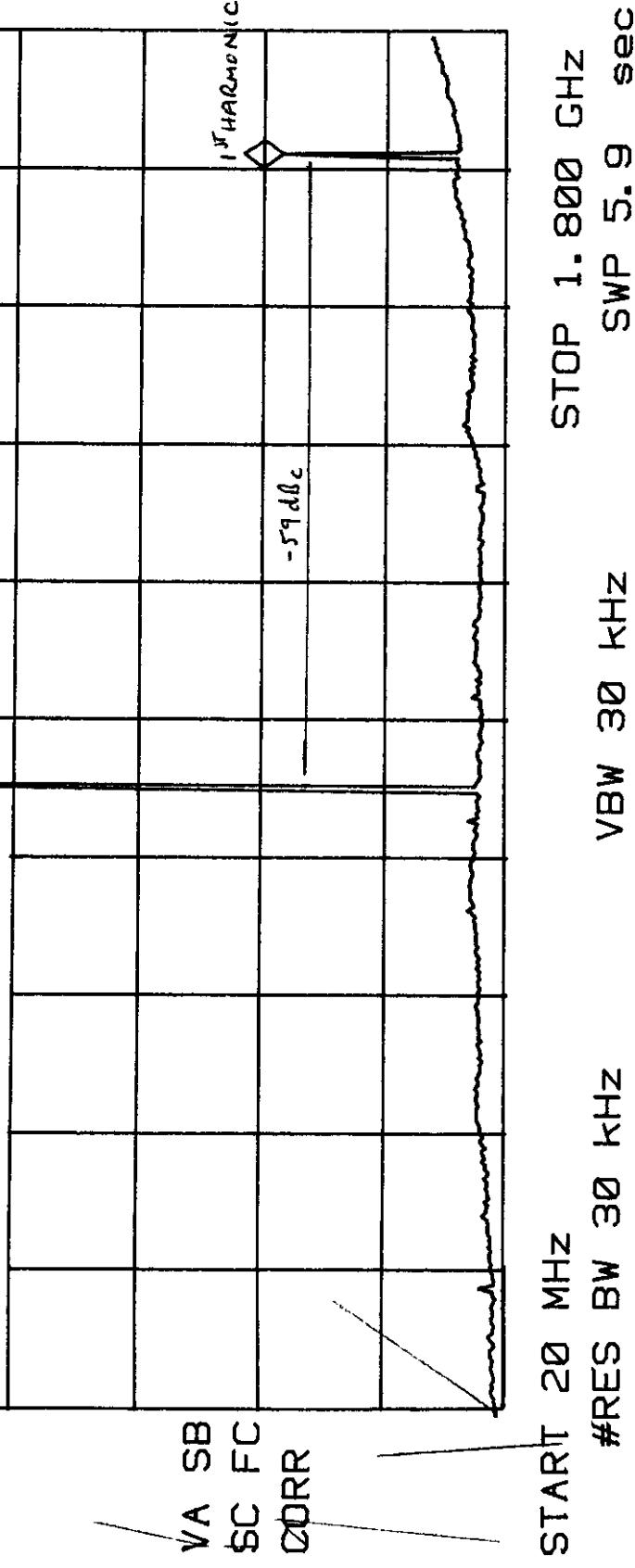
TITLE:	Test Report	FCC-ID N6TSCACEJ	
FILE NAME:	\MASTER\TEMP\Documents in Progress\Safeguard Comp TR 1_4.doc		
FILE DATE:	01/29/99 10:58 AM		
	Specification Number:	TR101/100/001	
	Page 17 of 21	Print Date:	1/29/99

PLOT #1 - VOICE and SAT

10: 57: 09 JAN 13, 1999

FCC ID - N6TSCACEJ

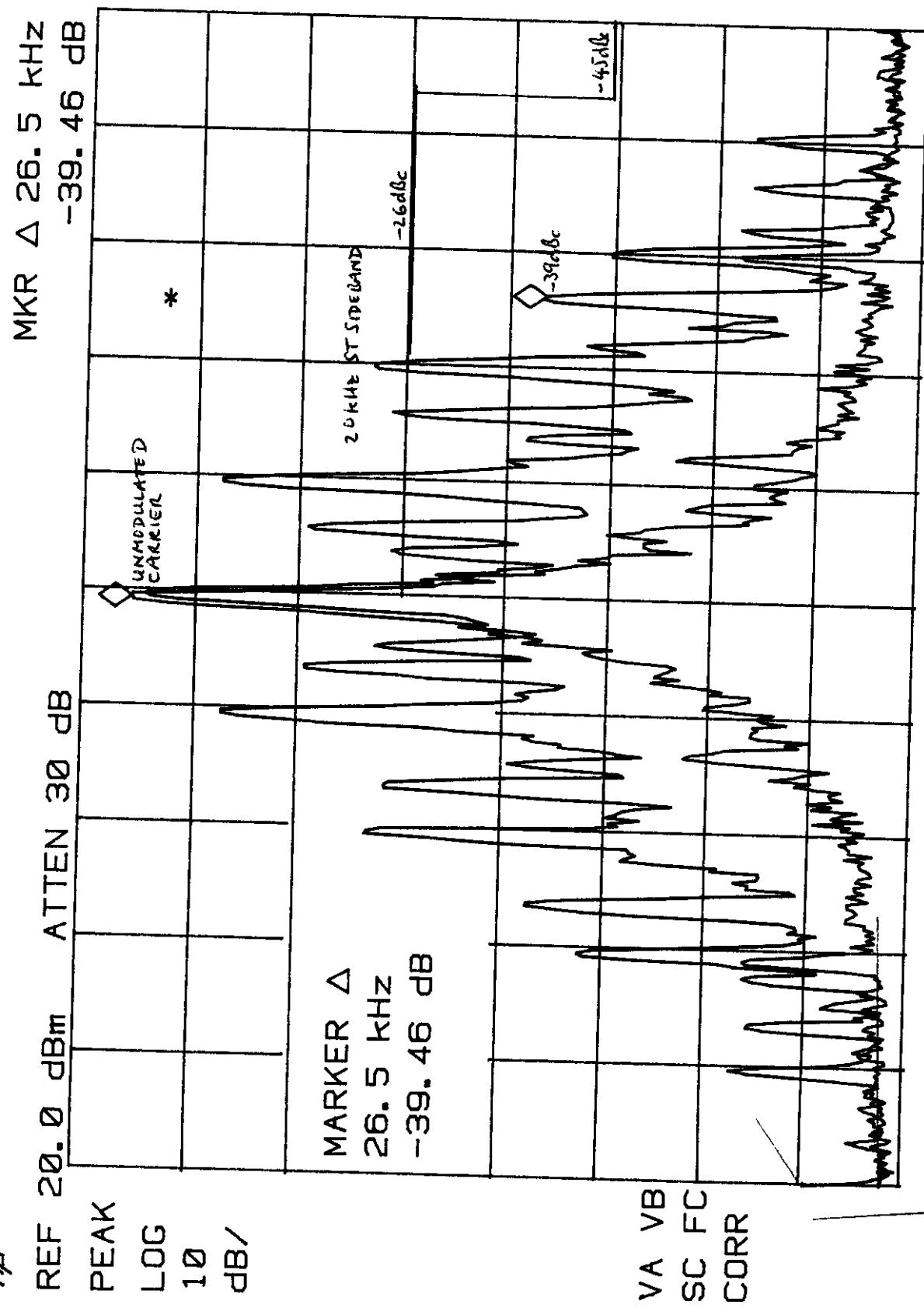
PLOT #2 - VOICE and SAT


FCC ID - N6TSCACEJ

11:27:05 JAN 13. 1999

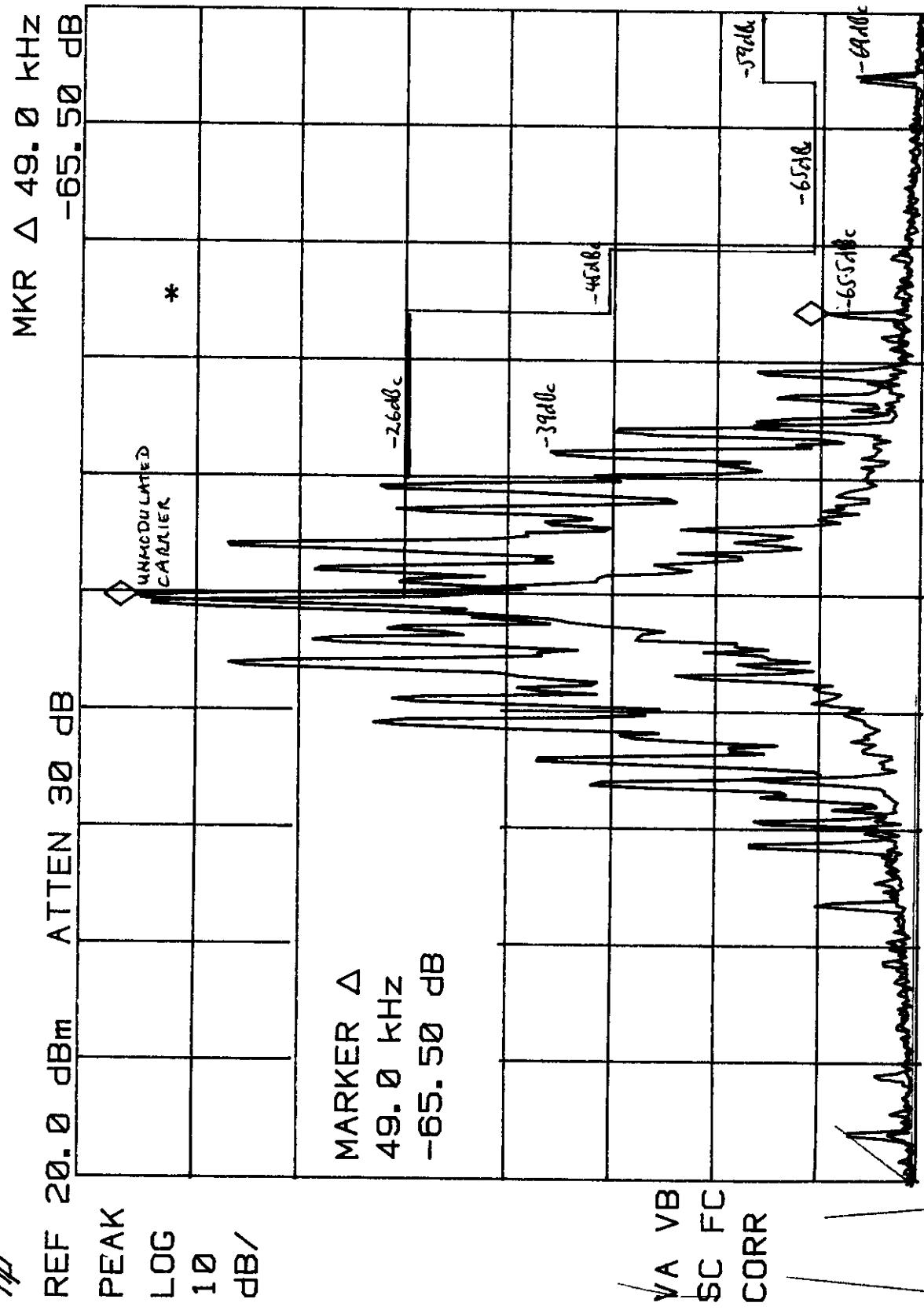
HP

REF 20.0 dBm ATEN 30 dB
PEAK LOG 10 dB/
MKR Δ 819 MHz
-57.10 dB


MARKER Δ
819 MHz
-57.10 dB

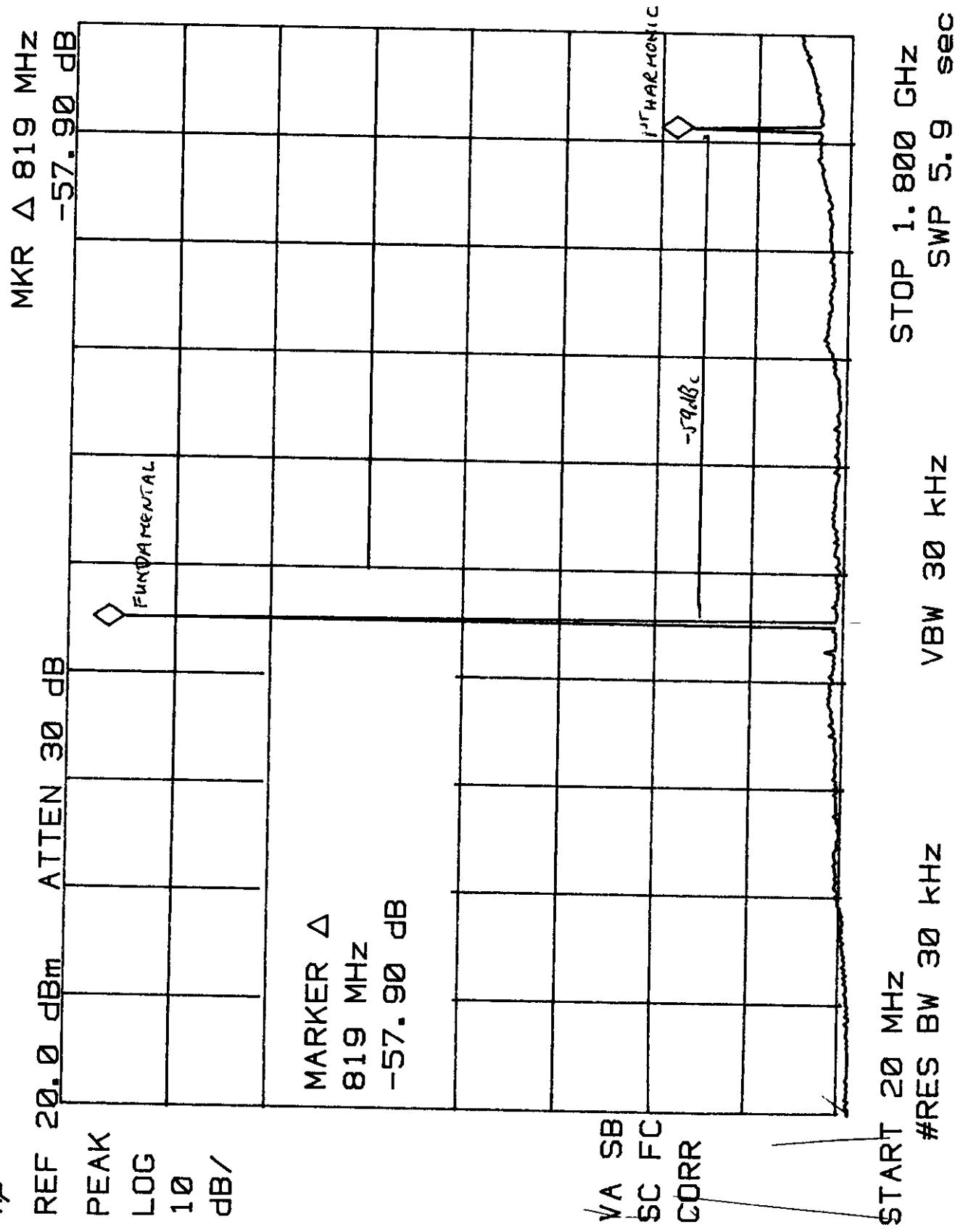
PLOT #3 – SAT and SIGNALING TONE

FCC ID – N6TSCACEJ

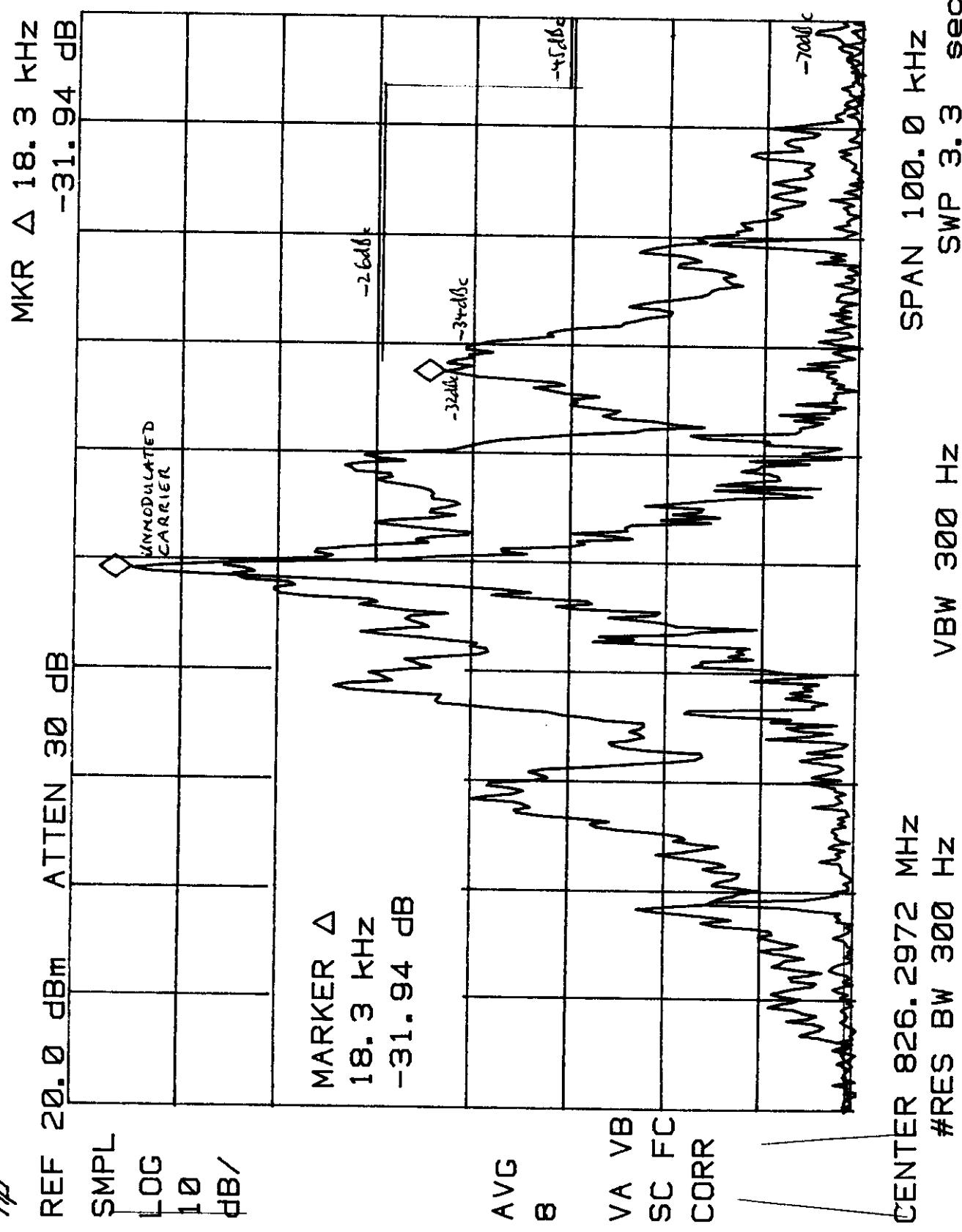

1/1: 54: 10 JAN 13, 1999

PLOT #4 – SAT and SIGNALING TONE

FCC ID – N6TSCACEJ


12:02:41 JAN 13, 1999

PLOT #5 - SAT and SIGNALING TONE


FCC ID - N6TSCACEJ

12:09:37 JAN 13, 1999

PLOT #6 - WIDEBAND DATA

12:22:05 JAN 13, 1999

PLOT #7 – WIDEBAND DATA

FCC ID - N6TSCACEJ

12:32:21 JAN 13, 1999

MARKER Δ
90.5 kHz
-66.07 dB

AVG 0

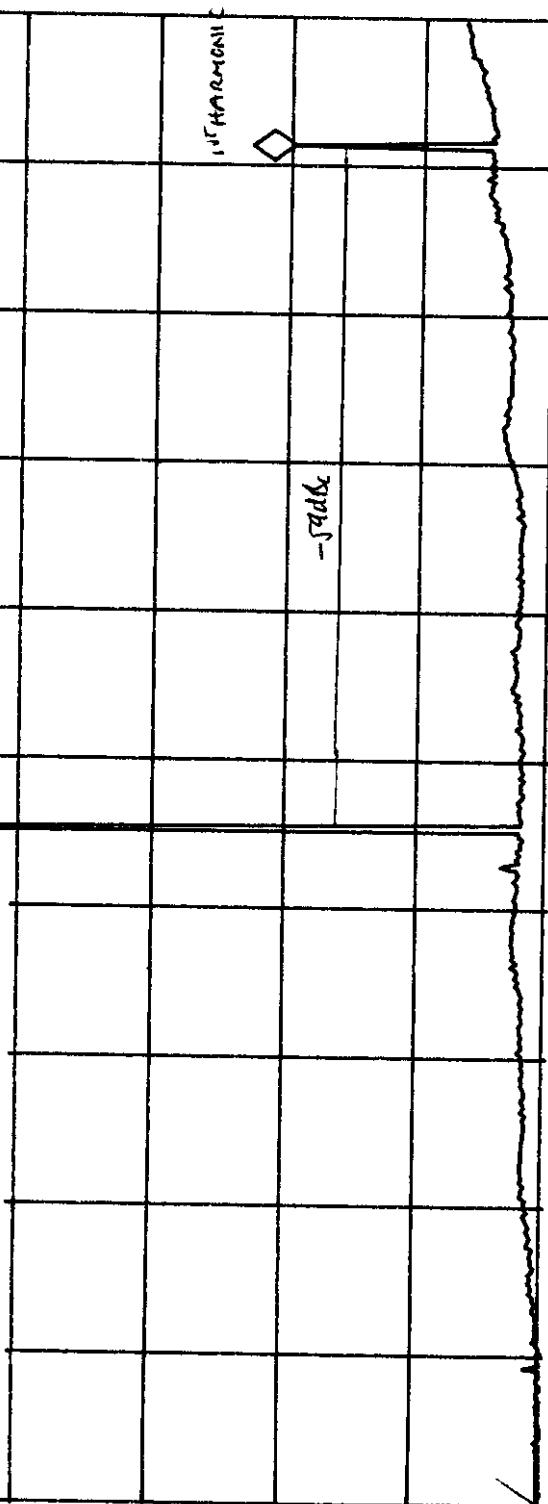
VA VB
SC FC
CORR

The figure is a spectral plot with the following characteristics:

- Y-axis:** Labeled "MKR Δ 90.5 kHz" and "ATTEN 30 dB".
- X-axis:** Labeled "0.0 dBm" and "-66.07 dB".
- Signal:** A noisy signal with a central frequency of 90.5 kHz.
- Labels:**
 - "UNMODULATED CARRIER" with an arrow pointing to the central peak.
 - "*" with an arrow pointing to a peak at approximately -26 dBc.
 - "-32 dBc" with an arrow pointing to a peak at approximately -32 dBc.
 - "-45 dB" with an arrow pointing to a peak at approximately -45 dB.
 - "-59 dBc" with an arrow pointing to a peak at approximately -59 dBc.
 - "-65 dBc" with an arrow pointing to a peak at approximately -65 dBc.
 - "-70 dBc" with an arrow pointing to a peak at approximately -70 dBc.
 - "-70 dBc" with an arrow pointing to a peak at approximately -70 dBc on the right side.
- Marker:** A diamond-shaped marker is located at the top right of the plot area.

CENTER 826.3002 MHz
#RES BW 300 Hz

PLOT #8 - WIDEBAND DATA

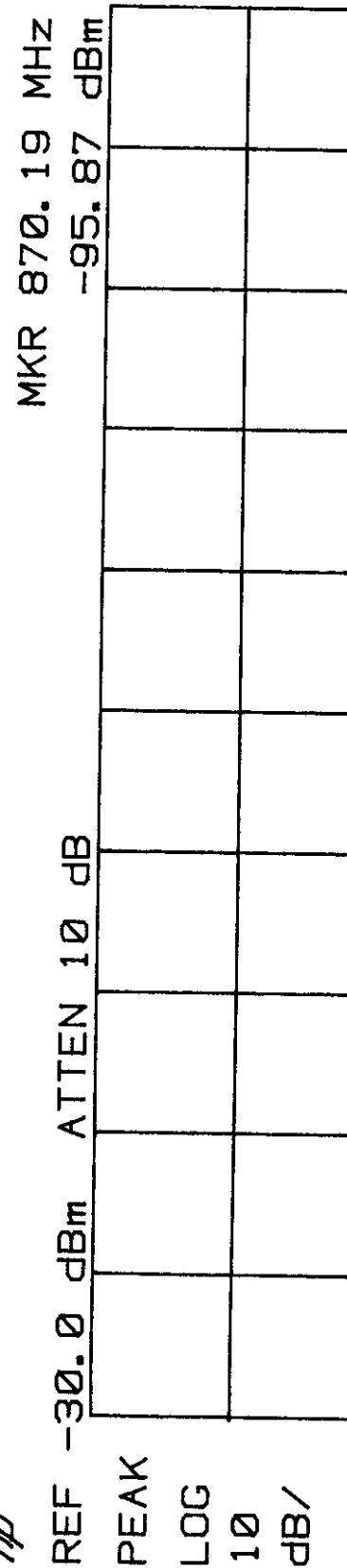

FCC ID - N6TSCACEJ

12:38:53 JAN 13, 1999

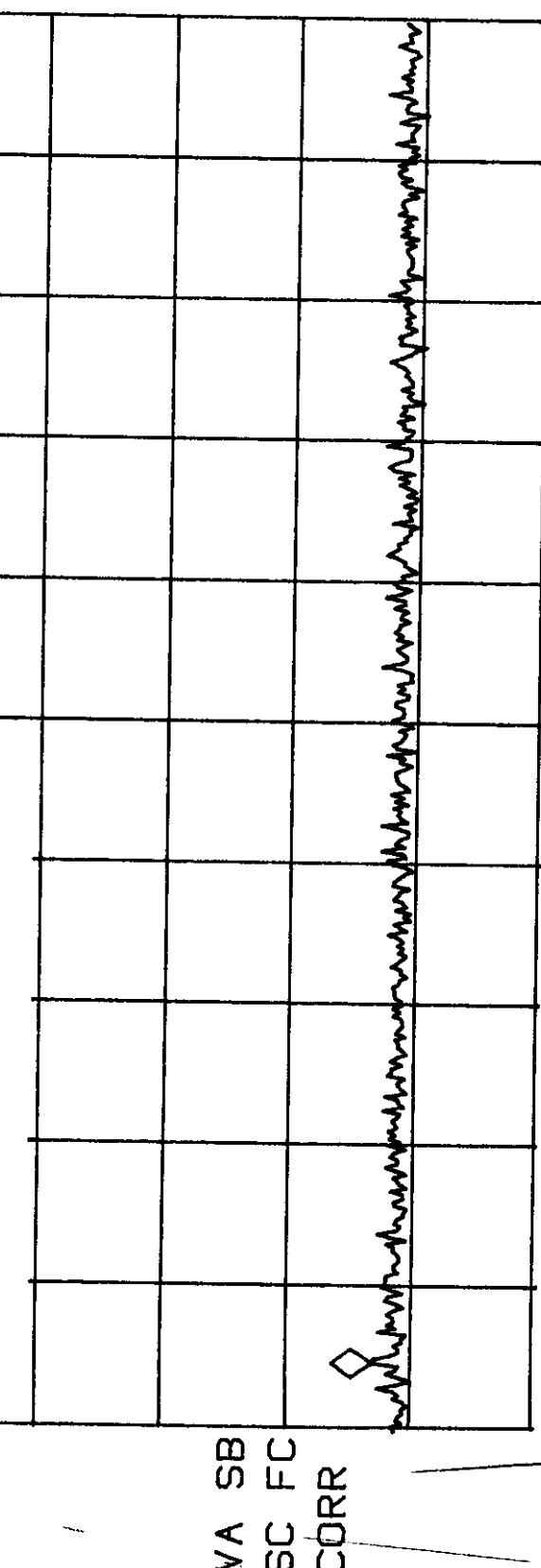
REF 20.0 dBm ATEN 30 dB
PEAK LOG 10 dB/
FUNDAMENTAL

MARKER Δ
823 MHz
-55.87 dB

VA SB
SC FC
CORR



START 20 MHz
#RES BW 30 kHz
VBW 30 kHz
STOP 1.800 GHz
SWP 5.9 sec


PLOT #9 - ANY MODULATION

FCC ID - N6TSCACEJ

11:38:50 JAN 13, 1999

RES BW
10 kHz

START 869.00 MHz
#RES BW 10 kHz

STOP 894.00 MHz
SWP 7.5 sec
#VBW 1 kHz

4.5 SPURIOUS EMISSIONS AT ANTENNA TERMINALS

This test was carried out at EMI Research and Development Laboratory at Florida Atlantic University. The Details given in Technical report No. 99-004.

The Spurious Emissions at Antenna Terminals is tested in accordance with Clause 3.4.2. of IS-19-B.3., "Harmonic and Spurious Emissions (Conducted) – Discrete".

4.5.1 *Specification*

The transmitter shall be alternately modulated with combined voice and SAT and with wideband data. The conducted spurious emissions shall be attenuated below the level of emissions of the carrier frequency by at least $43 + 10 [\log_{10} (\text{mean output power in Watts})]$ dB.

4.5.2 *Measurement*

Set the transmitter to channel #331 (center), full power.

For combined audio and SAT measurements, disable compressor and modulate transmitter with 1000Hz tone at a level to produce $\pm 8\text{kHz}$ peak deviation. Increase audio level by 13.5dB and change audio frequency to 2500kHz. Switch on SAT tone of 6000Hz with $\pm 2\text{kHz}$ peak deviation. Adjust Spectrum Analyzer and set display accordingly..

For Wideband data measurements, the transmitter is modulated with a quasi-random 10kilobit/second data pattern at $\pm 8\text{kHz}$ peak deviation.

Record up to the tenth harmonic.

4.5.3 *RESULTS*

The measured results are contained in Florida Atlantic University Technical Report No. 99-004, Page 13, which is appended to this Exhibit.

TITLE:	Test Report	FCC-ID N6TSCACEJ	
FILE NAME:	G:\Documents in Progress\FCC\Safeguard Comp TR 1_4.doc		
FILE DATE:	02/01/99 10:36 AM		
	Specification Number:	TR101/100/001	
	Page 18 of 21	Print Date:	2/3/99

4.6 FIELD STRENGTH OF SPURIOUS RADIATION

This test was carried out at EMI Research and Development Laboratory at Florida Atlantic University.

In order to preserve battery life, the Safeguard Companion was set for a transmit duty cycle of 1 second ON, 2 seconds OFF. The antenna output was loaded by the Dummy Load (para. 3.5.7).

Details of the measurements are given in Florida Atlantic University Technical report No. 99.004, Page 16, which is appended to this Exhibit.

TITLE:	Test Report		
FILE NAME:	G:\Documents in Progress\FCC\Safeguard Comp TR 1_4.doc		
FILE DATE:	02/01/99 10:36 AM		
	Specification Number:	TR101/100/001	
	Page 19 of 21	Print Date:	2/3/99

4.7 FREQUENCY STABILITY

This Test is carried out at AMITEK Corporation, Clint Moore Road, Boca Raton, Florida. The output from the antenna terminal is connected to the input of the AMPS Test Set (para. 3.5.1). The unit was placed into the Temperature Test Chamber (para 3.5.8).

4.7.1 Specification

The Carrier Frequency shall be maintained within $\pm 2.5\text{ppm}$ of any assigned channel frequency.

4.7.2 Measurement

The Frequency Stability is tested in accordance with the following:

Paragraph	Description
§2.995 (a) (1)	-30° to +50° centigrade
§2.995 (b)	10° steps
§2.995 (d) (2)	Supply voltage set to battery operating end point.

Battery used in unit is two ICP-340948 Lithium Ion Cells, manufactured by PolyStor Corporation, Dublin, CA. The operating voltage range is specified as 2.5 to 4.2V per cell. The supply voltage, in accordance with §2.995 (d) (2) is therefore set to 5V, measured at the supply input to the device, using the Multimeter (para 3.5.4).

The unit was placed in the Environmental Chamber. The unit was set to channel #991, receive mode. An input signal, for channel #991, at -80dBm was applied to the antenna. The temperature of the Environmental Chamber was then set to -30°C and increased, in 10-degree steps over the range, allowing time for the temperature to be stable at each step. At each step, the unit was set to channels #991, #331 and #799 in turn, the transmitter was switched on and the frequency recorded.

TITLE:	Test Report	FCC-ID N6TSCACEJ	
FILE NAME:	G:\Documents in Progress\FCC\Safeguard Comp TR 1_4.doc		
FILE DATE:	02/01/99 10:36 AM		
	Specification Number:	TR101/100/001	
	Page 20 of 21	Print Date:	2/3/99

4.7.3 RESULTS

Comment on Test Results: The Automatic Frequency Control system worked throughout the temperature range. Hence at each temperature reading, the frequency error was noted to vary over a small range of -110 to +60Hz, less than 0.2ppm max error. The recorded frequency was that of the first reading shown on the Marconi Test Set.

Supply Voltage 0.94 V

TEMP Degrees C	Channel #991 824.04000MHz		Channel #991 834.93000MHz		Channel #991 848.97000MHz	
	Frequency	Error ppm	Frequency	Error ppm	Frequency	Error ppm
-30	824.04002	0.02	834.93006	0.07	848.96992	0.09
-20	824.04007	0.08	834.93005	0.06	848.96999	0.01
-10	824.03998	0.02	834.93006	0.07	848.97004	0.05
0	824.03996	0.05	834.93002	0.02	848.97003	0.04
10	824.03999	0.01	834.92998	0.02	848.97000	0.00
20	824.03996	0.05	834.92994	0.07	848.96995	0.06
30	824.03995	0.06	834.92991	0.11	848.96997	0.04
40	824.03990	0.12	834.92993	0.08	848.96990	0.12
50	824.03994	0.07	834.92992	0.10	848.96995	0.06
60	824.03995	0.06	834.92990	0.12	848.96992	0.09

Maximum error recorded -110, +60 Hz < 0.2 ppm

Date Tested: 1/28/99

Test Engineer: (Signature)

Graham K. Smith (Printed)

TITLE:	Test Report	FCC-ID N6TSCACEJ	
FILE NAME:	\MASTER\TEMP\Documents in Progress\Safeguard Comp TR 1_4.doc		
FILE DATE:	01/29/99 10:58 AM		
	Specification Number:	TR101/100/001	
	Page 21 of 21	Print Date:	1/29/99

EMI Research and Development Laboratory
Department of Electrical Engineering
Florida Atlantic University
Boca Raton, Florida 33431
(561) 338-1650

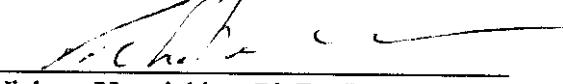
Technical Report No. 99-004

**"Evaluation of the Chapman Technologies, Inc.
'Personal Safeguard Companion'
FCC ID: N6TSCACEJ
to FCC Radiated Emission Requirements."**

Performed: 12 January 1999

Customer: Chapman Technologies, Inc.
800 W. Cypress Creek Rd. #240
Fort Lauderdale, FL 33309

Company Official responsible
for product(s) tested:



Graham K. Smith, Director of Systems Development
tel (954) 958-9000, fax (954) 958-9009.

Test Performed &

Reported by:

J.R. Nicholson
FAU EMI R & D Laboratory

Approved by:

Vichate Ungvichian, Ph.D., P.E.
Director, FAU EMI R & D Laboratory

Chapman Technologies, Inc. Technical Report 99-004

1. INTRODUCTION

The Chapman Technologies, Inc. 'Personal Safeguard Companion' FCC ID: ND6TSCACEJ was evaluated for compliance to FCC emission requirements and the results reported in this 16 page document apply only to the specific items of equipment, configurations (including software/unit operation), and procedures supplied to the Florida Atlantic University EMI Research Lab by Chapman Technologies, Inc as reported in this document.

2. OBJECTIVE

This evaluation was performed to verify conformance of the Chapman Technologies, Inc. 'Personal Safeguard Companion' to the Radiated Emission limits of FCC CFR 47, Part 15, paragraph 15.109(a) over the frequency range defined in 15.33(b)(1). Further evaluations were performed to the requirements of EIA/IS-19-B "Recommended Minimum Standards for 800 MHz Cellular Subscriber Units" as identified in the Tests Results section.

3. CONCLUSION

The Chapman Technologies, Inc. 'Personal Safeguard Companion' FCC ID: N6TSCACEJ met the FCC unintentional radiator emission requirements and the EIA/IS-19-B requirements as described in the following pages.

4. TEST PROCEDURES AND RESULTS

4.1 TEST PROCEDURES

The measurement techniques identified in measurement procedure ANSI C63.4-1992 "*American National Standard of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9kHz to 40 GHz*" and EIA/IS-19-B "*Recommended Minimum Standards for 800-MHz Cellular Subscriber Units*" were followed as close as practical during this evaluation. Complete details and specific procedures used are discussed in the respective Tests Results sections.

4.2 RECEIVER TESTS:

RADIATED EMISSIONS TEST RESULTS - FCC 15.109(a).

The 'Personal Safeguard Companion' FCC ID: N6TSCACEJ unit was set up on a wooden turntable 80 centimeters above the ground plane floor of the FCC listed Semi-Anechoic test site. Radiated emission measurements were performed with the unit in three orientations, on its 'foot', 'side', and 'back' as compared to FCC 15.109(a) Unintentional Radiator emission limits. Photograph 1 shows the device installed on the turntable and Photograph 2 shows the dummy load connection to the device.

An EMCO 3104 Broadband Biconical antenna was installed on an EMCO pneumatically controlled Antenna Mast at a distance of 3 meters from the unit. The 30 to 200 MHz frequency range was observed for maximum radiated emission levels on an HP 8566B Spectrum Analyzer, the turntable was rotated through 360 degrees, and the antenna was scanned in height from 1 to 4 meters in both the horizontal and vertical polarizations. No emissions were detected within -25 dB of the FCC limit of 150 uV/m or 43.5 dBuV/m.

An EMCO 3146 Log Periodic antenna was then used and the above procedure was repeated for the 200 to 1000 MHz range. Figure 1 shows maximum emission profile observed. It should be noted that with exception of the receiver local oscillator frequency of 957.273 MHz, all emissions are from the GPS portion of the device and are all at least -6 dB below the FCC limit. This was demonstrated by disabling the GPS and observing the receiver only. At 957.273 MHz, the limit is 200 uV/m or 46.0 dBuV/m plus 26.3 dB Amplifier Gain minus 21.87 dB Antenna Factor minus 4.68 dB Cable Loss or 45.75 dBuV. The emission level is indicated to be 44.3 dBuV which is -1.45dB below the limit.

For frequencies above 1GHz, an EMCO 3115 Horn antenna was used and the following maximum level emissions (independent of unit orientation) were observed in reference to the FCC limit of 54 dBuV/m:

1.914 GHz	=	51.3 dBuV/m
2.871 GHz	=	39.0 dBuV/m
3.829 GHz	=	29.4 dBuV/m
4.786 GHz	=	37.3 dBuV/m

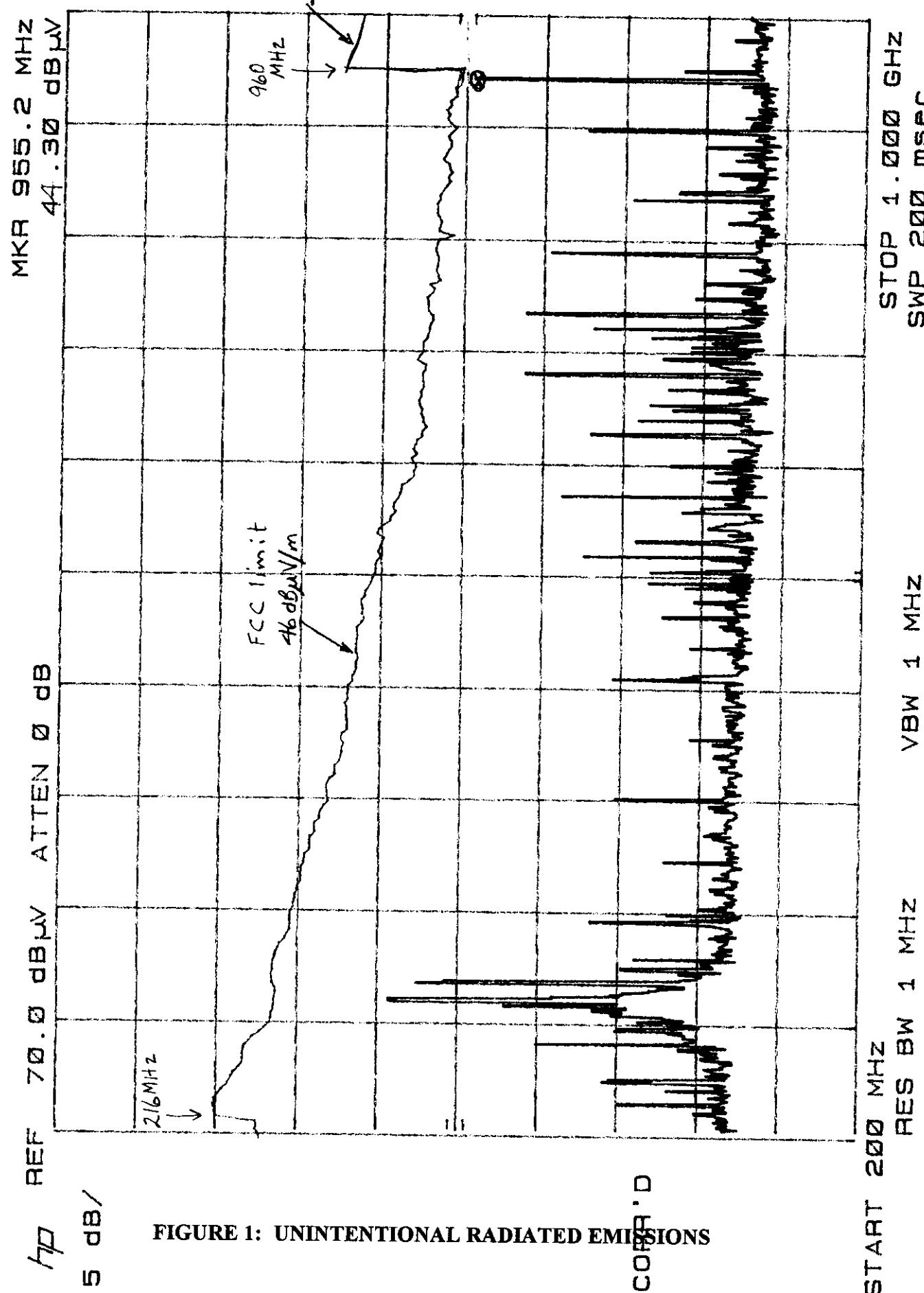


FIGURE 1: UNINTENTIONAL RADIATED EMISSIONS

CONDUCTED SPURIOUS EMISSIONS - PARA 2.4 EIA/IS-19-B.

Conducted spurious-output signals are those generated or amplified in a receiver and appearing at the receiver antenna terminals.

The conducted spurious emissions were observed on the HP-8556B Spectrum Analyzer with a coax cable attached to the "Personal Safeguard Companion" test connector.

Figures 2 - 7 show the results observed from 1MHz to 3 GHz summarized below showing the maximum signal observed as compared to the limits of paragraph 2.4.3:

Figure	Frequency range	Spec limit	Max signal observed
2	1 - 76 MHz	-47 dBm	-82.40 dBm
3	75 - 824 MHz	-47 dBm	-79.35 dBm
4	824 - 850 MHz	-60 dBm	-83.40 dBm
5	850 - 894 MHz	-80 dBm	-83.20 dBm
6	894 - 2500 MHz	-47 dBm	-55.05 dBm
7	2.0 - 3.0 GHz	-47 dBm	-72.40 dBm

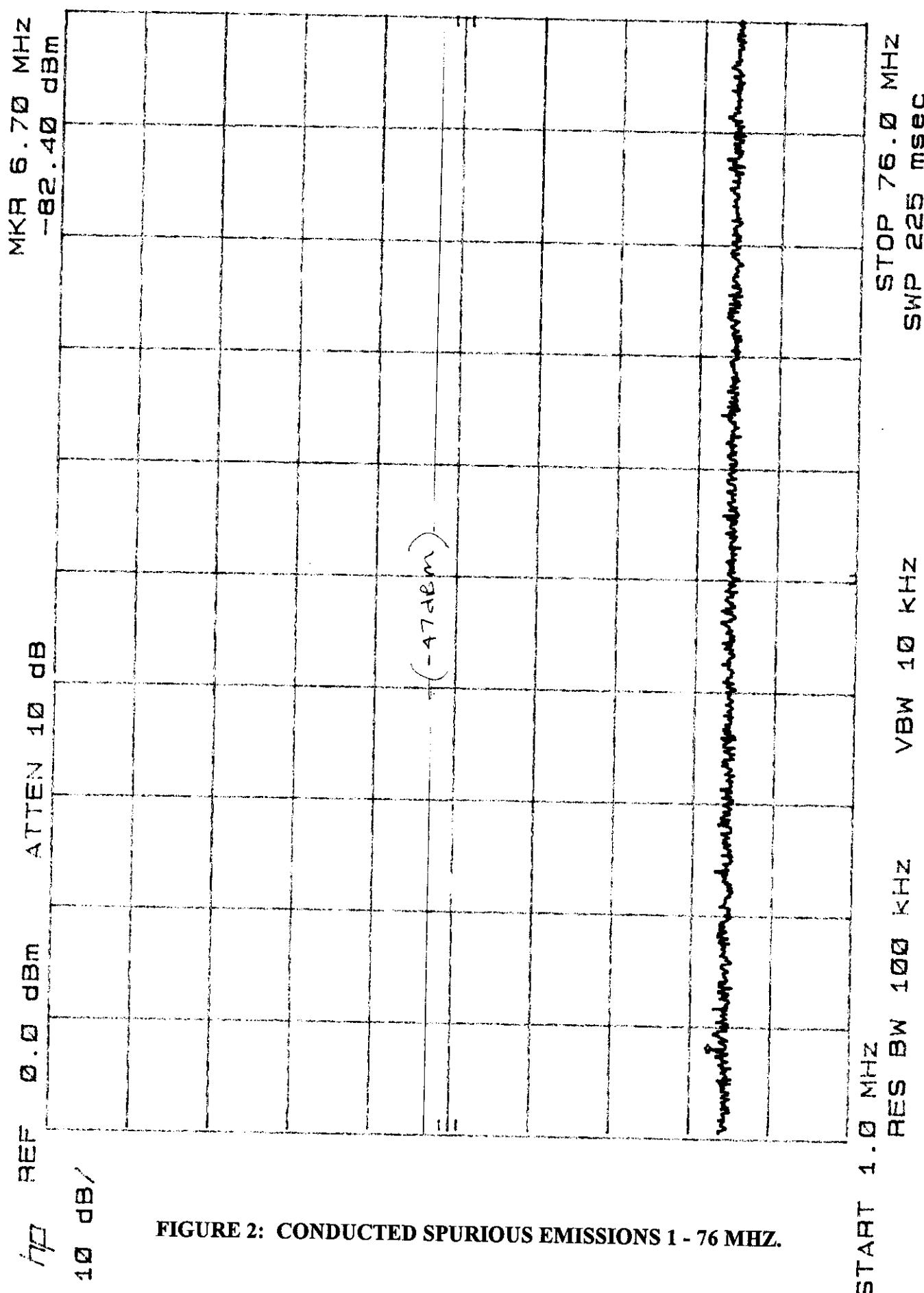
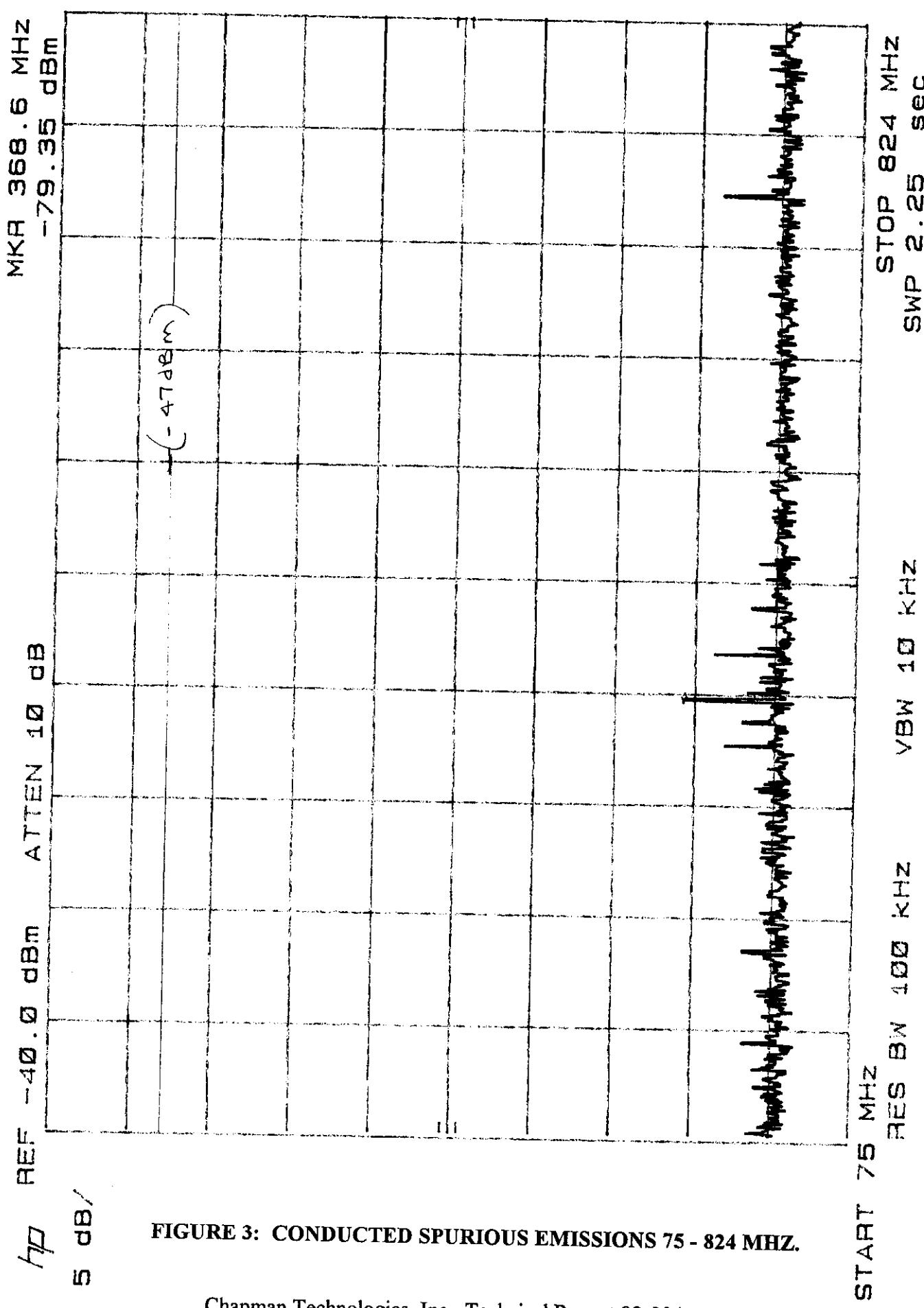



FIGURE 2: CONDUCTED SPURIOUS EMISSIONS 1 - 76 MHZ.

FIGURE 3: CONDUCTED SPURIOUS EMISSIONS 75 - 824 MHZ.

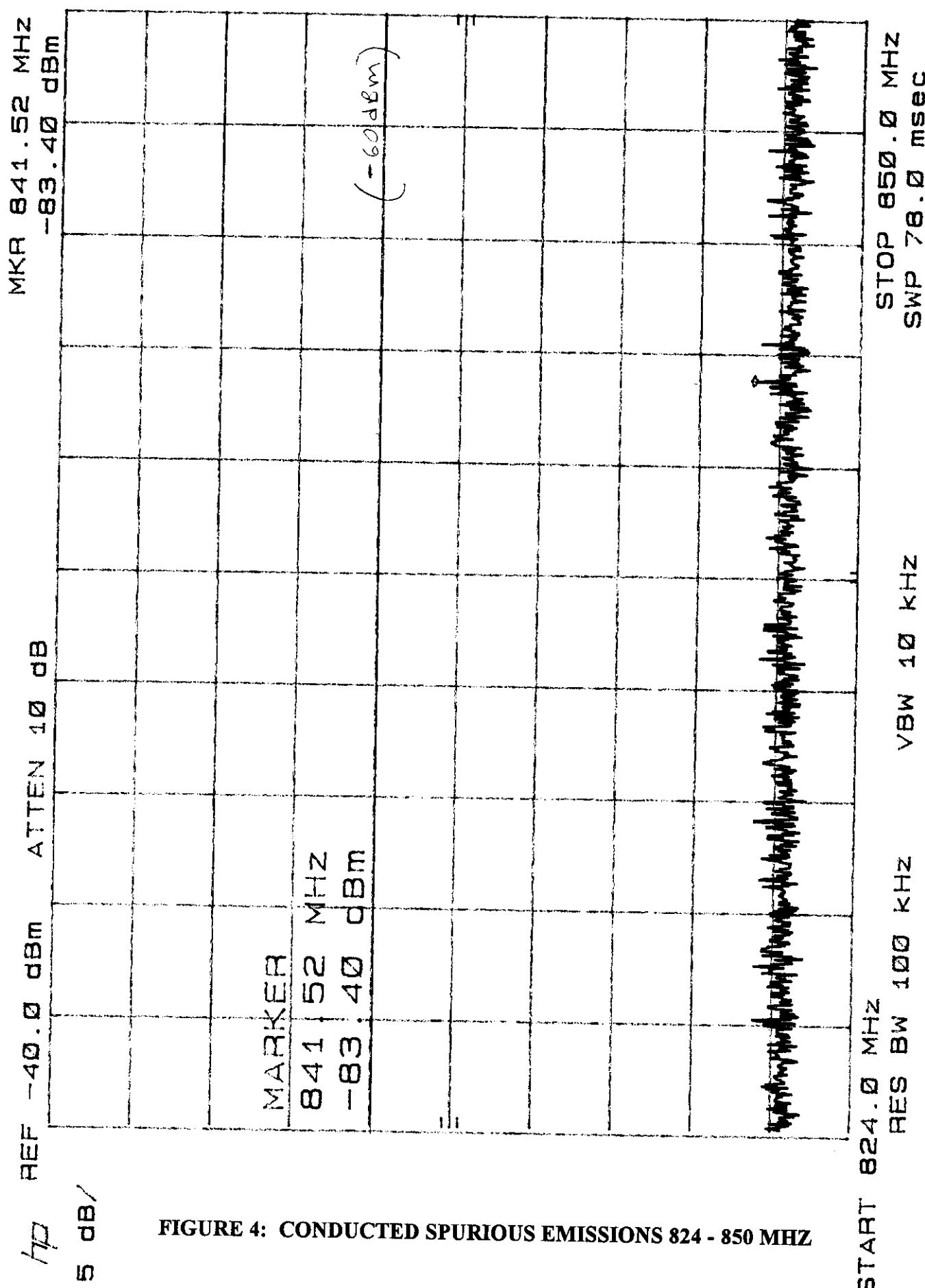
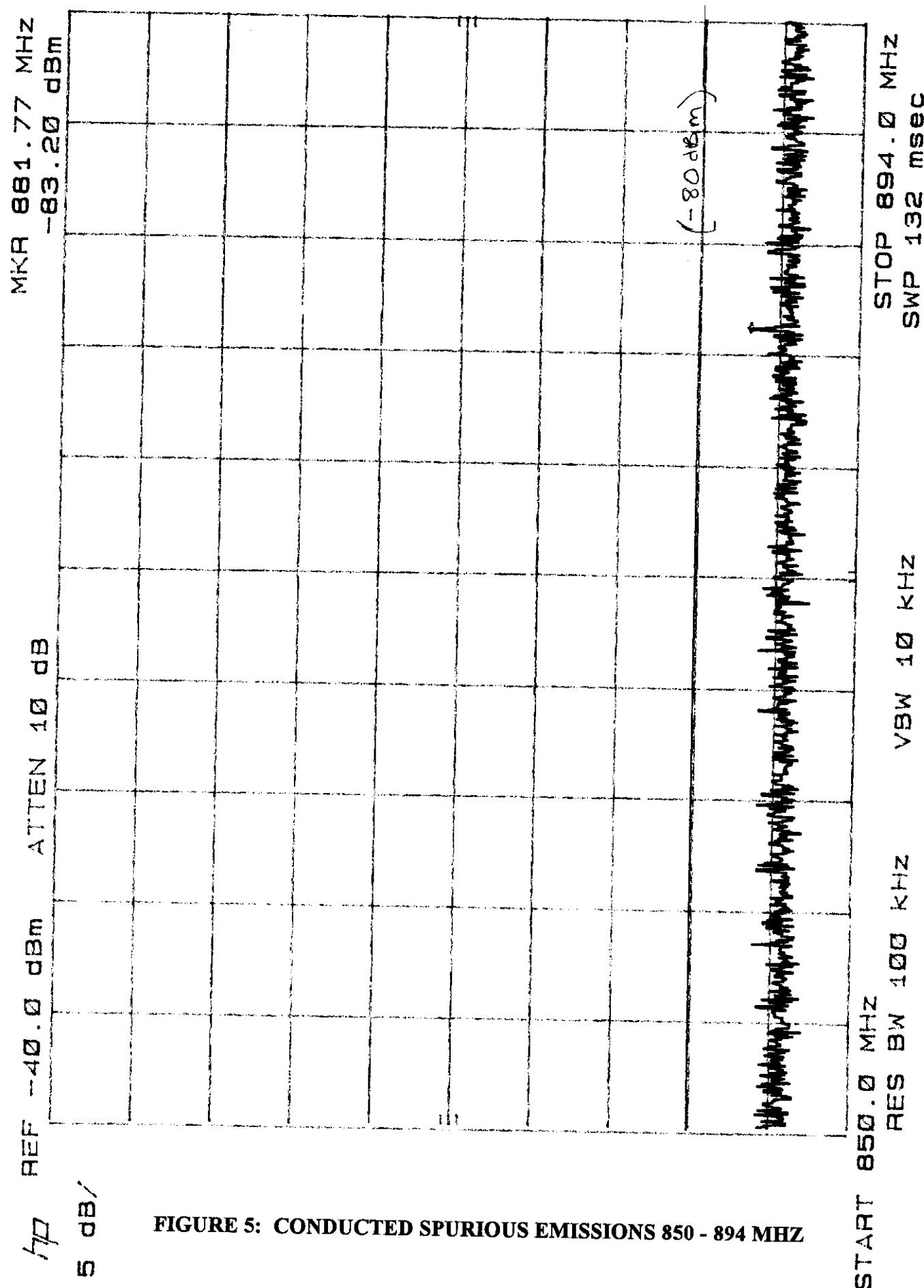
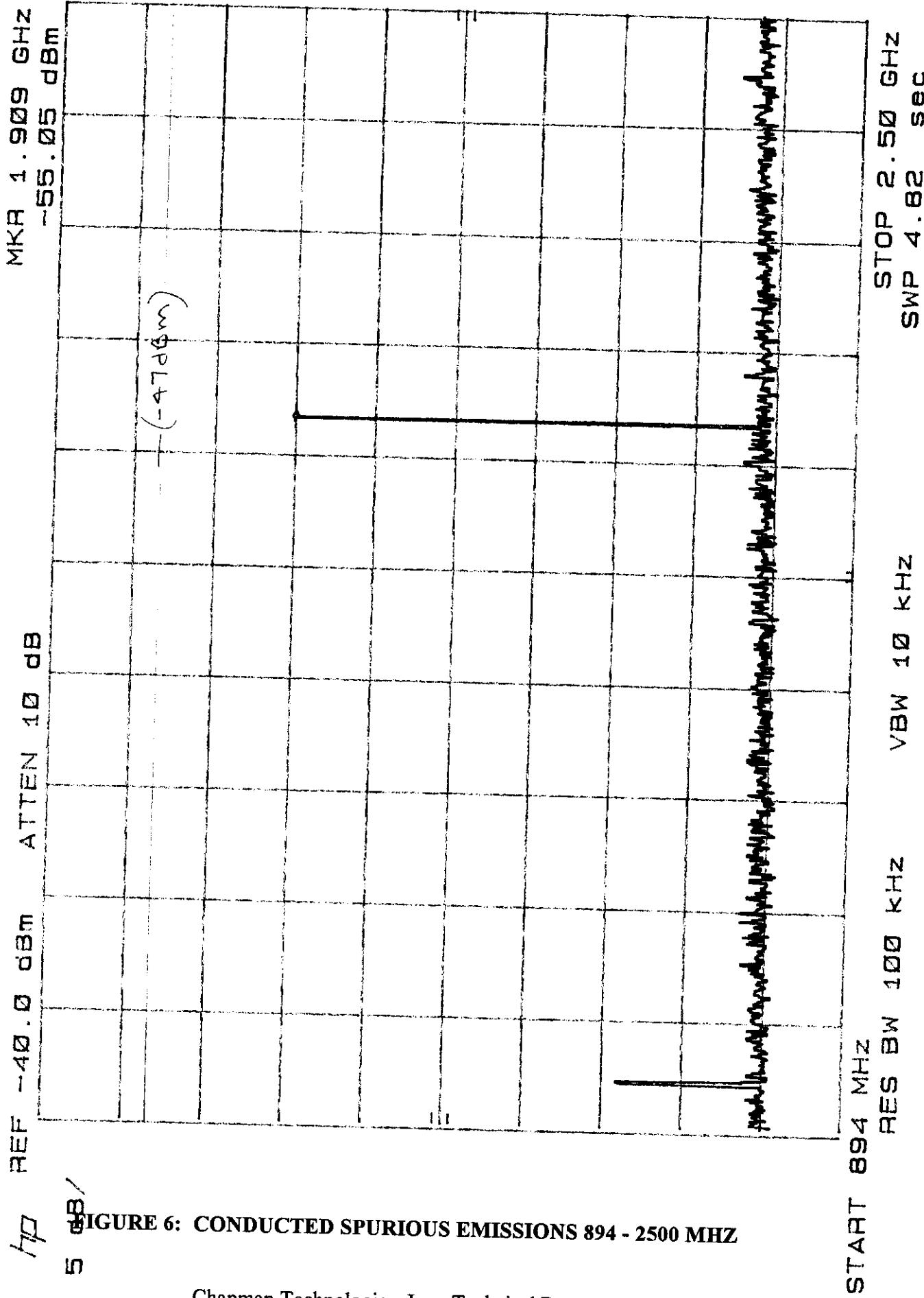




FIGURE 4: CONDUCTED SPURIOUS EMISSIONS 824 - 850 MHZ

FIGURE 5: CONDUCTED SPURIOUS EMISSIONS 850 - 894 MHz

5 6B/

FIGURE 6: CONDUCTED SPURIOUS EMISSIONS 894 - 2500 MHZ

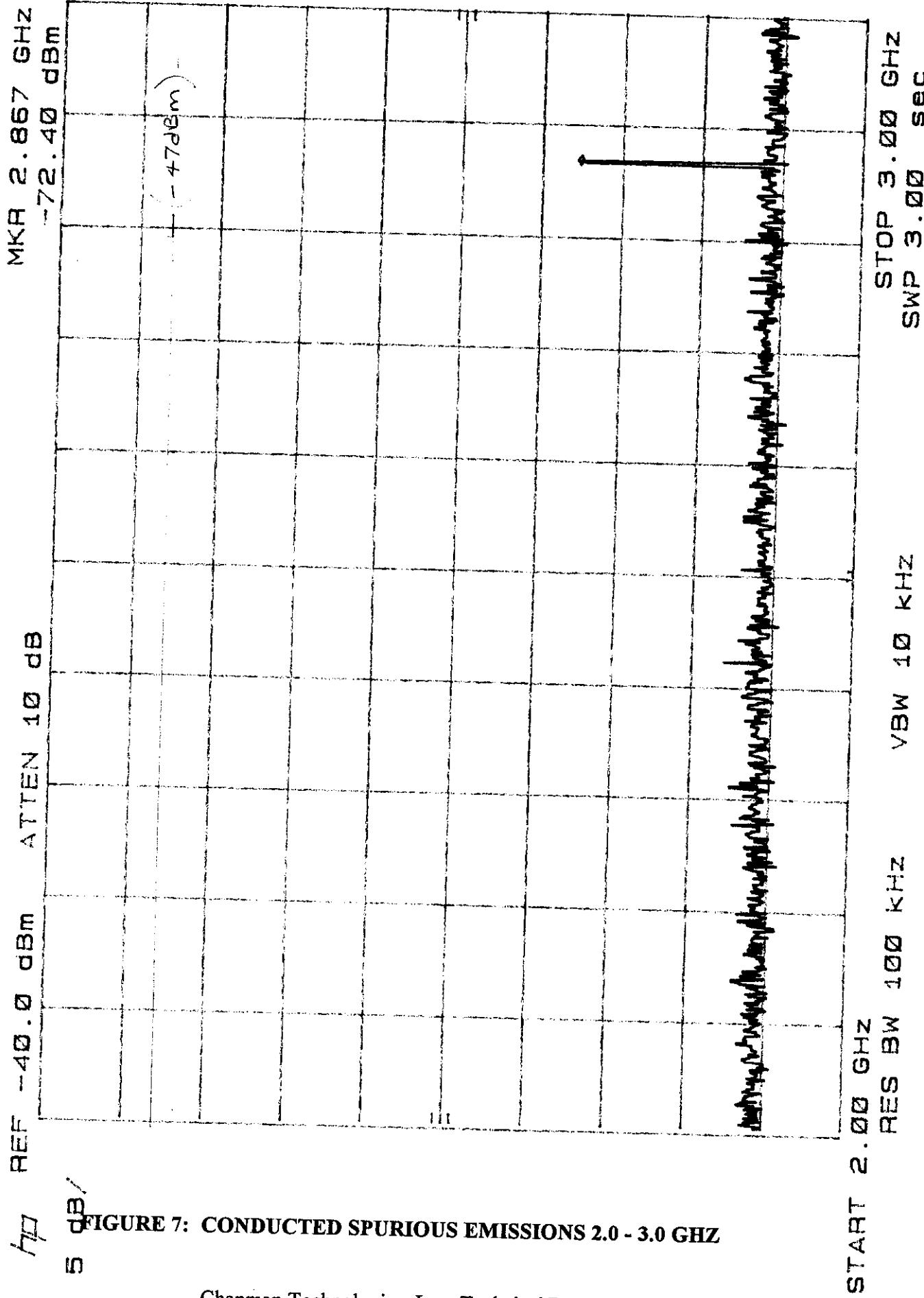


FIGURE 7: CONDUCTED SPURIOUS EMISSIONS 2.0 - 3.0 GHZ

4.3 TRANSMITTER TESTS:

The following transmitter tests were performed to the referenced paragraphs of EIA/IS-19-B:

Harmonic and Spurious Emissions (Conducted) - Discrete, para 3.4.2

Conducted harmonic and spurious emissions are emissions at the antenna terminals on a frequency or frequencies that are outside the authorized bandwidth of the transmitter.

A Marconi 2955B Radio Communication Test Set was used to program the device for the modes identified in 3.4.2.2, 1) combined voice and Supervisory Audio Tone (SAT) and 2) wideband data.

The transmitter output at 834.989 MHz was connected to a Pasternack 10w10dB attenuator through a HP8494A 10 dB Attenuator to the HP 8556B Spectrum Analyzer. Figures 8 and 9 show the corresponding emission levels detected from 800MHz to 5.5 Ghz.

The following list shows the fundamental through 10th harmonic of the transmitter in the two modes and the resultant levels detected as compared to the maximum allowable level of paragraph 3.4.2.3 (-39dB below fundamental).

Frequency	Wideband	Voice & SAT Max. level	
834.982 MHz	+3.20 dBm	+3.10 dBm	--
1.669 GHz	-54.3 dBm	-55.3 dBm	-35.9 dBm
2.504 GHz	-58.5 dBm	-57.9 dBm	-35.9 dBm
3.339 GHz	-56.5 dBm	-56.7 dBm	-35.9 dBm
4.174 GHz	-76.0 dBm	-77.4 dBm	-35.9 dBm
5.009 GHz	-65.3 dBm	-65.6 dBm	-35.9 dBm
5.844 GHz	-70.3 dBm	-69.9 dBm	-35.9 dBm
6.679 GHz	-71.0 dBm	-72.2 dBm	-35.9 dBm
7.515 GHz	-71.8 dBm	-71.3 dBm	-35.9 dBm
8.349 GHz	-71.1 dBm	-71.6 dBm	-35.9 dBm

As can be seen from the figures and above data, all harmonics are attenuated more than the specified amount.

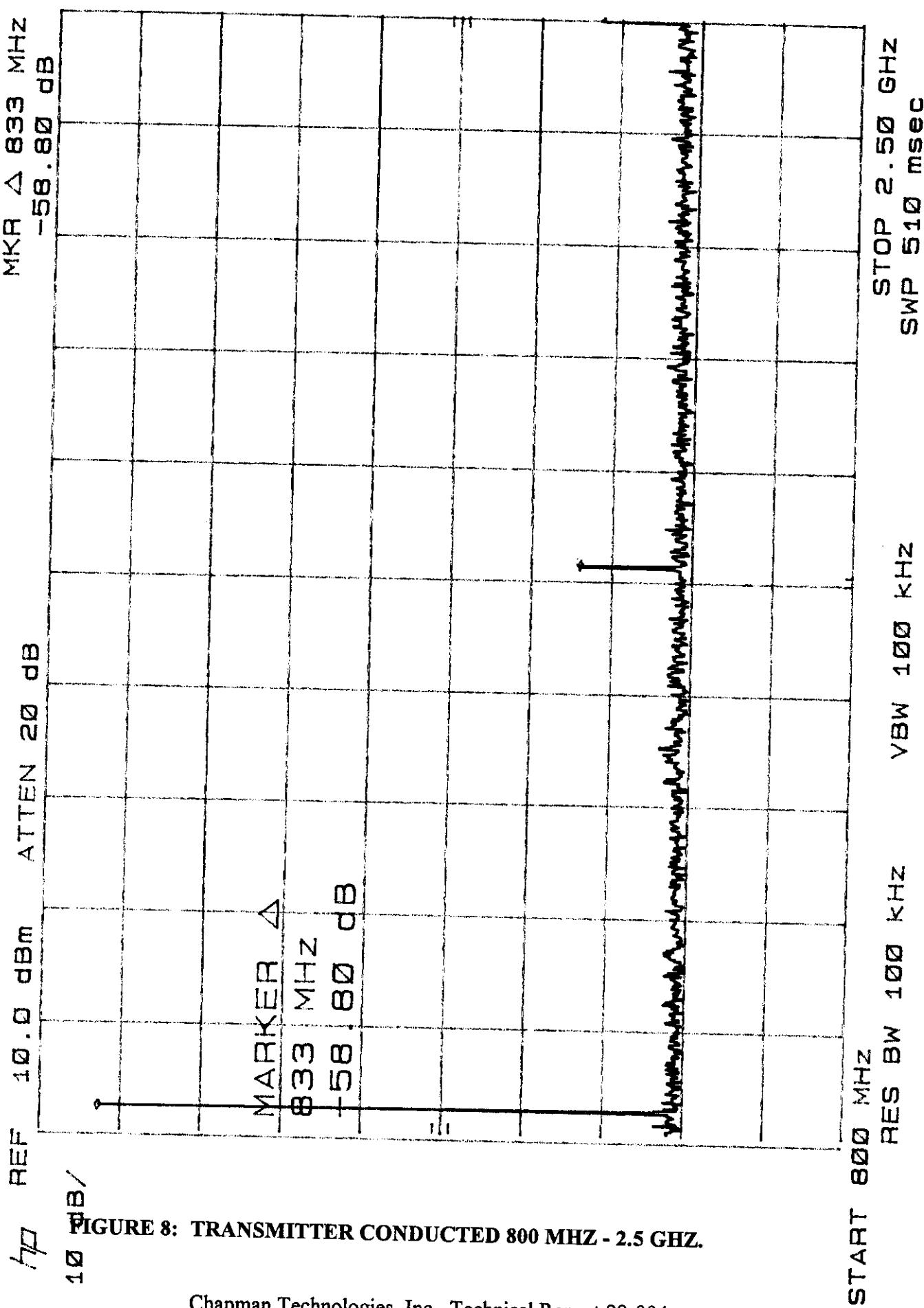


FIGURE 8: TRANSMITTER CONDUCTED 800 MHZ - 2.5 GHZ.

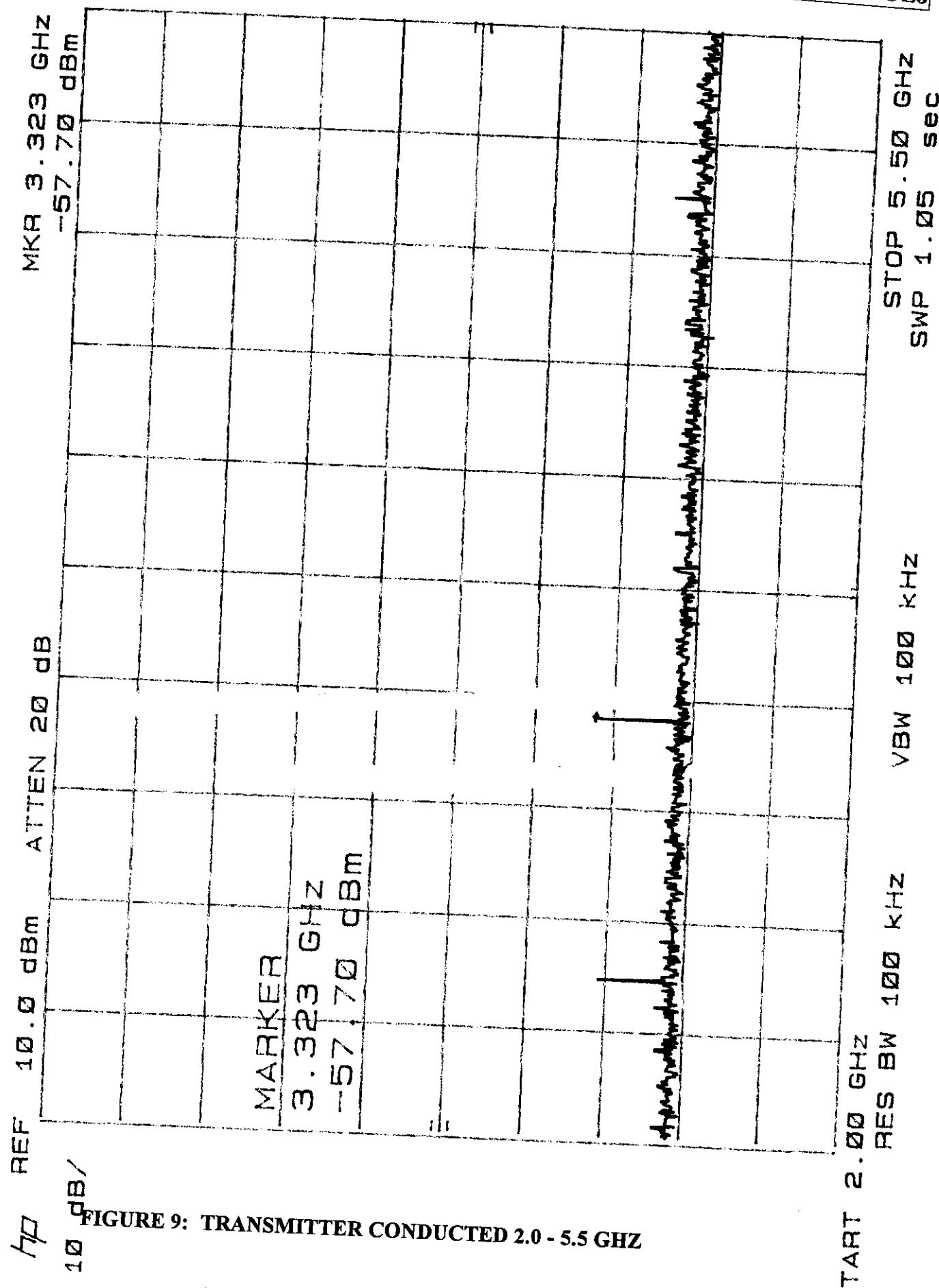


FIGURE 9: TRANSMITTER CONDUCTED 2.0 - 5.5 GHZ

Harmonic and Spurious Emissions (Radiated) - Discrete, para 3.4.3

Radiated spurious emissions are emissions from the subscriber unit when loaded into a non-radiating load on a frequency or frequencies that are outside an occupied band. These radiated emissions shall be attenuated below the maximum level of emission of the carrier frequency by at least -39dB.

Photographs 1 and 2 show the device with a 50 ohm dummy load attached. The unit was positioned in three orientations (foot, side and back) and the harmonic emissions up through the 10th harmonic were observed with a EMCO 3115 Horn antenna positioned 3 meters distance in both the horizontal and vertical polarizations. The device was rotated on the turntable and the antenna height varied for maximum emission levels detected on the HP 8566B Spectrum Analyzer.

The following list shows the results as compared to the equivalent signal substitution level comparable to the -39 dB below the fundamental per para 3.4.3.3

FREQ - GHZ	Level equal to -39dB	Foot		Side		Back	
		Hor	Vert	Hor	Vert	Hor	Vert
1.669	-20.0	-46.1	-40.9	-47.7	-44.4	-46.5	-45.4
2.505	-28.0	-47.2	-54.9	-52.5	-54.4	-53.2	-54.9
3.339	-30.0	-47.1	-55.3	-51.5	-49.7	-48.3	-52.8
4.175	-39.0	-48.0	-49.9	-46.0	-52.1	-49.4	-47.4
5.009	-37.0	-44.8	-52.5	-48.7	-47.1	-47.9	-46.8
5.845	-44.0	-61.1	-61.6	-64.3	-62.5	-61.5	-59.7
6.679	-47.0	-63.1	-70.7	-69.9	-66.9	-71.1	-64.5
7.515	-53.0	-74.5	-79.0	-76.9	-74.8	-77.6	-75.5
8.349	-54.0	-67.9	-72.8	-69.3	-69.4	-73.0	-66.6

All levels above are in -dBm units and as can be seen are all well below the specified level.